CHEN Min1,2,JIA Rong1,2,ZHANG Jin-Chuan1,2,ZHANG Chen-Yu1,2,CHU Jun-Cong1,2,YAO Wei1,2,GE Jun-Yong3,WANG Xing-Yu3,YANG Ya-Dong1,2,ZENG Zhao-Hai1,2,ZANG Hua-Dong1,2,*
[1] Li X F, Wang Z G, Bao X G, Sun J H, Yang S C, Wang P, Wang C B, Wu J P, Liu X R, Tian X L, et al. Long-term increased grain yield and soil fertility from intercropping. Nat Sustain, 2021, 4: 943–950. [2] Tamburini G, Bommarco R, Wanger T C, Kremen C, van der Heijden M G A, Liebman M, Hallin S. Agricultural diversification promotes multiple ecosystem services without compromising yield. Sci Adv, 2020, 6: eaba1715. [3] Yu R P, Yang H, Xing Y, Zhang W P, Lambers H, Li L. Belowground processes and sustainability in agroecosystems with intercropping. Plant Soil, 2022, 476: 263–288. [4] Ma H Y, Zhou J, Ge J Y, Nie J W, Zhao J, Xue Z Q, Hu Y G, Yang Y D, Peixoto L, Zang H D, et al. Intercropping improves soil ecosystem multifunctionality through enhanced available nutrients but depends on regional factors. Plant Soil, 2022, 480: 71–84. [5] Mudare S, Kanomanyanga J, Jiao X Q, Mabasa S, Lamichhane J R, Jing J Y, Cong W F. Yield and fertilizer benefits of maize/grain legume intercropping in China and Africa: a meta-analysis. Agron Sustain Dev, 2022, 42: 81. [6] 冯晓敏, 杨永, 任长忠, 胡跃高, 曾昭海. 豆科-燕麦间作对作物光合特性及籽粒产量的影响. 作物学报, 2015, 41: 1426–1434. Feng X M, Yang Y, Ren C Z, Hu Y G, Zeng Z H. Effects of legumes intercropping with oat on photosynthesis characteristics of and grain yield. Acta Agron Sin, 2015, 41: 1426–1434 (in Chinese with English abstract). [7] Feng W H, Ge J Y, Rodríguez A R S, Zhao B P, Wang X Y, Peixoto L, Yang Y D, Zeng Z H, Zang H D. Oat/soybean strip intercropping benefits crop yield and stability in semi-arid regions: a multi-site and multi-year assessment. Field Crops Res, 2024, 318: 109560. [8] Yang F, Liao D P, Wu X L, Gao R C, Fan Y F, Ali Raza M, Wang X C, Yong T W, Liu W G, Liu J, et al. Effect of aboveground and belowground interactions on the intercrop yields in maize-soybean relay intercropping systems. Field Crops Res, 2017, 203: 16–23. [9] Chapagain T, Pudasaini R, Ghimire B, Gurung K, Choi K, Rai L, Magar S, BK B, Raizada M N. Intercropping of maize, millet, mustard, wheat and ginger increased land productivity and potential economic returns for smallholder terrace farmers in Nepal. Field Crops Res, 2018, 227: 91–101. [10] Ma Q H, Wu Y H, Liu Y N, Shen Y Y, Wang Z K. Interspecific interaction and productivity in a dryland wheat/alfalfa strip intercropping. Field Crops Res, 2024, 309: 109335. [11] Raza A, Asghar M A, Ahmad B, Bin C, Iftikhar Hussain M, Li W, Iqbal T, Yaseen M, Shafiq I, Yi Z, et al. Agro-techniques for lodging stress management in maize-soybean intercropping system: a review. Plants, 2020, 9: 1592. [12] Wang W, Zhao J H, Li M Y, Zhang W, Rehman M M U, Wang B Z, Ullah F, Cheng Z G, Zhu L, Zhang J L, et al. Yield loss of inferior crop species and its physiological mechanism in a semiarid cereal-legume intercropping system. Eur J Agron, 2024, 152: 127032. [13] Thilakarathna M S, McElroy M S, Chapagain T, Papadopoulos Y A, Raizada M N. Belowground nitrogen transfer from legumes to non-legumes under managed herbaceous cropping systems: a review. Agron Sustain Dev, 2016, 36: 58. [14] Sasse J, Martinoia E, Northen T. Feed your friends: do plant exudates shape the root microbiome? Trends Plant Sci, 2018, 23: 25–41.
