Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica

   

Establishment of regeneration system and creation of glufosinate-resistant germplasm for early-mid maturing potato ‘Longshu 20’

JIA Xiao-Xia1,2,QI En-Fang1,2,WEN Guo-Hong1,2,*,MA Sheng1,2,HUANG Wei1,2,LYU He-Ping1,2,LI Jian-Wu1,2,QU Ya-Ying1,2,DING Ning1,2   

  1. 1 Potato Research Institute of Gansu Academy of Agricultural Sciences / Gansu Engineering Laboratory of Potato Germplasm resources Innovation, Lanzhou 730070, Gansu, China; 2 National Germplasm Resources Agricultural Experimental Station, Weiyuan 748201, Gansu, China
  • Received:2025-02-18 Revised:2025-06-01 Accepted:2025-06-01 Published:2025-06-23
  • Supported by:
    This study was supported by the Gansu Province Innovation-Driven Assistance Project (GXH20250325-3), the China Agriculture Research System of MOF and MARA (CARS-09-P06), the Special Project of Biotechnology Breeding of Gansu Academy of Agricultural Sciences(2025GAAS15) and the Project of the Central Government-Guided Local Science and Technology Development Funds (25ZYJA002-2). 

Abstract:

To establish an efficient regeneration system for the new early-mid maturing, vegetable-use potato cultivar ‘Longshu 20’ and to develop novel germplasm resistant to glufosinate, we systematically evaluated the embryogenic callus induction efficiency and shoot regeneration capacity of test-tube plantlet stem segments cultured on MS medium supplemented with varying concentrations and combinations of 6-benzylaminopurine (6-BA), naphthaleneacetic acid (NAA), and gibberellic acid (GA3). The highest rates of embryogenic callus induction and shoot differentiation were observed on medium MS + 1.0 mg L?1 6-BA + 0.5 mg L?1 NAA + 4.5 mg L?1 GA3 + 3% sucrose. On day 30, the embryogenic callus induction rate reached 89.83%, while the shoot differentiation rate reached 91.81% by day 45. A Bar gene overexpression vector was constructed using recombinant DNA technology and introduced into stem segments via Agrobacterium-mediated transformation. After selection on MS medium  containing 2.0 mg L?1 phosphinothricin (PPT), six independent transgenic lines were successfully obtained. Both transgenic and non-transgenic control lines were grown and treated with commercial glufosinate-ammonium at an active ingredient content of 1271 g hm?2 during the seedling stage. Within 9 days, all non-transgenic control plants had completely withered and died, while all transgenic lines exhibited stable resistance to glufosinate-ammonium. Phenotypic analysis at maturity revealed variation among  transgenic lines in terms of tuber number per plant, yield per plant, and key quality traits. Notably, transgenic line S20-4 showed no significant differences from the non-transgenic control in tuber number, yield, or key quality parameters such as starch, crude protein, and reducing sugar content. These results demonstrate that S20-4 successfully integrates glufosinate resistance while concurrently maintaining the yield and quality traits of the recipient cultivar. The efficient regeneration system developed in this study provides a solid foundation for the genetic improvement of ‘Longshu 20’, and the transgenic line S20-4 represents a promising candidate for direct application in breeding programs targeting herbicide resistance and high yield.

Key words: potato, Longshu 20, regeneration system, Bar gene, glyphosate

[1] Paul S, Farooq M, Bhattacharya S S, Gogoi N. Management strategies for sustainable yield of potato crop under high temperature. Arch Agron Soil Sci, 2017, 63: 276–287.

[2] 程亮. 青海省部分地区马铃薯Y病毒cp基因序列分析. 浙江农业学报, 2019, 31: 18881895.
Cheng L. Analysis on cp gene sequences of potato virus Y from some places in Qinghai Province. Acta Agric Zhejiangensis, 2019, 31: 18881895 (in Chinese with English abstract).

