Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2025, Vol. 51 ›› Issue (2): 312-323.doi: 10.3724/SP.J.1006.2025.41045

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Identification and validation of quantitative trait loci for grain number per spike showing pleiotropic effect on thousand grain weight in bread wheat (Triticum aestivum L.)

YONG Rui1,2(), HU Wen-Jing2,*(), WU Di2, WANG Zun-Jie2, LI Dong-Sheng2, ZHAO Die2, YOU Jun-Chao2, XIAO Yong-Gui3, WANG Chun-Ping1,*()   

  1. 1College of Agriculture, Henan University of Science and Technology, Luoyang 471023, Henan, China
    2Lixiahe Institute of Agriculture Sciences / Key Laboratory of Wheat Biology and Genetic Improvement for Low and Middle Yangtze Valley, Ministry of Agriculture and Rural Affairs, Yangzhou 225007, Jiangsu, China
    3Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
  • Received:2024-06-25 Accepted:2024-10-25 Online:2025-02-12 Published:2024-11-11
  • Contact: E-mail: huren2008@126.com; E-mail: chunpingw@haust.edu.cn E-mail:15202659168@163.com;huren2008@126.com;chunpingw@haust.edu.cn
  • Supported by:
    National Natural Science Foundation of China(32341037);Jiangsu Modern Agricultural Industry Single Technology Research and Development Project(CX (23) 3089);Major Science and Technology of Henan Province Project “the Wheat Nutrigenomics Analysis and Functional Food Creation and Industrialization Fund Project”(231100110300);Shennong Laboratory “First-Class Subject” Project(SN01-2022-01)

Abstract:

Grain number per spike (GNS) is a key quantitative trait closely associated with wheat yield. To further investigate the quantitative trait loci (QTL) associated with GNS in wheat, 151 recombinant inbred lines (RILs) derived from a cross between Yangmai 4 (YM4) and Yanzhan 1 (YZ1) were used to construct a wheat hexaploid genetic linkage map. GNS was evaluated across four environments over three years. Three QTLs for GNS were identified on chromosomes 4A, 5A, and 5B. Among these, QGns.yaas-4A and QGns.yaas-5B were detected in two environments, with the favorable effect contributed by YM4. The phenotypic variation explained (PVE) by QGns.yaas-4A and QGns.yaas-5B ranged from 11.50% to 13.27% and from 5.59% to 10.99%, respectively, with physical intervals of 703.41-710.25 Mb and 77.62-365.60 Mb. QGns.yaas-5A was detected in all four environments, with the favorable effect contributed by YZ1. The PVE for QGns.yaas-5A ranged from 8.99% to 11.13%, with a physical interval of 495.34-512.39 Mb. The YZ1 allele at QGns.yaas-5A and the YM4 allele at QGns.yaas-5B significantly increased thousand-grain weight by 3.39% (P < 0.05) and 4.45% (P < 0.01), respectively. Kompetitive Allele-Specific PCR (KASP) markers for QGns.yaas-4A, QGns.yaas-5A, and QGns.yaas-5B were developed and validated in a natural population. Pyramiding the three favorable alleles showed a significant additive effect, increasing GNS by 13.75%. These findings provide theoretical and technical support for molecular marker-assisted breeding to improve GNS in wheat.

Key words: Triticum aestivum L., grain number per spike, thousand-grain weight, QTL mapping, KASP

Table S1

Source, value of grain number per spike and QTL alleles of 137 varieties/lines"