[15] 冯晓敏, 高翔, 臧华栋, 胡跃高, 任长忠, 郝志萍, 吕慧卿, 曾昭海. 燕麦-绿豆间作效应及氮素转移特性. 植物学报, 2023, 58: 122–131. [16] Xing Y, Yu R P, An R, Yang N, Wu J P, Ma H Y, Zhang J D, Bao X G, Lambers H, Li L. Two pathways drive enhanced nitrogen acquisition via a complementarity effect in long-term intercropping. Field Crops Res, 2023, 293: 108854.
[17] 覃潇敏, 潘浩男, 肖靖秀, 汤利, 郑毅. 施磷水平对玉米大豆间作系统氮素吸收与分配的影响. 植物营养与肥料学报,2021, 27: 1173–1184. [18] 钱玉平, 宿兵兵, 高吉星, 阮粉花, 李亚伟, 茅林春. 玉米大豆间作对喀斯特区土壤理化性质及微生物碳代谢特征的影响. 作物学报, 2025, 51: 273–284. Qian Y P, Su B B, Gao J X, Ruan F H, Li Y W, Mao L C. Effects of maize and soybean intercropping on soil physicochemical properties and microbial carbon metabolism in karst region. Acta Agron Sin, 2025, 51: 273–284 (in Chinese with English abstract). [19] Jalloh A A, Mutyambai D M, Yusuf A A, Subramanian S, Khamis F. Maize edible-legumes intercropping systems for enhancing agrobiodiversity and belowground ecosystem services. Sci Rep, 2024, 14: 14355. [20] Kebede G, Worku W, Jifar H, Feyissa F. Multivariate analysis for yield and yield-related traits of oat (Avena sativa L.) genotypes in Ethiopia. Ecol Genet Genom, 2023, 28: 100184. [21] Guo S B, Guo E J, Zhang Z T, Dong M Q, Wang X, Fu Z Z, Guan K X, Zhang W M, Zhang W J, Zhao J, et al. Impacts of mean climate and extreme climate indices on soybean yield and yield components in Northeast China. Sci Total Environ, 2022, 838: 156284.
[22] 畅建武, 郝晓鹏, 王燕, 杨伟, 郜欣. 红芸豆氮磷钾肥效试验研究. 中国农学通报, 2015, 31(15): 108–113.
[23] 张辰煜, 葛军勇, 褚俊聪, 王星宇, 赵宝平, 杨亚东, 臧华栋, 曾昭海. 燕麦红芸豆带状间作的产量效应及根系形态与土壤酶活性. 作物学报, 2025, 51: 459–469. [24] Qian X, Zhou J, Luo B L, Dai H C, Hu Y G, Ren C Z, Peixoto L, Guo L C, Wang C L, Zamanian K, et al. Yield advantage and carbon footprint of oat/sunflower relay strip intercropping depending on nitrogen fertilization. Plant Soil, 2022, 481: 581–594. [25] 鲍士旦. 土壤农化分析(第3版). 北京: 中国农业出版社, 2000. pp 25–109. Bao S D. Soil Agrochemical Analysis, 3rd edn. Beijing: China Agriculture Press, 2000. pp 25–109 (in Chinese). [26] Brookes P C, Landman A, Pruden G, Jenkinson D S. Chloroform fumigation and the release of soil nitrogen: a rapid direct extraction method to measure microbial biomass nitrogen in soil. Soil Biol Biochem, 1985, 17: 837–842. [27] Vance E D, Brookes P C, Jenkinson D S. An extraction method for measuring soil microbial biomass C. Soil Biol Biochem, 1987, 19: 703–707. [28] Marx M C, Wood M, Jarvis S C. A microplate fluorimetric assay for the study of enzyme diversity in soils. Soil Biol Biochem, 2001, 33: 1633–1640. [29] Jia R, Zhou J, Chu J C, Shahbaz M, Yang Y D, Jones D L, Zang H D, Razavi B S, Zeng Z H. Insights into the associations between soil quality and ecosystem multifunctionality driven by fertilization management: a case study from the North China Plain. J Clean Prod, 2022, 362: 132265. [30] Martin-Guay M O, Paquette A, Dupras J, Rivest D. The new Green Revolution: Sustainable intensification of agriculture by intercropping. Sci Total Environ, 2018, 615: 767–772. [31] Dettweiler M, Wilson C, Maltais-Landry G, MacDonald G. Cassava-legume intercropping is more beneficial in low-input systems: a meta-analysis. Field Crops Res, 2023, 300: 109005.
