Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica

   

Different mutations in ZmMS13 generate the gms1 and yems1166 multiple allele maize male-sterile lines

ZHAO Zhi-Wen**,CHEN Hui**,LIAN Yu-Jie,LU Han,CAO Xu-Dong,WANG Fan,YU Meng-Fan,ZHANG Zhan-Hui,TANG Ji-Hua,CHEN Xiao-Yang*   

  1. College of Agronomy, Henan Agricultural University / State Key Laboratory of High-Efficiency Production of Wheat-Maize Double Cropping, Zhengzhou 450046, Henan, China
  • Received:2025-04-15 Revised:2025-07-09 Accepted:2025-07-09 Published:2025-07-15
  • Supported by:
    This study was supported by the Joint Foundation for Science and Technology Research and Development Program of Henan Province (Cultivation of Superior Disciplines) (242301420131) and the Zhengzhou Research and Development Project of Open Bidding for Selecting the Best Candidates (2023JBGS013).

Abstract:

The development and utilization of maize male-sterile lines is an effective strategy to reduce the cost of hybrid seed production and improve seed purity. In this study, two maize male-sterile mutants, gms1 and yems1166, were identified. Phenotypic analysis revealed that both mutants exhibited abnormal anther cuticle structures, microspore degradation at the late uninucleate stage, and complete absence of mature pollen grains. Genetic analysis indicated that male sterility in both mutants is controlled by a single recessive nuclear gene. Using a positional cloning approach, the GMS1 and YEMS1166 loci were mapped to intervals of 23.52–26.09 Mb and 24.86–30.95 Mb on chromosome 5, respectively, regions containing the previously reported male fertility gene ZmMS13, which encodes the ABCG transporter ZmABCG2a. Gene sequencing revealed that gms1 carries a single base substitution (TCA>TGA) in the fifth exon of ZmMS13, resulting in a premature stop codon. The yems1166 mutant harbors an 8-bp deletion in the first exon of the same gene, also leading to a premature stop codon. Allelic tests confirmed that gms1 and yems1166 are novel allelic variants of ZmMS13. These findings identify two new allelic mutants of ZmMS13 and provide valuable germplasm resources for the development of male-sterile lines in maize hybrid seed production.

Key words: maize, male sterility, anther cuticle, ms13, ABCG transporter

[1]       Luo N ,Meng Q F, Feng P Y, Qu Z R, Yu Y H, Liu D L, Müller C, Wang P. China can be self-sufficient in maize production by 2030 with optimal crop management. Nat Commun, 2023, 14: 2637.

[2]       Xiao Y J, Jiang S Q, Cheng Q, Wang X Q, Yan J, Zhang R Y, Qiao F, Ma C, Luo J Y, Li W Q, et al. The genetic mechanism of heterosis utilization in maize improvement. Genome Biol, 2021, 22: 148.

[3]       郭瑶晴, 孙晓靖, 连玉杰, 陈慧, 孙华越, 张雪海, 汤继华, 陈晓阳. 玉米雄性不育突变体x50的基因定位与遗传分析. 华北农学报, 2023, 38(1): 17–22.
Guo Y Q, Sun X J, Lian Y J, Chen H, Sun H Y, Zhang X H, Tang J H, Chen X Y. Gene mapping and genetic analysis of male sterile mutant x50 in maize. Acta Agric. Boreali-Sin, 2023, 38(1): 17–22 (in Chinese with English abstract).

[4]       Wan X Y, Wu S W, Li X. Breeding with dominant genic male-sterility genes to boost crop grain yield in the post-heterosis utilization era. Mol Plant, 2021, 14: 531–534.

[5]       付志远, 秦永田, 汤继华. 主要作物光温敏核雄性不育基因的研究进展与应用. 中国生物工程杂志, 2018, 38(1): 115–125.
Fu Z Y, Qin Y T, Tang J H. Reviews of photo-or/and thermo-sensitive genic male sterile gene in major crops. China Biotechnol, 2018, 38(1): 115–125 (in Chinese with English abstract).

