Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica

   

Yield advantages and nitrogen utilization characteristics of oat and legume strip intercropping in semi-arid zones

CHEN Min1,2,JIA Rong1,2,ZHANG Jin-Chuan1,2,ZHANG Chen-Yu1,2,CHU Jun-Cong1,2,YAO Wei1,2,GE Jun-Yong3,WANG Xing-Yu3,YANG Ya-Dong1,2,ZENG Zhao-Hai1,2,ZANG Hua-Dong1,2,*   

  1. 1 State Key Laboratory of Maize Bio-Breeding, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China; 2 Key Laboratory of Farming system, Ministry of Agriculture and Rural Affairs of China, China Agricultural University, Beijing 100193, China; 3 Zhangjiakou Academy of Agricultural Sciences, Zhangjiakou 075000, Hebei, China
  • Received:2025-04-09 Revised:2025-07-09 Accepted:2025-07-09 Published:2025-07-16
  • Contact: 臧华栋, E-mail: zanghuadong@cau.edu.cn E-mail:18801291815@163.com
  • Supported by:
    This study was supported by the National Key Research and Development Program of China (2022YFD1901100) and the China Agriculture Research System of MOF and MARA (CARS-07-B-5, CARS-07-A-6).

Abstract:

To investigate the effects of oat/legumes intercropping on crop yield and nitrogen utilization in the semi-arid northern region, a field experiment was conducted in Zhangbei county, Hebei province, in 2019. The study analyzed crop yield, nitrogen use efficiency, soil nutrients, and soil enzyme activities. Five treatments were applied as oat/soybean intercropping, oat/red kidney bean intercropping, oat monoculture, soybean monoculture, and red kidney bean monoculture. Both the land equivalent ratio (LER) and nitrogen yield equivalent ratio (NYER) for oat/soybean and oat/red kidney bean intercropping were greater than 1, primarily due to increased oat yields despite reduced legume yields. Specifically, oat yields in the oat/soybean and oat/red kidney bean intercropping increased by 18.2%–32.9% and 24.8%–44.8% compared to oat monoculture, respectively. The partial factor productivity of nitrogen for oat was 1.08 and 0.77, respectively, indicating that the nitrogen utilization advantage of intercropping was mainly attributable to oat. Furthermore, oat nitrogen uptake increased by 52.4% and 115.8% in the oat/soybean and oat/red kidney bean intercropping, respectively, while total plant nitrogen uptake increased by 40.6% and 112.8% compared to oat monoculture. These results suggest that enhanced nitrogen absorption and utilization is a key factor contributing to the yield advantage of intercropped oat. Further analysis revealed that the oat/red kidney bean intercropping significantly increased soil nitrogen-acquisition enzyme activity by 24.1%–56.5%, thereby promoting nitrogen transformation and utilization, as evidenced by a 19.2% increase in soluble nitrogen content in the rhizosphere soil of intercropped oat. In the oat/soybean intercropping system, biological nitrogen fixation by soybean increased the ammonium nitrogen content in the rhizosphere soil by 31.8%. In conclusion, the oat/legume strip intercropping improves crop yield and nitrogen utilization by either enhancing soil nitrogen-acquisition enzyme activity to accelerate soluble nitrogen release or by increasing ammonium nitrogen availability via biological nitrogen fixation. Promoting this intercropping system in the semi-arid northern region could optimize nitrogen management, enhance system productivity, and support sustainable regional agricultural development.

Key words: semi-arid zone, nitrogen equivalent ratio, oats, soybeans, oats, red kidney beans, soil nutrients

[1] Li X F, Wang Z G, Bao X G, Sun J H, Yang S C, Wang P, Wang C B, Wu J P, Liu X R, Tian X L, et al. Long-term increased grain yield and soil fertility from intercropping. Nat Sustain, 2021, 4: 943–950.

[2] Tamburini G, Bommarco R, Wanger T C, Kremen C, van der Heijden M G A, Liebman M, Hallin S. Agricultural diversification promotes multiple ecosystem services without compromising yield. Sci Adv, 2020, 6: eaba1715.

[3] Yu R P, Yang H, Xing Y, Zhang W P, Lambers H, Li L. Belowground processes and sustainability in agroecosystems with intercropping. Plant Soil, 2022, 476: 263–288.