数目 品种名称 来源 穗粒数 KASP.Y4.4A KASP.YZ1.5A KASP.Y4.5B
Number Name of cultivars/lines Source GNS
1 新乡 197 Xinxiang 197 中国河南 Henan, China 49.50 A A B
2 鲁麦 14 Lumai 14 中国山东 Shandong, China 50.50 A A B
3 淮麦 39 Huaimai 39 中国江苏 Jiangsu, China 52.25 A A B
4 LJ 041 中国山东 Shandong, China 53.75 A A B
5 鲁原 502 Luyuan 502 中国山东 Shandong, China 54.75 A A B
6 鄂西 84-1031 Exi 84-1031 中国湖北 Hubei, China 57.00 A A B
7 博爱 7023 Bo’ai 7023 中国河南 Henan, China 58.25 A A B
8 淮麦 1403 Huaimai 1403 中国江苏 Jiangsu, China 58.25 A A B
9 淮麦 33 Huaimai 33 中国江苏 Jiangsu, China 59.25 A A B
10 济麦 23 Jimai 23 中国山东 Shandong, China 61.25 A A B
11 新乡 289 Xinxiang 289 中国河南 Henan, China 62.00 A A B
12 济麦 52 Jimai 52 中国山东 Shandong, China 62.25 A A B
13 徐麦 2023 Xumai 2023 中国江苏 Jiangsu, China 63.50 A A B
14 淮麦 25 Huaimai 25 中国江苏 Jiangsu, China 64.75 A A B
15 淮麦 40 Huaimai 40 中国江苏 Jiangsu, China 64.75 A A B
16 宁春 10号 Ningchun 10 中国宁夏 Ningxia, China 65.25 A A B
17 W 16 国外 Foreign 66.88 A A B
18 扬辐麦 5242 变异
Yangfumai 5242 Bianyi
中国江苏 Jiangsu, China 68.00 A A B
19 绵阳 15 Mianyang 15 中国四川 Sichuan, China 68.25 A A B
20 江东门 Jiangdongmen 地方 Local, China 69.75 A A B
21 皖麦 32 Wanmai 32 中国安徽 Anhui, China 60.50 A B A
22 早熟 5号 Zaoshu 5 中国山东 Shandong, China 61.50 A B A
23 扬辐麦 2 号 Yangfumai 2 中国江苏 Jiangsu, China 61.75 A B A
24 镇 7495 Zhen 7495 中国江苏 Jiangsu, China 62.25 A B A
25 宁麦 12 Ningmai 12 中国江苏 Jiangsu, China 64.00 A B A
26 镇麦 1 号 Zhenmai 1 中国江苏 Jiangsu, China 65.75 A B A
27 欧柔 Ourou 国外 Foreign 67.50 A B A
28 皖麦 33 Wanmai 33 中国安徽 Anhui, China 72.00 A B A
29 S 42 中国江苏 Jiangsu, China 72.25 A B A
30 扬麦 28 Yangmai 28 中国江苏 Jiangsu, China 56.00 A B B
31 延岗坊主 Yangangfangzhu 地方 Local, China 56.00 A B B
32 万年 2 号 Wannian 2 地方 Local, China 56.50 A B B
33 扬麦 27 Yangmai 27 中国江苏 Jiangsu, China 57.25 A B B
34 宁 7840 Ning 7840 中国江苏 Jiangsu, China 57.25 A B B
35 NMAS 2020 中国江苏 Jiangsu, China 57.50 A B B
36 武麦 1 号 Wumai 1 中国江苏 Jiangsu, China 58.25 A B B
37 C 19212-11 中国江苏 Jiangsu, China 58.25 A B B
38 扬麦3 号 Yangmai 3 中国江苏 Jiangsu, China 58.50 A B B
39 矮孟牛 Ⅴ Aimengniu Ⅴ 中国山东 Shandong, China 58.50 A B B
40 扬糯麦 1 号 Yangnuomai 1 中国江苏 Jiangsu, China 58.50 A B B
41 扬麦 15 Yangmai 15 中国江苏 Jiangsu, China 59.00 A B B
42 扬麦 22 Yangmai 22 中国江苏 Jiangsu, China 59.00 A B B
43 徐麦 30 Xumai 30 中国江苏 Jiangsu, China 59.00 A B B
44 LJ 803 中国山东 Shandong, China 59.25 A B B
45 淮麦 22 Huaimai 22 中国江苏 Jiangsu, China 59.50 A B B