[6]       闫米格, 武岩军, 任丽萍, 李素玲. 利用雄性不育系培育玉米新品种. 山西农业科学, 2011, 39: 519–521.
Yan M G, Wu Y J, Ren L P, Li S L. Study on corn hybrid selection with male sterile line. Shanxi Agric Sci, 2011, 39: 519–521 (in Chinese with English abstract).

[7]       Liu X Z, Jiang Y L, Wu S W, Wang J, Fang C W, Zhang S W, Xie R R, Zhao L N, An X L, Wan X Y. The ZmMYB84-ZmPKSB regulatory module controls male fertility through modulating anther cuticle-pollen exine trade-off in maize anthers. Plant Biotechnol J, 2022, 20: 2342–2356.

[8]       王梦龙, 翁灵灵, 吴淑英, 许泽芬, 戴天佑, 彭小群. ABCG转运蛋白参与植物雄性育性调控的研究进展. 植物科学学报, 2024, 42: 387–394.
Wang M L, Weng L L, Wu S Y, Xu F Z, Peng X Q. Research progress on the involvement of ABCG transporters in the regulation of plant male fertility. Plant Sci. J, 2024, 42: 387–394 (in Chinese with English abstract).

[9]       Jiang Y L, An X L, Li Z W, Yan T W, Zhu T T, Xie K, Liu S S, Hou Q C, Zhao L N, Wu S W, et al. CRISPR/Cas9-based discovery of maize transcription factors regulating male sterility and their functional conservation in plants. Plant Biotechnol J, 2021, 19: 1769–1784.

[10]     Hou Q C, An X L, Ma B, Wu S W, Wei X, Yan T W, Zhou Y, Zhu T T, Xie K, Zhang D F, et al. ZmMS1/ZmLBD30-orchestrated transcriptional regulatory networks precisely control pollen exine development. Mol Plant, 2023, 16: 1321–1338.

[11]     Zhang S M, Wu S W, Niu C F, Liu D C, Yan T W, Tian Y H, Liu S S, Xie K, Li Z W, Wang Y B, et al. ZmMs25 encoding a plastid-localized fatty acyl reductase is critical for anther and pollen development in maize. J Exp Bot, 2021, 72: 4298–4318.

[12]     Somaratne Y, Tian Y H, Zhang H, Wang M M, Huo Y Q, Cao F G, Zhao L, Chen H B. ABNORMAL POLLEN VACUOLATION1 (APV1) is required for male fertility by contributing to anther cuticle and pollen exine formation in maize. Plant J, 2017, 90: 96–110.

[13]     Djukanovic V, Smith J, Lowe K, Yang M Z, Gao H R, Jones S, Nicholson M G, West A, Lape J, Bidney D, et al. Male-sterile maize plants produced by targeted mutagenesis of the cytochrome P450-like gene (MS26) using a re-designed I-CreI homing endonuclease. Plant J, 2013, 76: 888–899.

[14]     Chen X Y, Zhang H, Sun H Y, Luo H B, Zhao L, Dong Z B, Yan S S, Zhao C, Liu R Y, Xu C Y, et al. IRREGULAR POLLEN EXINE1 is a novel factor in anther cuticle and pollen exine formation. Plant Physiol, 2017, 173: 307–325.

[15]     Zhu T T, Li Z W, An X L, Long Y, Xue X F, Xie K, Ma B, Zhang D F, Guan Y J, Niu C F, et al. Normal structure and function of Endothecium chloroplasts maintained by ZmMs33-mediated lipid biosynthesis in tapetal cells are critical for anther development in maize. Mol Plant, 2020, 13: 1624–1643.

[16]     An X L, Dong Z Y, Tian Y H, Xie K, Wu S W, Zhu T T, Zhang D F, Zhou Y, Niu C F, Ma B, et al. ZmMs30 encoding a novel GDSL lipase is essential for male fertility and valuable for hybrid breeding in maize. Mol Plant, 2019, 12: 343–359.