[4] Ma H Y, Zhou J, Ge J Y, Nie J W, Zhao J, Xue Z Q, Hu Y G, Yang Y D, Peixoto L, Zang H D, et al. Intercropping improves soil ecosystem multifunctionality through enhanced available nutrients but depends on regional factors. Plant Soil, 2022, 480: 71–84.

[5] Mudare S, Kanomanyanga J, Jiao X Q, Mabasa S, Lamichhane J R, Jing J Y, Cong W F. Yield and fertilizer benefits of maize/grain legume intercropping in China and Africa: a meta-analysis. Agron Sustain Dev, 2022, 42: 81.

[6] 冯晓敏, 杨永, 任长忠, 胡跃高, 曾昭海. 豆科-燕麦间作对作物光合特性及籽粒产量的影响作物学报, 2015, 41: 1426–1434.

Feng X M, Yang Y, Ren C Z, Hu Y G, Zeng Z H. Effects of legumes intercropping with oat on photosynthesis characteristics of and grain yield. Acta Agron Sin, 2015, 41: 1426–1434 (in Chinese with English abstract).

[7] Feng W H, Ge J Y, Rodríguez A R S, Zhao B P, Wang X Y, Peixoto L, Yang Y D, Zeng Z H, Zang H D. Oat/soybean strip intercropping benefits crop yield and stability in semi-arid regions: a multi-site and multi-year assessment. Field Crops Res, 2024, 318: 109560.

[8] Yang F, Liao D P, Wu X L, Gao R C, Fan Y F, Ali Raza M, Wang X C, Yong T W, Liu W G, Liu J, et al. Effect of aboveground and belowground interactions on the intercrop yields in maize-soybean relay intercropping systems. Field Crops Res, 2017, 203: 16–23.

[9] Chapagain T, Pudasaini R, Ghimire B, Gurung K, Choi K, Rai L, Magar S, BK B, Raizada M N. Intercropping of maize, millet, mustard, wheat and ginger increased land productivity and potential economic returns for smallholder terrace farmers in Nepal. Field Crops Res, 2018, 227: 91–101.

[10] Ma Q H, Wu Y H, Liu Y N, Shen Y Y, Wang Z K. Interspecific interaction and productivity in a dryland wheat/alfalfa strip intercropping. Field Crops Res, 2024, 309: 109335.

[11] Raza A, Asghar M A, Ahmad B, Bin C, Iftikhar Hussain M, Li W, Iqbal T, Yaseen M, Shafiq I, Yi Z, et al. Agro-techniques for lodging stress management in maize-soybean intercropping system: a review. Plants, 2020, 9: 1592.

[12] Wang W, Zhao J H, Li M Y, Zhang W, Rehman M M U, Wang B Z, Ullah F, Cheng Z G, Zhu L, Zhang J L, et al. Yield loss of inferior crop species and its physiological mechanism in a semiarid cereal-legume intercropping system. Eur J Agron, 2024, 152: 127032.

[13] Thilakarathna M S, McElroy M S, Chapagain T, Papadopoulos Y A, Raizada M N. Belowground nitrogen transfer from legumes to non-legumes under managed herbaceous cropping systems: a review. Agron Sustain Dev, 2016, 36: 58.

[14] Sasse J, Martinoia E, Northen T. Feed your friends: do plant exudates shape the root microbiome? Trends Plant Sci‌‌, 2018, 23: 25–41.

[15] 冯晓敏, 高翔, 臧华栋, 胡跃高, 任长忠, 郝志萍, 吕慧卿, 曾昭海. 燕麦-绿豆间作效应及氮素转移特性. 植物学报, 2023, 58: 122–131.
Feng X M, Gao X, Zang H D, Hu Y G, Ren C Z, Hao Z P, Lyu H Q, Zeng Z H. Intercropping effect and nitrogen transfer characteristics of oat-mungbean intercrop. Chin Bull Bot, 2023, 58: 122–131 (in Chinese with English abstract).

[16] Xing Y, Yu R P, An R, Yang N, Wu J P, Ma H Y, Zhang J D, Bao X G, Lambers H, Li L. Two pathways drive enhanced nitrogen acquisition via a complementarity effect in long-term intercropping. Field Crops Res, 2023, 293: 108854.