46 济麦 20 Jimai 20 中国山东 Shandong, China 59.50 A B B
47 白慈麦 Baicimai 地方 Local, China 59.75 A B B
48 周麦 36 Zhoumai 36 中国河南 Henan, China 59.75 A B B
49 鄂麦 12 Emai 12 中国湖北 Hubei, China 60.00 A B B
50 镇麦 4号 Zhenmai 4 中国江苏 Jiangsu, China 60.00 A B B
51 百农 4199 Bainong 4199 中国河南 Henan, China 60.00 A B B
52 蚰子头 Youzitou 地方 Local, China 60.25 A B B
53 宁糯麦 1 号 Ningnuomai 中国江苏 Jiangsu, China 60.25 A B B
54 皖麦 19 Wanmai 19 中国安徽 Anhui, China 60.25 A B B
55 扬麦 16 Yangmai 16 中国江苏 Jiangsu, China 60.25 A B B
56 翻山小麦 Fanshanxiaomai 地方 Local, China 60.25 A B B
57 糯麦 Nuomai 地方 Local, China 60.38 A B B
58 鄂恩 1 号 E’en 1 中国湖北 Hubei, China 60.50 A B B
59 扬麦 9 号 Yangmai 9 中国江苏 Jiangsu, China 61.25 A B B
60 矮秆红 Aiganhong 国外 Foreign 61.25 A B B
61 宁 17110 Ning 17110 中国江苏 Jiangsu, China 61.50 A B B
62 存麦 5 号 Cunmai 5 中国河南 Henan, China 61.75 A B B
63 扬麦 25 Yangmai 25 中国江苏 Jiangsu, China 62.25 A B B
64 中麦 175 Zhongmai 175 中国河南 Henan, China 63.25 A B B
65 扬麦 2 号 Yangmai 2 中国江苏 Jiangsu, China 65.25 A B B
66 扬麦 20 Yangmai 20 中国江苏 Jiangsu, China 65.50 A B B
67 皖麦 31 Wanmai 31 中国安徽 Anhui, China 65.75 A B B
68 鄂 133 E 133 中国湖北 Hubei, China 65.75 A B B
69 扬麦 23 Yangmai 23 中国江苏 Jiangsu, China 66.00 A B B
70 C 190245474 C 19027-1 中国江苏 Jiangsu, China 66.50 A B B
71 C 192145310 C 19211-19 中国江苏 Jiangsu, China 66.50 A B B
72 宁麦 3 号 Ningmai 3 中国江苏 Jiangsu, China 67.00 A B B
73 和尚头 Heshangtou 地方 Local, China 67.25 A B B
74 丰产 3 号 Fengchan 3 中国陕西 Shaanxi, China 67.25 A B B
75 浙麦 1 号 Zhemai 1 中国浙江 Zhejiang, China 67.25 A B B
76 西农 511 Xinong 511 中国陕西 Shaanxi, China 67.25 A B B
77 红袖子 Hongxiuzi 地方 Local, China 68.00 A B B
78 复壮 30 Fuzhuang 30 中国山东 Shandong, China 68.13 A B B
79 C19008-1 中国江苏 Jiangsu, China 68.75 A B B
80 生选 6 号 Shengxuan 6 中国江苏 Jiangsu, China 49.00 B A B
81 扬辐 9 Yangfu 9 中国江苏 Jiangsu, China 49.75 B A B
82 连麦 2 号 Lianmai 2 中国江苏 Jiangsu, China 50.00 B A B
83 徐麦 178 Xumai 178 中国江苏 Jiangsu, China 50.25 B A B
84 徐农 029 Xunong 029 中国江苏 Jiangsu, China 51.00 B A B
85 济南 17 Jinan 17 中国山东 Shandong, China 51.25 B A B
86 扬辐 3046 Yangfu 3046 中国江苏 Jiangsu, China 53.00 B A B
87 宁 12188 Ning 12188 中国江苏 Jiangsu, China 53.50 B A B
88 徐麦 36 Xumai 36 中国江苏 Jiangsu, China 53.75 B A B
89 丰抗 8 号 Fengkang 8 中国北京 Beijing, China 55.50 B A B
90 淮麦 20 Huaimai 20 中国江苏 Jiangsu, China 56.75 B A B
91 济麦 19 Jimai 19 中国山东 Shandong, China 58.50 B A B
92 淮麦 302 Huaimai 302 中国江苏 Jiangsu, China 58.50 B A B