[17]     Huo Y Q, Pei Y R, Tian Y H, Zhang Z G, Li K, Liu J, Xiao S L, Chen H B, Liu J. IRREGULAR POLLEN EXINE2 encodes a GDSL lipase essential for male fertility in maize. Plant Physiol, 2020, 184: 1438–1454.

[18]     Xu Q L, Yang L, Kang D, Ren Z J, Liu Y J. Maize MS2 encodes an ATP-binding cassette transporter that is essential for anther development. Crop J, 2021, 9: 1301–1308.

[19]     Fang C W, Wu S W, Niu C F, Hou Q C, An X L, Wei X, Zhao L N, Jiang Y L, Liu X Z, Wan X Y. Triphasic regulation of ZmMs13 encoding an ABCG transporter is sequentially required for callose dissolution, pollen exine and anther cuticle formation in maize. J Adv Res, 2023, 49: 15–30.

[20]     Niu Q K, Shi Z W, Zhang P, Su S, Jiang B, Liu X W, Zhao Z F, Zhang S Z, Huang Q, Li C, et al. ZmMS39 encodes a callose synthase essential for male fertility in maize (Zea mays L.). Crop J, 2023, 11: 394–404.

[21]     Hu M J, Li Y F, Zhang X B, Song W B, Jin W W, Huang W, Zhao H M. Maize sterility gene DRP1 encodes a desiccation-related protein that is critical for Ubisch bodies and pollen exine development. J Exp Bot, 2022, 73: 6800–6815.

[22]     An X L, Zhang S W, Jiang Y L, Liu X Z, Fang C W, Wang J, Zhao L N, Hou Q C, Zhang J, Wan X Y. CRISPR/Cas9-based genome editing of 14 lipid metabolic genes reveals a sporopollenin metabolon ZmPKSB-ZmTKPR1-1/-2 required for pollen exine formation in maize. Plant Biotechnol J, 2024, 22: 216–232.

[23]     Zhang D F, Wu S W, An X L, Xie K, Dong Z Y, Zhou Y, Xu L W, Fang W, Liu S S, Liu S S, et al. Construction of a multicontrol sterility system for a maize male-sterile line and hybrid seed production based on the ZmMs7 gene encoding a PHD-finger transcription factor. Plant Biotechnol J, 2018, 16: 459–471.

[24]     Chen X Y, Li Y F, Sun H Y, An X L, Tang J H. Molecular mechanisms of male sterility in maize. Plant Mol Biol Report, 2024, 42: 483–491.

[25]     田有辉, 万向元. 玉米花药发育的细胞生物学与分子遗传学的研究方法. 中国生物工程杂志, 2018, 38(1): 88–99.
Tian Y H, Wan X Y. Cytobiology and molecular genetics research methods on maize anther development. China Biotechnol, 2018, 38(1): 88–99 (in Chinese with English abstract).

[26]     Fox T, DeBruin J, Haug Collet K, Trimnell M, Clapp J, Leonard A, Li B L, Scolaro E, Collinson S, Glassman K, et al. A single point mutation in Ms44 results in dominant male sterility and improves nitrogen use efficiency in maize. Plant Biotechnol J, 2017, 15: 942–952.

[27]     Jiang Y L, Li Z W, Liu X Z, Zhu T T, Xie K, Hou Q C, Yan T W, Niu C F, Zhang S W, Yang M B, et al. ZmFAR1 and ZmABCG26 regulated by microRNA are essential for lipid metabolism in maize anther. Int J Mol Sci, 2021, 22: 7916.

[28]    吴锁伟, 方才臣, 邓联武, 万向元. 玉米隐性核雄性不育基因研究进展及其育种应用途径分析. 分子植物育种, 2012, 10: 1001–1011.
Wu S W, Fang C C, Deng L W, Wan X Y. Research progress on maize recessive genic male sterility gene and its utilization strategies in maize breeding program. Mol Plant Breed, 2012, 10: 1001–1011 (in Chinese with English abstract).

[29]     Zhao G C, Shi J X, Liang W Q, Zhang D B. ATP binding cassette G transporters and plant male reproduction. Plant Signal Behav, 2016, 11: e1136764.

