Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2025, Vol. 51 ›› Issue (2): 301-311.doi: 10.3724/SP.J.1006.2025.44098

• CROP GENETICS & BREEDING · GERMPLASM RESOURCES · MOLECULAR GENETICS • Previous Articles     Next Articles

Cloning and characterization of drought tolerance function of kinase gene IbHT1 in sweetpotao

WANG Yu-Xin,CHEN Tian-Yu,ZHAI Hong,ZHANG Huan,GAO Shao-Pei,HE Shao-Zhen,ZHAO Ning,LIU Qing-Chang*   

  1. Key Laboratory of Sweetpotato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs / College of Agronomy & Biotechnology, China Agricultural University, Beijing 100193, China
  • Received:2024-06-17 Revised:2024-09-18 Accepted:2024-09-18 Online:2025-02-12 Published:2024-10-11
  • Supported by:
    This study was supported by the China Agriculture Research System of MOF and MARA (CARS-10).

Abstract:

HT1 (HIGH LEAF TEMPERATURE 1) is a protein kinase known for its role in regulating stomatal movement in Arabidopsis. However, its function in sweetpotato has not been reported. In this study, the IbHT1 gene was cloned from the sweetpotato line Xushu 55-2. The full-length CDS of IbHT1 is 1140 bp, encoding a 379-amino acid protein that contains a conserved STKc_MAP3K_Like domain, with a predicted molecular weight of 43.07 kD and an isoelectric point (pI) of 8.83. The genomic sequence of IbHT1 spans 2796 bp, comprising 3 exons and 2 introns. Subcellular localization analysis revealed that the IbHT1 protein is localized to the cell membrane, and yeast assays confirmed it lacks transactivation activity. Expression of IbHT1 was down-regulated in response to 20% PEG-6000 treatment. Overexpression of IbHT1 significantly reduced drought tolerance in sweetpotato, while RNA interference (RNAi) of IbHT1 markedly enhanced drought tolerance. Additionally, 10 proteins interacting with IbHT1 were identified through yeast library screening. These findings suggest that IbHT1 may regulate drought tolerance in sweetpotato by interacting with other proteins.

Key words: sweetpotato, IbHT1, RNA interference, drought tolerance, interaction protein

[1] 赵杨, 杨永青, 丁杨林, 张蘅, 谢彦杰, 赵春钊, 刘林川, 王鹏程. 植物非生物逆境学科发展综述. 植物生理学报, 2024, 60: 248270.

Zhao Y, Yang Y Q, Ding Y L, Zhang H, Xie Y J, Zhao C Z, Liu L C, Wang P C. Plant abiotic stress biology: a decade update. Plant Physiol J, 2024, 60: 248–270 (in Chinese with English abstract).

[2] Zhu J K. Abiotic stress signaling and responses in plants. Cell, 2016, 167: 313–324.

[3] 任洪雷, 朱筱, 张丰屹, 张必弦, 王家军, 王金生, 吴俊江, 王广金, 邱丽娟. 干旱胁迫的影响及抗旱性研究进展. 分子植物育种, 网络首发[2024-01-22], https://link.cnki.net/urlid/46.1068.S.20240119.1548.002.

Ren H L, Zhu X, Zhang F Y, Zhang B X, Wang J J, Wang J S, Wu J J, Wang G J, Qiu L J. Effect of drought stress and research progress of drought resistance. Mol Plant Breed, Published online [2024-01-22], https://link.cnki.net/urlid/46.1068.S.20240119.1548.002 (in Chinese with English abstract).

[4] 朱婷婷, 王彦霞, 裴丽丽, 谢传磊, 陈明, 陈隽, 周永斌, 马有志, 徐兆师. 植物蛋白激酶与作物非生物胁迫抗性的研究. 植物遗传资源学报, 2017, 18: 763–770.

Zhu T T, Wang Y X, Pei L L, Xie C L, Chen M, Chen J, Zhou Y B, Ma Y Z, Xu Z S. Research progress of plant protein kinase and abiotic stress resistance. J Plant Genet Resour, 2017, 18: 763–770 (in Chinese with English abstract).

[5] 张鑫苗, 伍国强, 魏明. MAPK在植物响应逆境胁迫中的作用. 草业学报, 2024, 33(1): 182–197.

Zhang X M, Wu G Q, Wei M. The role of MAPK in plant response to abiotic stress. Acta Pratac Sin, 2024, 33(1): 182–197 (in Chinese with English abstract).