93 徐麦 17258 Xumai 17258 中国江苏 Jiangsu, China 59.00 B A B
94 烟农 1212 Yannong 1212 中国山东 Shandong, China 59.50 B A B
95 徐麦 14123 Xumai 14123 中国江苏 Jiangsu, China 60.25 B A B
96 扬辐 6 Yangfu 6 中国江苏 Jiangsu, China 61.25 B A B
97 宁麦 21 Ningmai 21 中国江苏 Jiangsu, China 63.50 B A B
98 宁麦 8号 Ningmai 8 中国江苏 Jiangsu, China 64.00 B A B
99 淮麦 1558 Huaimai 1558 中国江苏 Jiangsu, China 65.75 B A B
100 徐麦 16144 Xumai 16144 中国江苏 Jiangsu, China 68.25 B A B
101 18 G 375 (刘) 18 G 375 (Liu) 中国江苏 Jiangsu, China 70.25 B A B
102 宁麦 24 Ningmai 24 中国江苏 Jiangsu, China 54.75 B B B
103 淮麦 36 Huaimai 36 中国江苏 Jiangsu, China 55.00 B B B
104 骊英 6 号 Liying 6 地方 Local, China 55.00 B B B
105 宁17001 Ning 17001 中国江苏 Jiangsu, China 55.75 B B B
106 怀川 Sz 16 Huaichuan Sz 16 中国河南 Henan, China 56.25 B B B
107 扬辐麦 11 号 Yangfumai 11 中国江苏 Jiangsu, China 56.25 B B B
108 宁麦 16 Ningmai 16 中国江苏 Jiangsu, China 56.50 B B B
109 扬 17346 Yang 173046 中国江苏 Jiangsu, China 57.00 B B B
110 滑育麦 1 号 Huayumai 1 中国河南 Henan, China 57.50 B B B
111 宁 17396 Ning 17396 中国江苏 Jiangsu, China 57.50 B B B
112 扬麦 11 号 Yangmai 11 中国江苏 Jiangsu, China 58.25 B B B
113 宁麦资 14213 Ningmaizi 14213 中国江苏 Jiangsu, China 58.50 B B B
114 宁丰小麦 Ningfengxiaomai 中国江苏 Jiangsu, China 59.00 B B B
115 K 122 K 122 中国江苏 Jiangsu, China 59.00 B B B
116 镇 13056 Zhen 13056 中国江苏 Jiangsu, China 59.00 B B B
117 鄂 177 E 177 中国湖北 Hubei, China 59.25 B B B
118 徐麦 14017 Xumai 14017 中国江苏 Jiangsu, China 59.50 B B B
119 徐麦 32 Xumai 32 中国江苏 Jiangsu, China 60.25 B B B
120 豫麦 2 号 Yumai 2 中国河南 Henan, China 61.00 B B B
121 鄂麦 15 Emai 15 中国湖北 Hubei, China 61.50 B B B
122 骊英 3 号 Liying 3 地方 Local, China 61.50 B B B
123 宁麦 1529 Ningmai 1529 中国江苏 Jiangsu, China 61.50 B B B
124 阿勃 Abo 国外 Foreign 62.00 B B B
125 徐麦 35 Xumai 35 中国江苏 Jiangsu, China 63.00 B B B
126 濮兴 5 号 Puxing 5 中国河南 Henan, China 65.25 B B B
127 宁春 13 Ningchun 13 中国宁夏 Ningxia, China 65.50 B B B
128 徐麦 33 Xumai 33 中国江苏 Jiangsu, China 65.50 B B B
129 扬辐 5242 Yangfu 5242 中国江苏 Jiangsu, China 65.50 B B B
130 望水白 7426 Wangshuibai 7426 地方 Local, China 65.63 B B B
131 宁 15186 Ning 15186 中国江苏 Jiangsu, China 67.00 B B B
132 宁 17104 Ning 17104 中国江苏 Jiangsu, China 67.50 B B B
133 扬麦 12 Yangmai 12 中国江苏 Jiangsu, China 68.00 B B B
134 扬辐 5054 Yangfu 5054 中国江苏 Jiangsu, China 68.75 B B B
135 宁 17329 Ning 17329 中国江苏 Jiangsu, China 69.00 B B B
136 马场 2号 Machang 2 中国河南 Henan, China 69.25 B B B
137 扬麦 18 Yangmai 18 中国江苏 Jiangsu, China 69.25 B B B