[32] 杨欢, 周颖, 陈平, 杜青, 郑本川, 蒲甜, 温晶, 杨文钰, 雍太文. 玉米-豆科作物带状间套作对养分吸收利用及产量优势的影响. 作物学报, 2022, 48: 1476–1487. [33] Wang R N, Sun Z X, Zhang L Z, Yang N, Feng L S, Bai W, Zhang D S, Wang Q, Evers J B, Liu Y, et, al. Border-row proportion determines strength of interspecific interactions and crop yields in maize/peanut strip intercropping. Field Crops Res, 2020, 253: 107819. [34] Shen L, Wang X Y, Liu T T, Wei W W, Zhang S, Keyhani A B, Li L H, Zhang W. Border row effects on the distribution of root and soil resources in maize-soybean strip intercropping systems. Soil Tillage Res, 2023, 233: 105812. [35] Li J, Zhou L J, Lin W F. Competitive characteristics related to nitrogen utilization and Calla lily growth in rubber-Calla lily intercropping systems. Ind Crops Prod, 2018, 125: 567–572. [36] Huang B, Zou X J, Xu H S, Xu J Y, Liu H Y, Sun W T, Gong L, Niu S W, Feng L S, Yang N, et, al. Seedling defoliation of cereal crops increases peanut growth and yield in an intercropping system. Crop J, 2022, 10: 418–425. [37] Justes E, Bedoussac L, Dordas C, Frak E, Louarn G, Boudsocq S, Journet E P, Lithourgidis A, Pankou C, Zhang C C, et al. The 4c approach as a way to understand species interactions determining intercropping productivity. Front Agric Sci Eng, 2021, 8: 387–399. [38] Liu W G, Deng Y C, Hussain S, Zou J L, Yuan J, Luo L, Yang C Y, Yuan X Q, Yang W Y. Relationship between cellulose accumulation and lodging resistance in the stem of relay intercropped soybean [Glycine max (L.) Merr.]. Field Crops Res, 2016, 196: 261–267.
[39] 冯晓敏, 杨永, 任长忠, 胡跃高, 曾昭海. 燕麦-大豆和燕麦-花生间作对根际土壤固氮细菌多样性与群落结构的影响. 中国农业大学学报, 2016, 21(1): 22–32.
[40] 焦念元, 汪江涛, 尹飞, 马超, 齐付国, 刘领, 付国占, 李友军. 施用乙烯利和磷肥对玉米//花生间作氮吸收分配及间作优势的影响. 植物营养与肥料学报, 2016, 22: 1477–1484.