[17] 覃潇敏, 潘浩男, 肖靖秀, 汤利, 郑毅. 施磷水平对玉米大豆间作系统氮素吸收与分配的影响. 植物营养与肥料学报,2021, 27: 1173–1184.
Qin X M, Pan H N, Xiao J X, Tang L, Zheng Y. Effects of phosphorus application rate on N uptake and distribution in maize and soybean intercropping system. J Plant Nutr Fert, 2021, 27: 1173–1184 (in Chinese with English abstract).

[18] 钱玉平, 宿兵兵, 高吉星, 阮粉花, 李亚伟, 茅林春. 玉米大豆间作对喀斯特区土壤理化性质及微生物碳代谢特征的影响. 作物学报, 2025, 51: 273–284.

Qian Y P, Su B B, Gao J X, Ruan F H, Li Y W, Mao L C. Effects of maize and soybean intercropping on soil physicochemical properties and microbial carbon metabolism in karst region. Acta Agron Sin, 2025, 51: 273–284 (in Chinese with English abstract).

[19] Jalloh A A, Mutyambai D M, Yusuf A A, Subramanian S, Khamis F. Maize edible-legumes intercropping systems for enhancing agrobiodiversity and belowground ecosystem services. Sci Rep, 2024, 14: 14355.

[20] Kebede G, Worku W, Jifar H, Feyissa F. Multivariate analysis for yield and yield-related traits of oat (Avena sativa L.) genotypes in Ethiopia. Ecol Genet Genom, 2023, 28: 100184.

[21] Guo S B, Guo E J, Zhang Z T, Dong M Q, Wang X, Fu Z Z, Guan K X, Zhang W M, Zhang W J, Zhao J, et al. Impacts of mean climate and extreme climate indices on soybean yield and yield components in Northeast China. Sci Total Environ, 2022, 838: 156284.

[22] 畅建武, 郝晓鹏, 王燕, 杨伟, 郜欣. 红芸豆氮磷钾肥效试验研究. 中国农学通报, 2015, 31(15): 108–113.
Chang J W, Hao X P, Wang Y, Yang W, Gao X. Fertilizer efficiency experiment of nitrogen phosphorus and potassium on red kidney bean. Chin Agric Sci Bull, 2015, 31(15): 108–113 (in Chinese with English abstract).

[23] 张辰煜, 葛军勇, 褚俊聪, 王星宇, 赵宝平, 杨亚东, 臧华栋, 曾昭海. 燕麦红芸豆带状间作的产量效应及根系形态与土壤酶活性. 作物学报, 2025, 51: 459–469.
Zhang C Y, Ge J Y, Chu J C, Wang X Y, Zhao B P, Yang Y D, Zang H D, Zeng Z H. Yield effect and its root and soil enzyme characteristics of oat and red kidney bean strip intercropping. Acta Agron Sin, 2025, 51: 459–469 (in Chinese with English abstract).

[24] Qian X, Zhou J, Luo B L, Dai H C, Hu Y G, Ren C Z, Peixoto L, Guo L C, Wang C L, Zamanian K, et al. Yield advantage and carbon footprint of oat/sunflower relay strip intercropping depending on nitrogen fertilization. Plant Soil, 2022, 481: 581–594.

[25] 鲍士旦. 土壤农化分析(3). 北京: 中国农业出版社, 2000. pp 25–109.

Bao S D. Soil Agrochemical Analysis, 3rd edn. Beijing: China Agriculture Press, 2000. pp 25–109 (in Chinese).

[26] Brookes P C, Landman A, Pruden G, Jenkinson D S. Chloroform fumigation and the release of soil nitrogen: a rapid direct extraction method to measure microbial biomass nitrogen in soil. Soil Biol Biochem, 1985, 17: 837–842.

[27] Vance E D, Brookes P C, Jenkinson D S. An extraction method for measuring soil microbial biomass C. Soil Biol Biochem, 1987, 19: 703–707.

[28] Marx M C, Wood M, Jarvis S C. A microplate fluorimetric assay for the study of enzyme diversity in soils. Soil Biol Biochem, 2001, 33: 1633–1640.

[29] Jia R, Zhou J, Chu J C, Shahbaz M, Yang Y D, Jones D L, Zang H D, Razavi B S, Zeng Z H. Insights into the associations between soil quality and ecosystem multifunctionality driven by fertilization management: a case study from the North China Plain. J Clean Prod, 2022, 362: 132265.