[6] Chen X X, Ding Y L, Yang Y Q, Song C P, Wang B S, Yang S H, Guo Y, Gong Z Z. Protein kinases in plant responses to drought, salt, and cold stress. J Integr Plant Biol, 2021, 63: 53–78.

[7] Chen J, Wang L H, Yuan M. Update on the roles of rice MAPK cascades. Int J Mol Sci, 2021, 22: 1679.

[8] Li Y Y, Cai H X, Liu P, Wang C Y, Gao H Y, Wu C G, Yan K, Zhang S Z, Huang J G, Zheng C C. Arabidopsis MAPKKK18 positively regulates drought stress resistance via downstream MAPKK3. Biochem Biophys Res Commun, 2017, 484: 292–297.

[9] Ning J, Li X H, Hicks L M, Xiong L Z. A Raf-Like MAPKKK Gene DSM1 mediates drought resistance through reactive oxygen species scavenging in rice. Plant Physiol, 2010, 152: 876–890.

[10] Ma H G, Chen J, Zhang Z Z, Ma L, Yang Z Y, Zhang Q L, Li X H, Xiao J H, Wang S P. MAPK kinase 10.2 promotes disease resistance and drought tolerance by activating different MAPKs in rice. Plant J, 2017, 92: 557–570.

[11] Zhao L L, Yan J W, Xiang Y, Sun Y, Zhang A Y. ZmWRKY104 transcription factor phosphorylated by ZmMPK6 functioning in ABA-induced antioxidant defense and enhance drought tolerance in maize. Biology, 2021, 10: 893.

[12] Li F J, Li M Y, Wang P, Cox K L Jr, Duan L S, Dever J K, Shan L B, Li Z H, He P. Regulation of cotton (Gossypium hirsutum) drought responses by mitogen-activated protein (MAP) kinase cascade-mediated phosphorylation of GhWRKY59. New Phytol, 2017, 215: 1462–1475.

[13] Jeong S, Lim C W, Lee S C. The pepper MAP Kinase CaAIMK1 positively regulates ABA and drought stress responses. Front Plant Sci, 2020, 11: 720.

[14] Wang J Y, Chitsaz F, Derbyshire M K, Gonzales N R, Gwadz M, Lu S N, Marchler G H, Song J S, Thanki N, Yamashita R A, Yang M Z, Zhang D C, Zheng C J, Lanczycki C J, Marchler-Bauer A. The conserved domain database in 2023. Nucleic Acids Res, 2023, 51: D384–D388.

[15] Hashimoto M, Negi J, Young J, Israelsson M, Schroeder J I, Iba K. Arabidopsis HT1 kinase controls stomatal movements in response to CO2. Nat Cell Biol, 2006, 8: 391–397.

[16] Matrosova A, Bogireddi H, Mateo-Peñas A, Hashimoto-Sugimoto M, Iba K, Schroeder J I, Israelsson-Nordström M. The HT1 protein kinase is essential for red light-induced stomatal opening and genetically interacts with OST1 in red light and CO2-induced stomatal movement responses. New Phytol, 2015, 208: 1126–1137.

[17] Horak H, Sierla M, Toldsepp K, Wang C, Wang Y S, Nuhkat M, Valk E, Pechter P, Merilo E, Salojarvi J, Overmyer K, Loog M, Brosche M, Schroeder J I, Kangasjarvi J, Kollist H. A dominant mutation in the HT1 kinase uncovers roles of MAP kinases and GHR1 in CO2-induced stomatal closure. Plant Cell, 2016, 28: 2493–2509.

[18] Gahlowt P, Tripathi D K, Singh S, Gupta R, Singh V P. Does MPK4/12-HT1 function as a CO2/bicarbonate sensor to regulate the stomatal conductance under high CO levels? Plant Cell Rep, 2023, 42: 2043–2045.

[19] 后猛, 李臣, 张允刚, 闫会, 王欣, 唐维, 宋炜涵, 高闰飞, 李强. 优质高产淀粉型甘薯徐薯37选育及性状鉴定. 江苏师范大学学报(自然科学版), 2023, 41(3): 45–47.

Hou M, Li C, Zhang Y G, Yan H, Wang X, Tang W, Song W H, Gao R F, Li Q. Breeding and character identification of a sweetpotato variety Xushu 37 for starch use with high yield and quality. J Jiangsu Norm Univ (Nat Sci), 2023, 41(3): 45–47 (in Chinese with English abstract).