Table 1

Phenotypic variation of grain number per spike for Yangmai 4, Yanzhan 1, and recombinant inbred lines population in different environments"

环境
Environment
亲本 Parent 群体 Population
YM4 YZ1 平均值
Mean
标准差
SD
偏度
Skewness
峰度
Kurtosis
2019JZ 61.33** 43.33 52.10 6.92 0.30 0.30
2020YZ 61.00** 48.00 54.17 5.37 0.67 0.90
2021YZ 54.00** 43.33 51.15 4.27 0.22 -0.23
2021NJ 56.00** 43.00 50.78 4.38 0.03 -0.29
BLUE 58.08** 44.42 52.05 4.31 0.45 0.28

Fig. 1

Frequency distribution of grain number per spike of Yangmai 4/Yanzhan 1 recombinant inbred lines population in four environments Abbreviations are the same as those given in Table 1."

Fig. 2

Genetic linkage maps of grain number per spike QTL in Yangmai 4/Yanzhan 1 recombinant inbred lines population The right side of the linkage group is the marker name, and the left is the genetic position (cM). The bold black rectangles in the linkage group represent the QTL positioning interval."

Table 2

QTL for grain number per spike in Yangmai 4/Yanzhan 1 recombinant inbred lines population"

染色体
Chr.
环境
Environment
数量性状
遗传位点
QTL
物理位置
Physical interval
(Mb)
侧翼标记
Flanking marker
LOD 贡献率
PVE (%)
加性效应
Add
4A 2019JZ, 2021NJ QGns.yaas-4A 703.41-710.25 AX110024919-
AX109551603
5.28-8.54 11.50-13.27 1.61-2.36
5A 2019JZ, 2020YZ, 2021YZ, 2021NJ QGns.yaas-5A 495.34-512.39 AX110494964-
AX109322572
6.33-9.18 8.99-11.13 -2.97- -1.89
5B 2020YZ, 2021YZ QGns.yaas-5B 77.62-365.60 AX94764048-
AX95657974
3.37-5.32 5.59-10.99 1.06-1.41

Fig. 3

Genetic effects analysis of QGns.yaas-4A, QGns.yaas-5A, and QGns.yaas-5B on grain number per spike in Yangmai 4/Yanzhan 1 recombinant inbred lines population GNS: grain number per spike; × in the data box indicates the mean value, and the horizontal line in the data box indicates the median, and the dots in the boxplots are the outliers. ** represents significance at P < 0.01 compared with Yanzhan 1. A and B represent the Yangmai 4 allele and Yanzhan 1 allele, respectively."

Fig. 4

Effects of pyramiding QGns.yaas-4A, QGns.yaas-5A, and QGns.yaas-5B on grain number per spike in Yangmai 4/Yanzhan 1 recombinant inbred lines population GNS: grain number per spike; × in the data box indicates the mean value, and the horizontal line in the data box indicates the median, and the dots in the boxplots are the outliers. The letters (a, b, and c) in the graph indicate a significance level of P < 0.01 between the numbers. No. represents the number of lines. A and B represent the Yangmai 4 allele and Yanzhan 1 allele, respectively."

Fig. 5

Genetic effects of QGns.yaas-4A, QGns.yaas-5A, and QGns.yaas-5B on thousand grain weight in Yangmai 4/Yanzhan 1 recombinant inbred lines population TGW: thousand-grain weight; × in the data box indicates the mean value, and the horizontal line in the data box indicates the median, and the dots in the boxplots are the outliers. * and ** represent significance at P < 0.05 and P < 0.01 compared with Yanzhan 1, respectively. A and B represent allelic variations from the Yangmai 4 and Yanzhan 1, respectively."