[41] 全智, 刘轩昂, 刘东. 土壤可溶性有机氮研究进展. 应用生态学报, 2022, 33: 277–288. [42] Burns R G, DeForest J L, Marxsen J, Sinsabaugh R L, Stromberger M E, Wallenstein M D, Weintraub M N, Zoppini A. Soil enzymes in a changing environment: current knowledge and future directions. Soil Biol Biochem, 2013, 58: 216–234. [43] Zhang C, Wang J, Liu G B, Song Z L, Fang L C. Impact of soil leachate on microbial biomass and diversity affected by plant diversity. Plant Soil, 2019, 439: 505–523. [44] Schimel J P, Clein J S. Microbial response to freeze-thaw cycles in tundra and taiga soils. Soil Biol Biochem, 1996, 28: 1061–1066. [45] Rodriguez C, Carlsson G, Englund J E, Flöhr A, Pelzer E, Jeuffroy M H, Makowski D, Jensen E S. Grain legume-cereal intercropping enhances the use of soil-derived and biologically fixed nitrogen in temperate agroecosystems, a meta-analysis. Eur J Agron, 2020, 118: 126077. [46] Steinauer K, Tilman D, Wragg P D, Cesarz S, Cowles J M, Pritsch K, Reich P B, Weisser W W, Eisenhauer N. Plant diversity effects on soil microbial functions and enzymes are stronger than warming in a grassland experiment. Ecology, 2015, 96: 99–112. [47] Nygren P, Leblanc H A. Dinitrogen fixation by legume shade trees and direct transfer of fixed N to associated cacao in a tropical agroforestry system. Tree Physiol, 2015, 35: 134–147. |
[1] | CHE Pin-Gao, CHEN Guo-Hui, CAO Guo-Jun, GAO Bing-Ke, CHEN Yan-Fang, XIONG Wen, YING Zhi-Hong, ZHOU Qing-You. Effects of straw return on soil nutrients and crop yield in rice-rapeseed rotation [J]. Acta Agronomica Sinica, 2024, 50(12): 3118-3128. |
[2] | CHENG Hua-Qiang, HOU Qing-Qing, ZHU Min, YANG Xuan. Effects of climate change and crop rotation system on forage oats yield in northern Shanxi province [J]. Acta Agronomica Sinica, 2024, 50(10): 2599-2613. |
[3] | SHU Ze-Bing, LUO Wan-Yu, PU Tian, CHEN Guo-Peng, LIANG Bing, YANG Wen-Yu, WANG Xiao-Chun. Optimization of field configuration technology of strip intercropping of fresh corn and fresh soybean based on high yield and high efficiency [J]. Acta Agronomica Sinica, 2023, 49(4): 1140-1150. |
[4] | LIU Yan-Di, ZHAO Bao-Ping, ZHANG Yu, MI Jun-Zhen, WU Jun-Ying, LIU Jing-Hui. Relationship between yield differences of different genotypes of oats and leaf physiological characteristics [J]. Acta Agronomica Sinica, 2022, 48(11): 2953-2964. |
[5] | CHEN Dan-Mei,YUAN Ling,HUANG Jian-Guo,JI Jian-Hua,HOU Hong-Qian,LIU Yi-Ren. Influence of Long-term Fertilizations on Nutrients and Fungal Communities in Typical Paddy Soil of South China [J]. Acta Agron Sin, 2017, 43(02): 286-295. |
[6] | SONG Bo,LAN Lan,TIAN Fu-Dong,TUO Yun,BAI Yue,JIANG Zi-Qin,SHEN Li-Wei,LI Wen-Bin,LIU Shan-Shan. Development of Soybean Lines with α'-Subunit or (α'+α)-Subunits Deficiency in 7S Globulin by Backcrossing [J]. Acta Agron Sin, 2012, 38(12): 2297-2305. |
[7] | Li Yan-ming; Zheng Pi-yao. A Study on the Morphology of Assimilating Cells of Leaf Sheath and Ear and Their Photosynthetic Ability in Oats (Avena spp.) [J]. Acta Agron Sin, 1994, 20(03): 310-315. |
[8] | Zheng Piyao; Li Yanming. Observation on the Morphology of Leaf Blade Cells in Oats under Different Sowing-date Conditions [J]. Acta Agron Sin, 1992, 18(03): 183-190. |
|