[30]     汪邑晨, 朱本顺, 周磊, 朱骏, 杨仲南. 光/温敏核不育系的不育机理及两系杂交稻的发展与展望. 中国水稻科学, 2024, 38: 463–474.
Wang Y C, Zhu B S, Zhou L, Zhu J, Yang J N. Sterility mechanism of photoperiod/thermo-sensitive genic male sterile lines and development and prospects of two-line hybrid rice. Chin J Rice Sci, 2024, 38: 463–474 (in Chinese with English abstract).

[31]     马萌. 玉米细胞核雄性不育基因定位及克隆的研究进展. 农业科学, 2020, 10: 332–341.
Ma M. Advances in research on the location and cloning of maize nuclear male sterility gene. Hans J Agric Sci, 2020, 10: 332–341 (in Chinese with English abstract).

[32]     Kirschner G K. Another piece in the puzzle of pollen development. Plant J, 2022, 111: 1507–1508.

[33]     Wan X Y, Wu S W, Li Z W, Dong Z Y, An X L, Ma B, Tian Y H, Li J P. Maize genic male-sterility genes and their applications in hybrid breeding: progress and perspectives. Mol Plant, 2019, 12: 321–342.

[34]     Zhu T T, Wu S W, Zhang D F, Li Z W, Xie K, An X L, Ma B, Hou Q C, Dong Z Y, Tian Y H, et al. Genome-wide analysis of maize GPAT gene family and cytological characterization and breeding application of ZmMs33/ZmGPAT6 gene. Theor Appl Genet, 2019, 132: 2137–2154.

[35]     An X L, Ma B, Duan M J, Dong Z Y, Liu R G, Yuan D Y, Hou Q C, Wu S W, Zhang D F, Liu D C, et al. Molecular regulation of ZmMs7 required for maize male fertility and development of a dominant male-sterility system in multiple species. Proc Natl Acad Sci USA, 2020, 117: 23499–23509.