[20] Wang Z, Li X, Gao X R, Dai Z R, Peng K, Jia L C, Wu Y K, Liu Q C, Zhai H, Gao S P, Zhao N, He S Z, Zhang H. IbMYB73 targets abscisic acid-responsive IbGER5 to regulate root growth and stress tolerance in sweet potato. Plant Physiol, 2024, 194: 787–804.

[21] Yan M X, Li M, Wang Y Z, Wang X Y, Moeinzadeh M H, Quispe-Huamanquispe D G, Fan W J, Fang Y J, Wang Y Q, Nie H Z, Wang Z Y, Tanaka A, Heider B, Kreuze J F, Gheysen G, Wang H X, Vingron M, Bock R, Yang J. Haplotype-based phylogenetic analysis and population genomics uncover the origin and domestication of sweetpotato. Mol Plant, 2024, 17: 277–296.

[22] 吴胜男, 孙凯, 张海, 刘峰, 王凤. 甘薯分子标记辅助育种研究进展. 黑龙江农业科学, 2022, (9): 111–115.

Wu S N, Sun K, Zhang H, Liu F, Wang F. Research progress of sweet potato molecular marker-assisted breeding. Heilongjiang Agric Sci, 2022, (9): 111–115 (in Chinese with English abstract).

[23] Jin R, Kim B H, Ji C Y, Kim H S, Li H M, Ma D F, Kwak S S. Overexpressing IbCBF3 increases low temperature and drought stress tolerance in transgenic sweetpotato. Plant Physiol Biochem, 2017, 118: 45–54.

[24] Zhou Y Y, Zhai H, Xing S H, Wei Z H, He S Z, Zhang H, Gao S P, Zhao N, Liu Q C. A novel small open reading frame gene, IbEGF, enhances drought tolerance in transgenic sweet potato. Front Plant Sci, 2022, 13: 965069.

[25] Ren Z T, He S Z, Zhou Y Y, Zhao N, Jiang T, Zhai H, Liu Q C. A sucrose non-fermenting-1-related protein kinase-1 gene, IbSnRK1, confers salt, drought and cold tolerance in sweet potato. Crop J, 2020, 8: 905–917.

[26] Wang Y X, Zhang H, Gao S P, Zhai H, He S Z, Zhao N, Liu Q C. An ABA-inducible gene IbTSJT1 positively regulates drought tolerance in transgenic sweetpotato. J Integr Agric, 2023. Published online [2023-10-18], https://doi.org/10.1016/j.jia.2023.10.015.

[27] Zhang H, Gao X R, Zhi Y H, Li X, Zhang Q, Niu J B, Wang J, Zhai H, Zhao N, Li J G, Liu Q C, He S Z. A non-tandem CCCH-type zinc-finger protein, IbC3H18, functions as a nuclear transcriptional activator and enhances abiotic stress tolerance in sweet potato. New Phytol, 2019, 223: 1918–1936.

[28] Zhang H, Wang Z, Li X, Gao X R, Dai Z R, Cui Y F, Zhi Y H, Liu Q C, Zhai H, Gao S P, Zhao N, He S Z. The IbBBX24-IbTOE3-IbPRX17 module enhances abiotic stress tolerance by scavenging reactive oxygen species in sweet potato. New Phytol, 2022, 233: 1133–1152.

[29] Xue L Y, Wei Z H, Zhai H, Xing S H, Wang Y X, He S Z, Gao S P, Zhao N, Zhang H, Liu Q C. The IbPYL8-IbbHLH66-IbbHLH118 complex mediates the abscisic acid-dependent drought response in sweet potato. New Phytol, 2022, 236: 2151–2171.

[30] 周桦楠, 于涛, 刘冠求, 潘家荃, 万博, 刘振雷. 甘薯MAPK基因家族的鉴定及生物信息学分析. 沈阳农业大学学报, 2021, 52: 513–520.

Zhou H N, Yu T, Liu G Q, Pan J Q, Wan B, Liu Z L. Genome-wide identification and bioinformatic analysis of mitogen activated protein kinase gene family in sweet potato. J Shenyang Agric Univ, 2021, 52: 513–520 (in Chinese with English abstract).