[3] 徐建飞, 金黎平. 马铃薯遗传育种研究: 现状与展望. 中国农业科学, 2017, 50: 9901015.
Xu J F, Jin L P. Advances and perspectives in research of potato genetics and breeding. Sci Agric Sin, 2017, 50: 9901015 (in Chinese with English abstract).

[4] 王宽, 祁利潘, 吴桂丽, 冯琰, 王磊, 尹江, 罗亚婷, 王燕, 刘畅, 龚学臣, . 中早熟马铃薯新品种北方 002’. 园艺学报, 2022, 49(增刊2): 141142.
Wang K, Qi L P, Wu G L, Feng Y, Wang L, Yin J, Luo Y T, Wang Y, Liu C, Gong X C, et al. A new potato cultivar ‘Beifang 002’of early maturity and good yield. Acta Hortic Sin, 2022, 49(S2): 141142 (in Chinese with English abstract).

[5] 曲亚英, 白永杰, 李掌, 郑永伟, 文国宏, 李高峰, 齐恩芳, 李建武, 张荣, 马胜, . 马铃薯新品种陇薯20号的选育. 中国蔬菜, 2022, (9): 97–99. 

Qu Y Y, Bai Y J, Li Z, Zheng Y W, Wen G H, Li G F, Qi E F, Li J W, Zhang R, Ma S, et al. A new potato varietyLongshu No. 20. China Veg, 2022, (9): 9799 (in Chinese with English abstract).

[6] 闫雷, 张远学, 邹莹, 张等宏, 肖春芳, 王甄, 高剑华, 沈艳芬. 2020年全国马铃薯主产区田间杂草分布及除草剂使用调研分析. 哈尔滨:黑龙江科学技术出版社, 2021. pp 490491.
Yan L, Zhang Y X, Zou Y, Zhang D H, Xiao C F, Wang Z, Gao J H, Shen Y F. Analysis of the Survey on the Distribution of Field Weeds and Herbicide Usage in the Main Potato Producing Areas of China in 2020. Harbin: Heilongjiang Science and Technology Press, 2021. pp 490491 (in Chinese).

[7] 王喜刚, 郭成瑾, 庞全武, 张丽荣, 沈瑞清. 不同除草剂防除马铃薯田杂草效果及安全性评价. 宁夏农林科技, 2019, 60(7): 21–24.
Wang X G, Guo C J, Pang Q W, Zhang L R, Shen R Q. Assessment of effects and safety of different herbicides in controlling of weeds in potato fields. Ningxia J Agric For Sci Technol, 2019, 60(7): 2124 (in Chinese with English abstract).

[8] Mayerová M, Madaras M, Soukup J. Effect of chemical weed control on crop yields in different crop rotations in a long-term field trial. Crop Prot, 2018, 114: 215222.

[9] 李云河, 李香菊, 彭于发. 转基因耐除草剂作物的全球开发与利用及在我国的发展前景和策略. 植物保护, 2011, 37(6): 3237.  
Li Y H, Li X J, Peng Y F. Global development of herbicide-tolerant transgenic crops and a strategic prospect for China. Plant Prot, 2011, 37(6): 3237 (in Chinese with English abstract).

[10] 苏少泉. 中国马铃薯生产与除草剂使用. 世界农药, 2009, 31(1): 46.
Su S Q. Potato production and herbicide use in China. World Pestic, 2009, 31(1): 4–6 (in Chinese with English abstract).

[11] Krausz R F, Kapusta G, Matthews J L, Baldwin J L, Maschoff J. Evaluation of glufosinate-resistant corn (Zea mays) and glufosinate: efficacy on annual weeds. Weed Technol, 1999, 13: 691–696.

[12] Sparks C A, Doherty A L H, Rustgi S. Genetic transformation of common wheat (Triticum aestivum L.) using biolistics. In: Biolistic DNA Delivery in Plants, New York, NY: Springer US, 2020. Vol. 2124, pp 229–250.