[1] ZHANG Jian-Peng, WANG Guo-Rui, BIE Hai, YE Fei-Yu, MA Chen-Chen, LIANG Xiao-Han, LU Xiao-Min, SHANG Xiao-Li, CAO Li-Ru. Transcription factor ZmMYB153 enhances drought tolerance in maize seedlings by regulating stomatal movement through ABA signaling [J]. Acta Agronomica Sinica, 2025, 51(7): 1827-1837.
[2] HUO Jian-Zhe, YU Ai-Zhong, WANG Yu-Long, WANG Peng-Fei, YIN Bo, LIU Ya-Long, ZHANG Dong-Ling, JIANG Ke-Qiang, PANG Xiao-Neng, WANG Feng. Effect of organic manure substitution for chemical fertilizer on yield, quality, and nitrogen utilization of sweet maize in oasis irrigation areas [J]. Acta Agronomica Sinica, 2025, 51(7): 1887-1900.
[3] YAN Shang-Long, WANG Qi-Ming, CHAI Qiang, YIN Wen, FAN Zhi-Long, HU Fa-Long, LIU Zhi-Peng, WEI Jin-Gui. Grain yield and quality of maize in response to dense density and intercropped peas in oasis irrigated areas [J]. Acta Agronomica Sinica, 2025, 51(6): 1665-1675.
[4] YANG Xiao-Hui, YAN Xuan-Jun, YANG Wen-Yan, FU Jun-Jie, YANG Qin, XIE Yu-Xin. Effect evaluation and investigation on molecular mechanism of the ZmKL1 favorable allele in regulating maize kernel size [J]. Acta Agronomica Sinica, 2025, 51(6): 1501-1513.
[5] YUAN Xin, ZHAO Zhuo-Fan, ZHAO Rui-Qing, LIU Xiao-Wei, ZHENG Ming-Min, LIU Yu-Sheng, DONG Hao-Sheng, DENG Li-Juan, CAO Mo-Ju, HUANG Qiang. Genetic analysis and molecular identification of a small kernel mutant mn-like1 in maize [J]. Acta Agronomica Sinica, 2025, 51(6): 1569-1581.
[6] ZHANG Shi-Bo, LI Hong-Yan, LI Pei-Fu, REN Rui-Hua, LU Hai-Dong. Effects of a 3-4℃ increase in air temperature under natural conditions on root-shoot senescence and yield in plastic-film mulched maize [J]. Acta Agronomica Sinica, 2025, 51(6): 1599-1617.
[7] ZHENG Hao-Fei, YANG Nan, DU Jian, JIA Gai-Xiu, ZOU Yue, MA Wen-Hao, WANG Yan-Ting, SUO Dong-Rang, ZHAO Jian-Hua, SUN Ning-Ke, ZHANG Jian-Wen. Long-term combined application of organic and inorganic fertilizers achieving high yield and high quality of maize in northwest irrigated oasis [J]. Acta Agronomica Sinica, 2025, 51(6): 1618-1628.
[8] JIANG Yu-Zhou, WANG Jia, ZHANG Hong-Yuan, FENG Wen-Hao, WANG Peng, LI Yu-Yi. Effects of combined application of chemical fertilizer and organic materials on the soil bacterial and fungal community structure in maize fields [J]. Acta Agronomica Sinica, 2025, 51(5): 1378-1388.
[9] ZHOU Ke, CHEN Peng-Fei. Maize SPAD estimation by combining multi-source unmanned aerial vehicle remote sensing data and machine learning methods [J]. Acta Agronomica Sinica, 2025, 51(5): 1389-1399.
[10] SHENG Qian-Nan, FANG Ya-Ting, ZHAO Jian, DU Si-Yao, HU Xing-Zhen, YU Qiu-hua, ZHU Jun, REN Tao, LU Jian-Wei. Effects of different nutrient management practices on oilseed rape yield and their response to freezing stress between upland and paddy-upland rotations [J]. Acta Agronomica Sinica, 2025, 51(5): 1286-1298.
[11] MENG Fan-Qi, FANG Meng-Ying, LUO Yi, LU Lin, DONG Xue-Rui, WANG Ya-Fei, GUO Li-Na, YAN Peng, DONG Zhi-Qiang, ZHANG Feng-Lu. Effect of ethephon betaine salicylic acid mixture on heat resistance and yield of summer maize [J]. Acta Agronomica Sinica, 2025, 51(5): 1299-1311.
[12] LI Xue-Ting, REN Hao, WANG Hong-Zhang, ZHANG Ji-Wang, ZHAO Bin, REN Bai-Zhao, LIU Ying, YAO Hai-Yan, LIU Peng. Effects of salt stress on photosynthetic performance and dry matter accumulation and distribution in leaves of different salt-tolerant maize varieties [J]. Acta Agronomica Sinica, 2025, 51(4): 1091-1101.
[13] SONG Li, LIU Guang-Zhou, ZHANG Hua, LU Ting-Qi, QING Chun-Yan, YANG Yun-Shan, GUO Xiao-Xia, Hu Dan, LI Shao-Kun, HOU Peng. Effects of drip fertigation with dense planting on yield and soil bacterial community of summer maize in Southwest China [J]. Acta Agronomica Sinica, 2025, 51(4): 992-1004.
[14] WANG Yan, BAI Chun-Sheng, LI Bo, FAN Hong, HE Wei, YANG Li-Li, CAO Yue, ZHAO Cai. Effects of no-tillage with plastic film and the amount of irrigation water on yield and photosynthetic characteristics of maize in oasis irrigation area of Northwest China [J]. Acta Agronomica Sinica, 2025, 51(3): 755-770.
[15] LI Xiang-Yu, JI Xin-Jie, WANG Xue-Lian, LONG An-Ran, WANG Zheng-Yu, YANG Zi-Hui, GONG Xiang-Wei, JIANG Ying, QI Hua. Effects of straw returning combined with nitrogen fertilizer on yield and grain quality of spring maize [J]. Acta Agronomica Sinica, 2025, 51(3): 696-712.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!