[31] 靳容, 刘明, 赵鹏, 张强强, 张爱君, 唐忠厚. 甘薯丝裂原活化蛋白激酶MPK6对低温胁迫的响应. 中国农业科学, 2021, 54: 4265–4273.

Jin R, Liu M, Zhao P, Zhang Q Q, Zhang A J, Tang Z H. IbMKP6, A mitogen-activated protein kinase, confers low temperature tolerance in sweetpotato. Sci Agric Sin, 2021, 54: 4265–4273 (in Chinese with English abstract).

[32] 靖小菁, 杨新笋, 靳晓杰, 刘意, 雷剑, 王连军, 柴沙沙, 张文英, 焦春海. 甘薯蔓割病(Fusarium oxysporum f. sp. batatas)相关基因IbMAPKK9的克隆与特性分析. 作物学报, 2023, 49: 3289–3301.

Jing X J, Yang X S, Jin X J, Liu Y, Lei J, Wang L J,Chai S S, Zhang W Y, Jiao C H. Cloning and characterization of IbMAPKK9 gene associated with Fusarium oxysporum f. sp. batatas in sweet potato. Acta Agron Sin, 2023, 49: 3289–3301 (in Chinese with English abstract).

[33] Zhu H, Zhou Y Y, Zhai H, He S Z, Zhao N, Liu Q C. Transcriptome profiling reveals insights into the molecular mechanism of drought tolerance in sweetpotato. J Integr Agric, 2019, 18: 9–23.

[34] Xing S H, Zhu H, Zhou Y Y, Xue L Y, Wei Z H, Wang Y X, He S Z, Zhang H, Gao S P, Zhao N, Zhai H, Liu Q C. A cytochrome P450 superfamily gene, IbCYP82D47, increases carotenoid contents in transgenic sweet potato. Plant Sci, 2022, 318: 111233.

[35] Kumar S, Stecher G, Li M, Knyaz C, Tamura K. MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol, 2018, 35: 1547–1549.

[36] Rogers S O, Bendich A J. Extraction of DNA from milligram amounts of fresh, herbarium and mummified plant tissues. Plant Mol Biol, 1985, 5: 69–76.

[37] Zhou Y Y, Zhu H, He S Z, Zhai H, Zhao N, Xing S H, Wei Z H, Liu Q C. A novel sweetpotato transcription factor gene IbMYB116 enhances drought tolerance in transgenic Arabidopsis. Front Plant Sci, 2019, 10: 1025.

[38] Zhang H, Zhang Q, Zhai H, Gao S P, Yang L, Wang Z, Xu Y T, Huo J X, Ren Z T, Zhao N, Wang X F, Li J G, Liu Q C, He S Z. IbBBX24 promotes the jasmonic acid pathway and enhances Fusarium wilt resistance in sweet potato. Plant Cell, 2020, 32: 1102–1123.

[39] Shitamichi N, Matsuoka D, Sasayama D, Furuya T, Nanmori T. Over-expression of MAP3Kδ4, an ABA-inducible Raf-like MAP3K that confers salt tolerance in Arabidopsis. Plant Biotechnol, 2013, 30: 111–118.

[40] Li X, Wang Z, Sun S F, Dai Z R, Zhang J, Wang W B, Peng K, Geng W H, Xia S H, Liu Q C, Zhai H, Gao S P, Zhao N, Tian F, Zhang H, He S Z. IbNIEL-mediated degradation of IbNAC087 regulates jasmonic acid-dependent salt and drought tolerance in sweet potato. J Integr Plant Biol, 2024, 66: 176–195.

[41] Katiyar A, Smita S, Lenka S K, Rajwanshi R, Chinnusamy V, Bansal K C. Genome-wide classification and expression analysis of MYB transcription factor families in rice and Arabidopsis. BMC Genomics, 2012, 13: 544.

[42] Baldoni E, Genga A, Cominelli E. Plant MYB transcription factors: their role in drought response mechanisms. Int J Mol Sci, 2015, 16: 15811–15851.

[43] Abe H, Urao T, Ito T, Seki M, Shinozaki K, Yamaguchi-Shinozaki K. Arabidopsis AtMYC2 (bHLH) and AtMYB2 (MYB) function as transcriptional activators in abscisic acid signaling. Plant Cell, 2003, 15: 63–78.

[44] Li X M, Zhong M, Qu L N, Yang J X, Liu X Q, Zhao Q, Liu X M, Zhao X Y. AtMYB32 regulates the ABA response by targeting ABI3, ABI4 and ABI5 and the drought response by targeting CBF4 in Arabidopsis. Plant Sci, 2021, 310: 110983.