[30] Martin-Guay M O, Paquette A, Dupras J, Rivest D. The new Green Revolution: Sustainable intensification of agriculture by intercropping. Sci Total Environ, 2018, 615: 767–772.

[31] Dettweiler M, Wilson C, Maltais-Landry G, MacDonald G. Cassava-legume intercropping is more beneficial in low-input systems: a meta-analysis. Field Crops Res, 2023, 300: 109005.

[32] 杨欢, 周颖, 陈平, 杜青, 郑本川, 蒲甜, 温晶, 杨文钰, 雍太文. 玉米-豆科作物带状间套作对养分吸收利用及产量优势的影响. 作物学报, 2022, 48: 1476–1487.
Yang H, Zhou Y, Chen P, Du Q, Zheng B C, Pu T, Wen J, Yang W Y, Yong T W. Effects of nutrient uptake and utilization on yield of maize-legume strip intercropping system. Acta Agron Sin, 2022, 48: 1476–1487 (in Chinese with English abstract).

[33] Wang R N, Sun Z X, Zhang L Z, Yang N, Feng L S, Bai W, Zhang D S, Wang Q, Evers J B, Liu Y, et, al. Border-row proportion determines strength of interspecific interactions and crop yields in maize/peanut strip intercropping. Field Crops Res, 2020, 253: 107819.

[34] Shen L, Wang X Y, Liu T T, Wei W W, Zhang S, Keyhani A B, Li L H, Zhang W. Border row effects on the distribution of root and soil resources in maize-soybean strip intercropping systems. Soil Tillage Res, 2023, 233: 105812.

[35] Li J, Zhou L J, Lin W F. Competitive characteristics related to nitrogen utilization and Calla lily growth in rubber-Calla lily intercropping systems. Ind Crops Prod, 2018, 125: 567–572.

[36] Huang B, Zou X J, Xu H S, Xu J Y, Liu H Y, Sun W T, Gong L, Niu S W, Feng L S, Yang N, et, al. Seedling defoliation of cereal crops increases peanut growth and yield in an intercropping system. Crop J, 2022, 10: 418–425.

[37] Justes E, Bedoussac L, Dordas C, Frak E, Louarn G, Boudsocq S, Journet E P, Lithourgidis A, Pankou C, Zhang C C, et al. The 4c approach as a way to understand species interactions determining intercropping productivity. Front Agric Sci Eng, 2021, 8: 387–399.

[38] Liu W G, Deng Y C, Hussain S, Zou J L, Yuan J, Luo L, Yang C Y, Yuan X Q, Yang W Y. Relationship between cellulose accumulation and lodging resistance in the stem of relay intercropped soybean [Glycine max (L.) Merr.]. Field Crops Res, 2016, 196: 261–267.

[39] 冯晓敏杨永任长忠, 胡跃高, 曾昭海. 燕麦-大豆和燕麦-花生间作对根际土壤固氮细菌多样性与群落结构的影响中国农业大学学报, 2016, 21(1): 22–32.
Feng X M, Yang Y, Ren C Z, Hu Y G, Zeng Z H. Effects of oat-soybean and oat-groundnut intercropping on the diversity and community composition of soil nitrogen-fixing bacterial in rhizosphere soil. J China Agric Univ, 2016, 21(1): 22–32 (in Chinese with English abstract).

[40] 焦念元, 汪江涛, 尹飞, 马超, 齐付国, 刘领, 付国占, 李友军. 施用乙烯利和磷肥对玉米//花生间作氮吸收分配及间作优势的影响. 植物营养与肥料学报, 2016, 22: 1477–1484.
Jiao N Y, Wang J T, Yin F, Ma C, Qi F G, Liu L, Fu G Z, Li Y J. Effects of ethephon and phosphate fertilizer on N absorption and intercropped advantages of maize and peanut intercropping system. J Plant Nutr Fert, 2016, 22: 1477–1484 (in Chinese with English abstract).

[41] 全智, 刘轩昂, 刘东. 土壤可溶性有机氮研究进展. 应用生态学报, 2022, 33: 277–288.
Quan Z, Liu X A, Liu D. Research progress on soil soluble organic nitrogen. Chin J Appl Ecol, 2022, 33: 277–288 (in Chinese with English abstract).