Fig. 6

Effects of QGns.yaas-5A and QGns.yaas-5B on thousand grain weight in Yangmai 4/Yanzhan 1 recombinant inbred lines population TGW: thousand-grain weight; × in the data box indicates the mean value, and the horizontal line in the data box indicates the median; and the letters (a and b) in the graph indicate a significance level of P < 0.01 between the numbers. No. represents the number of lines. A and B represent the Yangmai 4 allele and Yanzhan 1 allele, respectively."

Table 3

Protocols for assaying markers KASP.Y4.4A, KASP.YZ1.5A, and KASP.Y4.5B"

侧翼标记
Flanking marker
标记
Marker
引物序列
Primer sequence (5′-3′)
AX110024919-AX109551603 KASP.Y4.4A F1: GAAGGTGACCAAGTTCATGCTCCAAACGAACCTTTCCTCCA
F2: GAAGGTCGGAGTCAACGGATTCCAAACGAACCTTTCCTCCG
R: ACGTCGAAAGTACGCTTAGCA
AX110494964-AX109322572 KASP.YZ1.5A F1: GAAGGTGACCAAGTTCATGCTGTGCAGAGCCATTTTGGATGAA
F2: GAAGGTCGGAGTCAACGGATTGTGCAGAGCCATTTTGGATGAG
R: CCTTATGCCCATTGCTGCAC
AX94764048-AX95657974 KASP.Y4.5B F1: GAAGGTGACCAAGTTCATGCTTCCTGAGAAAATGTACGAGTTCA
F2: GAAGGTCGGAGTCAACGGATTTCCTGAGAAAATGTACGAGTTCG
R: GATGGACACGAGCAGCTCT

Fig. 7

Effects of QGns.yaas-4A, QGns.yaas-5A, and QGns.yaas-5B on grain number per spike in natural populations GNS: grain number per spike; × in the data box indicates the mean value, and the horizontal line in the data box indicates the median, and the dots in the boxplots are the outliers. * and ** represent significance at P < 0.05 and P < 0.01 compared with YZ1, respectively. A and B represent the Yangmai 4 allele and Yanzhan 1 allele, respectively."

Table 4

Number of cultivars with different allelic combinations of QGns.yaas-4A, QGns.yaas-5A, and QGns.yaas-5B in natural population"

家系个数
Number of lines
基因型 Genotype
QGns.yaas-4A QGns.yaas-5A QGns.yaas-5B
22 B A B
20 A A B
36 B B B
50 A B B
9 A B A
0 B B A
0 A A A
0 B A A

Fig. 8

Effects of QGns.yaas-4A, QGns.yaas-5A, and QGns.yaas- 5B on grain number per spike in natural populations GNS: grain number per spike; × in the data box indicates the mean value, and the horizontal line in the data box indicates the median. The letters (a, b, and c) in the graph indicate a significance level of P < 0.01 between the numbers. No. represents the number of wheat cultivars."

Table S2

Genotypic and phenotypic values of RIL with three excellent allelic variation"