[45] Wyrzykowska A, Bielewicz D, Plewka P, Soltys-Kalina D, Wasilewicz-Flis I, Marczewski W, Jarmolowski A, Szweykowska-Kulinska Z. The MYB33, MYB65, and MYB101 transcription factors affect Arabidopsis and potato responses to drought by regulating the ABA signaling pathway. Physiol Plant, 2022, 174: e13775.

[46] Yang A, Dai X Y, Zhang W H. A R2R3-type MYB gene, OsMYB2, is involved in salt, cold, and dehydration tolerance in rice. J Exp Bot, 2012, 63: 2541–2556.

[47] Tang Y H, Bao X X, Zhi Y L, Wu Q, Guo Y R, Yin X H, Zeng L Q, Li J, Zhang J, He W L, Liu W H, Wang Q W, Jia C K, Li Z K, Liu K. Overexpression of a MYB family gene, OsMYB6, increases drought and salinity stress tolerance in transgenic rice. Front Plant Sci, 2019, 10: 168.

[48] Peng Y, Tang N, Zou J, Ran J, Chen X B. Rice MYB transcription factor OsMYB1R1 negatively regulates drought resistance. Plant Growth Regul, 2023, 99: 515–525.

[49] Chen T Z, Li W J, Hu X H, Guo J R, Liu A M, Zhang B L. A cotton MYB transcription factor, GbMYB5, is positively involved in plant adaptive response to drought stress. Plant Cell Physiol, 2015, 56: 917–929.

[50] Shin D J, Moon S J, Han S, Kim B G, Park S R, Lee S K, Yoon H J, Lee H E, Kwon H B, Baek D, Yi B Y, Byun M O. Expression of StMYB1R-1, a novel potato single MYB-Like domain transcription factor, increases drought tolerance. Plant Physiol, 2011, 155: 421–432.

[51] Li B, Zheng J C, Wang T T, Min D H, Wei W L, Chen J, Zhou Y B, Chen M, Xu Z S, Ma Y Z. Expression analyses of soybean VOZ transcription factors and the role of GmVOZ1G in drought and salt stress tolerance. Int J Mol Sci, 2020, 21: 2177.

[52] Song C, Lee J, Kim T, Hong J C, Lim C O. VOZ1, a transcriptional repressor of DREB2C, mediates heat stress responses in Arabidopsis. Planta, 2018, 247: 1439–1448.

[53] Chong L, Xu R, Huang P C, Guo P C, Zhu M K, Du H, Sun X L, Ku L X, Zhu J K, Zhu Y F. The tomato OST1-VOZ1 module regulates drought-mediated flowering. Plant Cell, 2022, 34: 2001–2018.