[42] Burns R G, DeForest J L, Marxsen J, Sinsabaugh R L, Stromberger M E, Wallenstein M D, Weintraub M N, Zoppini A. Soil enzymes in a changing environment: current knowledge and future directions. Soil Biol Biochem, 2013, 58: 216–234.

[43] Zhang C, Wang J, Liu G B, Song Z L, Fang L C. Impact of soil leachate on microbial biomass and diversity affected by plant diversity. Plant Soil, 2019, 439: 505–523.

[44] Schimel J P, Clein J S. Microbial response to freeze-thaw cycles in tundra and taiga soils. Soil Biol Biochem, 1996, 28: 1061–1066.

[45] Rodriguez C, Carlsson G, Englund J E, Flöhr A, Pelzer E, Jeuffroy M H, Makowski D, Jensen E S. Grain legume-cereal intercropping enhances the use of soil-derived and biologically fixed nitrogen in temperate agroecosystems, a meta-analysis. Eur J Agron, 2020, 118: 126077.

[46] Steinauer K, Tilman D, Wragg P D, Cesarz S, Cowles J M, Pritsch K, Reich P B, Weisser W W, Eisenhauer N. Plant diversity effects on soil microbial functions and enzymes are stronger than warming in a grassland experiment. Ecology, 2015, 96: 99–112.

[47] Nygren P, Leblanc H A. Dinitrogen fixation by legume shade trees and direct transfer of fixed N to associated cacao in a tropical agroforestry system. Tree Physiol, 2015, 35: 134–147.

[1] CHE Pin-Gao, CHEN Guo-Hui, CAO Guo-Jun, GAO Bing-Ke, CHEN Yan-Fang, XIONG Wen, YING Zhi-Hong, ZHOU Qing-You. Effects of straw return on soil nutrients and crop yield in rice-rapeseed rotation [J]. Acta Agronomica Sinica, 2024, 50(12): 3118-3128.
[2] CHENG Hua-Qiang, HOU Qing-Qing, ZHU Min, YANG Xuan. Effects of climate change and crop rotation system on forage oats yield in northern Shanxi province [J]. Acta Agronomica Sinica, 2024, 50(10): 2599-2613.
[3] SHU Ze-Bing, LUO Wan-Yu, PU Tian, CHEN Guo-Peng, LIANG Bing, YANG Wen-Yu, WANG Xiao-Chun. Optimization of field configuration technology of strip intercropping of fresh corn and fresh soybean based on high yield and high efficiency [J]. Acta Agronomica Sinica, 2023, 49(4): 1140-1150.
[4] LIU Yan-Di, ZHAO Bao-Ping, ZHANG Yu, MI Jun-Zhen, WU Jun-Ying, LIU Jing-Hui. Relationship between yield differences of different genotypes of oats and leaf physiological characteristics [J]. Acta Agronomica Sinica, 2022, 48(11): 2953-2964.
[5] CHEN Dan-Mei,YUAN Ling,HUANG Jian-Guo,JI Jian-Hua,HOU Hong-Qian,LIU Yi-Ren. Influence of Long-term Fertilizations on Nutrients and Fungal Communities in Typical Paddy Soil of South China [J]. Acta Agron Sin, 2017, 43(02): 286-295.
[6] SONG Bo,LAN Lan,TIAN Fu-Dong,TUO Yun,BAI Yue,JIANG Zi-Qin,SHEN Li-Wei,LI Wen-Bin,LIU Shan-Shan. Development of Soybean Lines with α'-Subunit or (α'+α)-Subunits Deficiency in 7S Globulin by Backcrossing [J]. Acta Agron Sin, 2012, 38(12): 2297-2305.
[7] Li Yan-ming; Zheng Pi-yao. A Study on the Morphology of Assimilating Cells of Leaf Sheath and Ear and Their Photosynthetic Ability in Oats (Avena spp.) [J]. Acta Agron Sin, 1994, 20(03): 310-315.
[8] Zheng Piyao; Li Yanming. Observation on the Morphology of Leaf Blade Cells in Oats under Different Sowing-date Conditions [J]. Acta Agron Sin, 1992, 18(03): 183-190.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!