[13] 陈东亮, 崔翠, 任义英, 王倩, 李加纳, 唐章林, 周清元. 草铵膦胁迫下油菜苗期叶片药害相关性状的全基因组关联分析. 作物学报, 2018, 44: 542–553.
Chen D L, Cui C, Ren Y Y, Wang Q, Li J N, Tang Z L, Zhou Q Y. Genome-wide association analysis of some phytotoxicity related traits at seedling stage in rapeseed under glufosinate stress. Acta Agron Sin, 2018, 44: 542–553 (in Chinese with English abstract).

[14] 王园园, 刘琳莉, 李雷, 戴伟民, 强胜, 宋小玲. 复合性状转cry2A/bar基因水稻T2A-1的生存竞争能力. 南京农业大学学报, 2020, 43: 862–868.
Wang Y Y, Liu L L, Li L, Dai W M, Qiang S, Song X L. Survival competitive ability of stacked transgenic rice T2A-1 with cry2A/bar. J Nanjing Agric Univ, 2020, 43: 862–868 (in Chinese with English abstract).

[15] 崔少彬, 邸宏, 卢翠华, 杨志超, 林忠平, 胡鸢雷. 农杆菌介导ODREB2B基因转化马铃薯的研究. 中国蔬菜, 2009, (16): 2025.
Cui S B, Di H, Lu C H, Yang Z C, Lin Z P, Hu Y L. Studies on Agrobacterium-mediated transformation of potato with ODREB2B gene. China Veg, 2009, (16): 2025 (in Chinese with English abstract).

[16] 贾小霞, 齐恩芳, 王一航, 文国宏, 龚成文, 王红梅, 李建武, 马胜, 胡新元. 转录因子DREB1A基因和Bar基因双价植物表达载体的构建及对马铃薯遗传转化的研究. 草业学报, 2014, 23(3): 110117.
Jia X X, Qi E F, Wang Y H, Wen G H, Gong C W, Wang H M, Li J W, Ma S, Hu X Y. Construction of a bivalent plant expression vector of DREB1A and Bar genes and studies of genetic transformation of potato. Acta Pratac Sin, 2014, 23(3): 110–117 (in Chinese with English abstract).

[17] 文国宏, 李高峰, 李建武, 张荣, 马胜, 贾小霞. 陇薯系列马铃薯品种营养品质评价及相关性分析. 核农学报, 2018, 32: 2162–2169.
Wen G H, Li G F, Li J W, Zhang R, Ma S, Jia X X. Nutrition quality evaluation and correlation analysis of Longshu potato varieties named with series. J Nucl Agric Sci, 2018, 32: 2162–2169 (in Chinese with English abstract).

[18] 李颖, 李广存, 李灿辉, 屈冬玉, 黄三文. 二倍体杂种优势马铃薯育种的展望. 中国马铃薯, 2013, 27(2): 9699.
Li Y, Li G C, Li C H, Qu D Y, Huang S W. Prospects of diploid hybrid breeding in potato. Chin Potato J, 2013, 27(2): 9699 (in Chinese with English abstract).

[19] Halterman D, Guenthner J, Collinge S, Butler N, Douches D. Biotech potatoes in the 21st century: 20Years since the first biotech potato. Am J Potato Res, 2016, 93: 1–20.

[20] Wang H F, Russa M L, Qi L S. CRISPR/Cas9 in genome editing and beyond. Annu Rev Biochem, 2016, 85: 227–264.

[21] 屈聪玲, 贺榆婷, 王瑞良, 杨致荣, 王兴春. 植物转基因技术的过去、现在和未来. 山西农业科学, 2017, 45: 1376–1380.
Qu C L, He Y T, Wang R L, Yang Z R, Wang X C. The past, present and future of plant transgenic technology. J Shanxi Agric Sci, 2017, 45: 1376–1380 (in Chinese with English abstract).

[22] 王萍, 王罡, 季静. 马铃薯两个基因型不同外植体的组织培养与植株再生. 中国马铃薯, 2006, 20(6): 326328.
Wang P, Wang G, Ji J. Tissue culture and plant regeneration of various explants of two potato genotypes. Chin Potato J, 2006, 20(6): 326328 (in Chinese with English abstract).