家系编号
Line No.
基因型Genotype 穗粒数
Grain number per spike
千粒重
1000-grain weight (g)
QGNS.yaas-4A QGNS.yaas-5A QGNS.yaas-5B
12 A B A 52.75 52.05
18 A B A 59.55 44.61
22 A B A 53.90 42.74
33 A B A 56.28 39.93
35 A B A 52.40 44.01
37 A B A 49.21 43.81
42 A B A 58.31 41.72
48 A B A 56.56 46.39
49 A B A 59.15 38.75
59 A B A 60.76 42.54
60 A B A 50.79 41.36
62 A B A 58.69 45.34
68 A B A 56.55 43.72
70 A B A 52.24 41.61
76 A B A 53.88 37.22
92 A B A 59.03 41.94
93 A B A 64.81 47.10
95 A B A 60.23 41.84
96 A B A 62.02 51.01
101 A B A 54.62 37.90
104 A B A 56.79 43.17
108 A B A 59.00 42.70
117 A B A 59.28 41.04
118 A B A 59.74 50.39
133 A B A 56.50 38.01
134 A B A 56.67 37.09
135 A B A 56.62 39.69
139 A B A 56.08 38.01
141 A B A 60.60 50.16
[1] Marza F, Bai G H, Carver B F, Zhou W C. Quantitative trait loci for yield and related traits in the wheat population Ning 7840 × Clark. Theor Appl Genet, 2006, 112: 688-698.
doi: 10.1007/s00122-005-0172-3 pmid: 16369760
[2] Ma Z Q, Zhao D M, Zhang C Q, Zhang Z Z, Xue S L, Lin F, Kong Z X, Tian D G, Luo Q Y. Molecular genetic analysis of five spike-related traits in wheat using RIL and immortalized F2 populations. Mol Genet Genomics, 2007, 277: 31-42.
[3] Deng S M, Wu X R, Wu Y Y, Zhou R H, Wang H G, Jia J Z, Liu S B. Characterization and precise mapping of a QTL increasing spike number with pleiotropic effects in wheat. Theor Appl Genet, 2011, 122: 281-289.
doi: 10.1007/s00122-010-1443-1 pmid: 20872211
[4] Wang J S, Liu W H, Wang H, Li L H, Wu J, Yang X M, Li X Q, Gao A N. QTL mapping of yield-related traits in the wheat germplasm 3228. Euphytica 2011, 177: 277-292.
[5] Cui F, Zhao C H, Ding A M, Li J, Wang L, Li X F, Bao Y G, Li J M, Wang H G. Construction of an integrative linkage map and QTL mapping of grain yield-related traits using three related wheat RIL populations. Theor Appl Genet, 2014, 127: 659-675.
doi: 10.1007/s00122-013-2249-8 pmid: 24326459
[6] 吴秋红, 陈娇娇, 陈永兴, 周升辉, 傅琳, 张德云, 肖尧, 王国鑫, 王振忠, 王立新, 韩俊, 袁成国, 尤明山, 刘志勇. 燕大1817/北农6号重组自交系群体穗部性状的QTL定位. 作物学报, 2015, 41: 349-358.
doi: 10.3724/SP.J.1006.2015.00349
Wu Q H, Chen J J, Chen Y X, Zhou S H, Fu L, Zhang D Y, Xiao X, Wang G X, Wang Z Z, Wang L X, Han J, Yuan C G, You M S, Liu Z Y. Mapping quantitative trait loci related to spike traits using a RILs population of Yanda 1817 × Beinong 6 in wheat (Triticum aestivum L.). Acta Agron Sin, 2015, 41: 349-358 (in Chinese with English abstract).
[7] 周淼平, 任丽娟, 张旭, 余桂红, 马鸿翔, 陆维忠. 小麦产量性状的QTL分析. 麦类作物学报, 2006, 26: 35-40.
Zhou M P, Ren L J, Zhang X, Yu G H, Ma H X, Lu W Z. Analysis of QTLs for yield traits of wheat. J Triticeae Crops, 2006, 26: 35-40 (in Chinese with English abstract).
[8] Onyemaobi I, Ayalew H, Liu H, Siddique K H M, Yan G J. Identification and validation of a major chromosome region for high grain number per spike under meiotic stage water stress in wheat (Triticum aestivum L.). PLoS One, 2018, 13: e0194075.
[9] 刘凯, 邓志英, 李青芳, 张莹, 孙彩铃, 田纪春, 陈建省. 利用高密度 SNP 遗传图谱定位小麦穗部性状基因. 作物学报, 2016, 42: 820-831.
doi: 10.3724/SP.J.1006.2016.00820
Liu K, Deng Z Y, Li Q F, Zhang Y, Sun C L, Tian J C, Chen J S. Mapping QTLs for wheat panicle traits with high density SNP genetic map. Acta Agron Sin, 2016, 42: 820-831 (in Chinese with English abstract).