[1] LIU Bo, CHI Ming, CAO Meng-Qi, TANG Da, YANG Heng-Zhao, ZHANG Wei-Hua, XUE Cong. Impact of potato StuPPO9 gene overexpression on drought resistance in Nicotiana benthamiana [J]. Acta Agronomica Sinica, 2024, 50(9): 2237-2247.
[2] LIU Shuang, LI Shen, WANG Dong-Mei, SHA Xiao-Qian, HE Guan-Hua, ZHANG Deng-Feng, LI Yong-Xiang, LIU Xu-Yang, WANG Tian-Yu, LI Yu, LI Chun-Hui. Superior allele genes mining for drought tolerance in maize based on introgression line from a cross between maize and teosinte [J]. Acta Agronomica Sinica, 2024, 50(8): 1896-1906.
[3] ZHANG Xiao-Fang, ZHU Qi, HUA Yun-Yan, JIA Li-Hui-Ying, QIU Shi-You, CHEN Yu-Jie, MA Tao, DING Wo-Na. Screening and validation of OsCYP22 interacting proteins in rice [J]. Acta Agronomica Sinica, 2024, 50(6): 1628-1634.
[4] ZHU Zhong-Lin, WEN Yue, ZHOU Qi, WU Yan-Fei, DU Xue-Zhu, SHENG Feng. Mechanism of loding residence and drought tolerance of OsCNGC10 gene in rice [J]. Acta Agronomica Sinica, 2024, 50(5): 1351-1360.
[5] LI Yang-Yang, WU Dan, XU Jun-Hong, CHEN Zhuo-Yong, XU Xin-Yuan, XU Jin-Pan, TANG Zhong-Lin, ZHANG Ya-Ru, ZHU Li, YAN Zhuo-Li, ZHOU Qing-Yuan, LI Jia-Na, LIU Lie-Zhao, TANG Zhang-Lin. Identification of candidate genes associated with drought tolerance based on QTL and transcriptome sequencing in Brassica napus L. [J]. Acta Agronomica Sinica, 2024, 50(4): 820-835.
[6] ZHU Xiao-Ya, ZHANG Qiang-Qiang, ZHAO Peng, LIU Ming, WANG Jing, JIN Rong, YU Yong-Chao, TANG Zhong-Hou. Transcriptome and metabolomic analysis of foliar spraying of Salvia miltiorrhiza carbon dots to alleviate low phosphorus stress in sweetpotato [J]. Acta Agronomica Sinica, 2024, 50(2): 383-393.
[7] SU Yi-Jun, ZHAO Lu-Kuan, TANG Fen, DAI Xi-Bin, SUN Ya-Wei, ZHOU Zhi-Lin, LIU Ya-Ju, CAO Qing-He. Genetic diversity and population structure analysis of 378 introduced sweetpotato germplasm collections [J]. Acta Agronomica Sinica, 2023, 49(9): 2582-2593.
[8] JIA Rui-Xue, CHEN Yi-Hang, ZHANG Rong, TANG Chao-Chen, WANG Zhang-Ying. Simultaneous determination of 13 carotenoids in sweetpotato by Ultra- Performance Liquid Chromatography [J]. Acta Agronomica Sinica, 2023, 49(8): 2259-2274.
[9] WANG Yan-Nan, CHEN Jin-Jin, BIAN Qian-Qian, HU Lin-Lin, ZHANG Li, YIN Yu-Meng, QIAO Shou-Chen, CAO Guo-Zheng, KANG Zhi-He, ZHAO Guo-Rui, YANG Guo-Hong, YANG Yu-Feng. Integrated analysis of transcriptome and metabolome reveals the metabolic response pathways of sweetpotato under shade stress [J]. Acta Agronomica Sinica, 2023, 49(7): 1785-1798.
[10] YUAN Da-Shuang, ZHANG Xiao-Li, ZHU Dong-Ming, YANG You-Hong, YAO Meng-Nan, LIANG Ying. Effects of BnMAPK2 on drought tolerance in Brassica napus [J]. Acta Agronomica Sinica, 2023, 49(6): 1518-1531.
[11] CHEN Yi-Hang, TANG Chao-Chen, ZHANG Xiong-Jian, YAO Zhu-Fang, JIANG Bing-Zhi, WANG Zhang-Ying. Construction of core collection of sweetpotato based on phenotypic traits and SSR markers [J]. Acta Agronomica Sinica, 2023, 49(5): 1249-1261.
[12] WU Shi-Yu, CHEN Kuang-Ji, LYU Zun-Fu, XU Xi-Ming, PANG Lin-Jiang, LU Guo-Quan. Effects of nitrogen fertilizer application rate on starch contents and properties during storage root expansion in sweetpotato [J]. Acta Agronomica Sinica, 2023, 49(4): 1090-1101.
[13] LIU Ming, FAN Wen-Jing, ZHAO Peng, JIN Rong, ZHANG Qiang-Qiang, ZHU Xiao-Ya, WANG Jing, LI Qiang. Genotypes screening and comprehensive evaluation of sweetpotato tolerant to low potassium stress at seedling stage [J]. Acta Agronomica Sinica, 2023, 49(4): 926-937.
[14] XU Zi-Yin, YU Xiao-Ling, ZOU Liang-Ping, ZHAO Ping-Juan, LI Wen-Bin, GENG Meng-Ting, RUAN Meng-Bin. Expression pattern analysis and interaction protein screening of cassava MYB transcription factor MeMYB60 [J]. Acta Agronomica Sinica, 2023, 49(4): 955-965.
[15] ZHAO Dong-Lan, ZHAO Ling-Xiao, LIU Yang, ZHANG An, DAI Xi-Bin, ZHOU Zhi-Lin, CAO Qing-He. Relative expression profile of the related genes with carotenoids metabolism in sweetpotato (Ipomoea batatas) based on RNA-seq data [J]. Acta Agronomica Sinica, 2023, 49(12): 3239-3249.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!