[23] 宋倩娜, 宋慧洋, 李京昊, 段永红, 梅超, 冯瑞云. 马铃薯转录因子StFBH3对非生物逆境胁迫的响应分析. 作物学报, 2025, 51: 249259.
Song Q N, Song H Y, Li J H, Duan Y H, Mei C, Feng R Y. Response of transcription factor StFBH3 under abiotic stress in potato. Acta Agron Sin, 2025, 51: 249259 (in Chinese with English abstract).

[24] 巩慧玲, 林红霞, 任小丽, 李彤, 王晨霞, 白江平. StvacINV1负调控马铃薯的耐旱性. 作物学报, 2023, 49: 30073016.
Gong H L, Lin H X, Ren X L, Li T, Wang C X, Bai J P. StvacINV1 negatively regulates drought tolerance in potato. Acta Agron Sin, 2023, 49: 30073016 (in Chinese with English abstract).

[25] 李红艳, 李洁雅, 李响, 叶广继, 周云, 王舰. 过表达LrAN2基因对马铃薯中花青素和糖苷生物碱含量的影响. 作物学报, 2023, 49: 988995. 
Li H Y, Li J Y, Li X, Ye G J, Zhou Y, Wang J. Effects of overexpression of LrAN2 gene on contents of anthocyanins and glycoalkaloids in potato. Acta Agron Sin, 2023, 49: 988995 (in Chinese with English abstract).

[26] 陈兆贵, 林燕文, 李希陶, 温嘉嘉, 林静文. 马铃薯植株再生和遗传转化技术研究进展. 智慧农业导刊, 2023, 3(9): 1215.
Chen Z G, Lin Y W, Li X T, Wen J J, Lin J W. Research progress of plant regeneration and genetic transformation of potatoes. J Smart Agric, 2023, 3(9): 1215 (in Chinese with English abstract).

[27] Oxtoby E, Hughes M A. Progress on genetically engineering herbicide-resistance into crops. Biol Engin Prog, 1997, 17: 1417.

[28] 吴爱忠, 唐克轩, 潘俊松, 蔡润, 沈大棱, 潘重光. 转基因培育抗除草剂水稻. 遗传学报, 2000, 27: 992998.

Wu A Z, Tang K X, Pan J S, Cai R, Shen D L, Pan C G. Production of herbicide-resistant rice with transforming heterogene. Acta Genet Sin, 2000, 27: 992998.

[29] Bonny S. Genetically modified glyphosate-tolerant soybean in the USA: adoption factors, impacts and prospects: a review. Agron Sustain Dev, 2008, 28: 2132.

[30] Märländer B, Bückmann H. Genetically modified varieties in Germany: status and prospects with special respect of a sustainable sugar beet cultivation. Zuckerind, 1999, 124: 943946.

[31] Oard J H, Linscombe S D, Braverman M P, Jodari F, Blouin D C, Leech M, Kohli A, Vain P, Cooley J C, Christou P. Development, field evaluation, and agronomic performance of transgenic herbicide resistant rice. Mol Breed, 1996, 2: 359368.

[32] 强胜, 宋小玲, 戴伟民. 抗除草剂转基因作物面临的机遇与挑战及其发展策略. 农业生物技术学报, 2010, 18(1): 114125.
Qiang S, Song X L, Dai W M. The opportunity and challenge faced by transgenic herbicide-resistant crops and their development strategy. J Agric Biotechnol, 2010, 18(1): 114125 (in Chinese with English abstract).

[33] 王关林, 方宏筠. 植物基因工程(2). 北京: 科学出版社, 2002.
Wang G L, Fang H J. Plant Genetic Engineering, 2nd edn. Beijing: Science Press, 2002 (in Chinese).

[34] 曾凡锁, 詹亚光. 转基因植物中外源基因的整合特性及其研究策略. 植物学通报, 2004, 39: 565–577.
Zeng F S, Zhan Y G. Integration of exogenous genes in transgenic plant genomes: characteristics and approaches. Chin Bull Bot, 2004, 39: 565–577 (in Chinese with English abstract).

[35] Kumar S, Fladung M. Gene stability in transgenic aspen (Populus). II. Molecular characterization of variable expression of transgene in wild and hybrid aspen. Planta, 2001, 213: 731–740.

[36] Cao X L, Zhang Y T, Payer L M, Lords H, Steranka J P, Burns K H, Xing J C. Polymorphic mobile element insertions contribute to gene expression and alternative splicing in human tissues. Genome Biol, https://doi.org/10.1186/s13059-020-02101-4.

[37] 赵海祯, 梁哲军, 齐宏立, 王玉香, 聂安全, 吴秀峰. 外源基因对棉花光合生产和分配的影响. 华北农学报, 2005, 20 (1): 4145.

Zhao H Z, Liang Z J, Qi H L, Wang Y X, Nie A Q, Wu X F. Effects on production and distribution of photosynthate of external gene to cottons. Acta Agric Boreali-Sin, 2005, 20(1): 4145 (in Chinese with English abstract).

[38] Bao Y, Liu R J, Li Y B, Wang Y, Gao G J, Zhang Q G, Liu X, Jiang G H, He Y Q. QTL analysis on rice grain appearance quality, as exemplifying the typical events of transgenic or backcrossing breeding. Breed Sci, 2014, 64: 231239.

[39] Ramakrishnan M, Satish L, Kalendar R, Narayanan M, Kandasamy S, Sharma A, Emamverdian A, Wei Q, Zhou M. The dynamism of transposon methylation for plant development and stress adaptation. Int J Mol Sci, 2021, 22: 11387.

[40] 贾小霞, 齐恩芳, 马胜, 胡新元, 王一航, 文国宏, 龚成文, 李建武. DREB1A/Bar双价基因马铃薯的耐旱性及除草剂抗性分析. 草业学报, 2015, 24(11): 5864.
Jia X X, Qi E F, Ma S, Hu X Y, Wang Y H, Wen G H, Gong C W, Li J W. Analysis of drought tolerance and herbicide resistance in over-expressing DREB1A/Bar transgenic potato. Acta Pratac Sin, 2015, 24(11): 5864 (in Chinese with English abstract).

[41] 贾小霞, 马胜, 齐恩芳, 吕和平, 刘石, 黄伟, 李掌, 曲亚英. 不同除草剂对转Bar基因马铃薯田间杂草的防效及安全性分析. 核农学报, 2022, 36: 1026–1033.
Jia X X, Ma S, Qi E F, Lyu H P, Liu S, Huang W, Li Z, Qu Y Y. Safety assessment of different herbicides to Bar-transgenic potato and control effect on field weeds. J Nucl Agric Sci, 2022, 36: 1026–1033 (in Chinese with English abstract).

[1] YANG Shuang, BAI Lei, GUO Hua-Chun, MIAO Ya-Sheng, LI Jun. Morphological characteristics, types, and developmental process of potato leaf trichomes [J]. Acta Agronomica Sinica, 2025, 51(6): 1582-1598.
[2] XU Jie, XIA Lu-Lu, TANG Zhen-San, LI Wen-Li, ZHAO Tian-Tian, CHENG Li-Xiang, ZHANG Feng. Odor quality analysis of potato tuber after steaming and baking [J]. Acta Agronomica Sinica, 2025, 51(5): 1409-1420.
[3] ZHAO Xi-Juan, ZHANG Fan, LIU Sheng-Xuan, QIN Jun, CHEN Hui-Lan, LIN Yuan, LUO Hong-Bing, LIU Yi, SONG Bo-Tao, HU Xin-Xi, WANG En-Shuang. Optimization of extraction methods for four endogenous hormones in potatoes and analysis of their content during the process of releasing dormancy in tubers [J]. Acta Agronomica Sinica, 2025, 51(4): 1050-1060.
[4] YANG Xin-Yue, XIAO Ren-Hao, ZHANG Lin-Xi, TANG Ming-Jun, SUN Guang-Yan, DU Kang, LYU Chang-Wen, TANG Dao-Bin, WANG Ji-Chun. Effects of waterlogging at different growth stages on the stress-resistance physiological characteristics and yield formation of sweet potato [J]. Acta Agronomica Sinica, 2025, 51(3): 744-754.
[5] SU Ming, WU Jia-Rui, HONG Zi-Qiang, LI Fan-Guo, ZHOU Tian, WU Hong-Liang, KANG Jian-Hong. Response of potato tuber starch formation and yield to phosphorus fertilizer reduction in the semi-arid region of Northwest China [J]. Acta Agronomica Sinica, 2025, 51(3): 713-727.
[6] HUO Ru-Xue, GE Xiang-Han, SHI Jia, LI Xue-Rui, DAI Sheng-Jie, LIU Zhen-Ning, LI Zong-Yun. Functional analysis of the sweetpotato histidine kinase protein IbHK5 in response to drought and salt stresses [J]. Acta Agronomica Sinica, 2025, 51(3): 650-666.
[7] WANG Yu-Xin, CHEN Tian-Yu, ZHAI Hong, ZHANG Huan, GAO Shao-Pei, HE Shao-Zhen, ZHAO Ning, LIU Qing-Chang. Cloning and characterization of drought tolerance function of kinase gene IbHT1 in sweetpotato [J]. Acta Agronomica Sinica, 2025, 51(2): 301-311.
[8] SONG Qian-Na, SONG Hui-Yang, LI Jing-Hao, DUAN Yong-Hong, MEI Chao, FENG Rui-Yun. Response of transcription factor StFBH3 under abiotic stress in potato [J]. Acta Agronomica Sinica, 2025, 51(1): 247-259.
[9] QI Jia-Min, XU Chun-Miao, XIAO Bin. Genome-wide identification and expression analysis of TIFY gene family in potato (Solanum tuberosum L.) [J]. Acta Agronomica Sinica, 2024, 50(9): 2297-2309.
[10] ZHOU Hong-Yuan, YANG Hui-Qin, LUO Wei, SHI Zhen-Ming, MA Ling. Screening and functional identification of chlorogenic acid regulatory factors in potato [J]. Acta Agronomica Sinica, 2024, 50(7): 1740-1749.
[11] LIU Yuan-Yuan, DONG Jian-Ke, YING Jing-Wen, MEI Wen-Xiang, CHENG Gang, GUO Jing-Jing, JIAO Wen-Biao, SONG Bo-Tao. Creating cold resistant germplasm of potato using Solanum boliviense [J]. Acta Agronomica Sinica, 2024, 50(6): 1384-1393.
[12] LIU Zhen, CHEN Li-Min, LI Zhi-Tao, ZHU Jin-Yong, WANG Wei-Lu, QI Zhe-Ying, YAO Pan-Feng, BI Zhen-Zhen, SUN Chao, BAI Jiang-Ping, LIU Yu-Hui. Genome-wide identification and expression analysis of ARM gene family in potato (Solanum tuberosum L.) [J]. Acta Agronomica Sinica, 2024, 50(6): 1451-1466.
[13] SUN Yi-Ming, TIAN Xia, WANG Shao-Xia, LIU Qing. Effects of phosphorus application levels on selenium absorption, distribution, and transformation in sweet potatoes [J]. Acta Agronomica Sinica, 2024, 50(6): 1608-1615.
[14] ZHAO Na, LIU Yu-Xi, ZHANG Chao-Shu, SHI Ying. Transcriptomic analysis of differences in the starch content of different potatoes [J]. Acta Agronomica Sinica, 2024, 50(6): 1503-1513.
[15] YANG Chun-Ju, TANG Dao-Bin, ZHANG Kai, DU Kang, HUANG Hong, QIAO Huan-Huan, WANG Ji-Chun, LYU Chang-Wen. Effect of reducing nitrogen and potassium application on yield and quality in sweet potato [J]. Acta Agronomica Sinica, 2024, 50(5): 1341-1350.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!