doi: 10.3724/SP.J.1006.2016.00820
[10] Mason R E, Hays D B, Mondal S, Ibrahim A M H, Basnet B R. QTL for yield, yield components and canopy temperature depression in wheat under late sown field conditions. Euphytica, 2013, 194: 243-259.
[11] Guo Z F, Chen D J, Alqudah A M, Röder M S, Ganal M W, Schnurbusch T. Genome-wide association analyses of 54 traits identified multiple loci for the determination of floret fertility in wheat. New Phytol, 2017, 214: 257-270.
doi: 10.1111/nph.14342 pmid: 27918076
[12] Zhang Z, Huang J, Gao Y M, Liu Y, Li J P, Zhou X N, Yao C S, Wang Z M, Sun Z C, Zhang Y H. Suppressed ABA signal transduction in the spike promotes sucrose use in the stem and reduces grain number in wheat under water stress. J Exp Bot, 2020, 71: 7241-7256.
doi: 10.1093/jxb/eraa380 pmid: 32822501
[13] Kuzay S, Xu Y F, Zhang J L, Katz A, Pearce S, Su Z Q, Fraser M, Anderson J A, Brown-Guedira G, DeWitt N, Haugrud A P, Faris J D, Akhunov E, Bai G H, Dubcovsky J. Identification of a candidate gene for a QTL for spikelet number per spike on wheat chromosome arm 7AL by high-resolution genetic mapping. Theor Appl Genet, 2019, 132: 2689-2705.
doi: 10.1007/s00122-019-03382-5 pmid: 31254024
[14] Sakuma S, Golan G, Guo Z F, Ogawa T, Tagiri A, Sugimoto K, Bernhardt N, Brassac J, Mascher M, Hensel G, Ohnishi S, Jinno H, Yamashita Y, Ayalon I, Peleg Z, Schnurbusch T, Komatsuda T. Unleashing floret fertility in wheat through the mutation of a homeobox gene. Proc Natl Acad Sci USA, 2019, 116: 5182-5187.
doi: 10.1073/pnas.1815465116 pmid: 30792353
[15] Zhou J G, Liu Q, Tian R, Chen H X, Wang J, Yang Y Y, Zhao C H, Liu Y L, Tang H P, Deng M, Xu Q, Jiang Q T, Chen G Y, Qi P F, Jiang Y F, Chen G D, Tang L W, Ren Y, Zheng Z, Liu C J, Zheng Y L, He Y J, Wei Y M, Ma J. A co-located QTL for seven spike architecture-related traits shows promising breeding use potential in common wheat (Triticum aestivum L.). Theor Appl Genet, 2024, 137: 31.
[16] Li T, Deng G B, Tang Y Y, Su Y, Wang J H, Cheng J, Yang Z, Qiu X B, Pu X, Zhang H L, Liang J J, Yu M Q, Wei Y M, Long H. Identification and validation of a novel locus controlling spikelet number in bread wheat (Triticum aestivum L.). Front Plant Sci, 2021, 12: 611106.
[17] Zeng V, Uauy C, Chen Y. Identification of a novel SNP in the miR172 binding site of Q homoeolog AP2L-D5 is associated with spike compactness and agronomic traits in wheat (Triticum aestivum L.). Theor Appl Genet, 2023, 137: 13.
[18] Wang Y G, Du F, Wang J, Wang K, Tian C H, Qi X Q, Lu F, Liu X G, Ye X G, Jiao Y L. Improving bread wheat yield through modulating an unselected AP2/ERF gene. Nat Plants, 2022, 8: 930-939.
[19] Shen L P, Zhang L L, Yin C B, Xu X W, Liu Y Y, Shen K C, Wu H, Sun Z W, Wang K, He Z H, Zhang X Y, Hao C Y, Hou J, Bi A, Zhao X B, Xu D X, Ye B T, Yu X C, Wang Z Y, Liu D N, Hao Y F, Lu F, Guo Z F. The wheat sucrose synthase gene TaSus1 is a major determinant of grain number per spike. Crop J, 2024, 12: 295-300.
[20] Zhang J Y, Tang Y Y, Pu X, Qiu X B, Wang J H, Li T, Yang Z, Zhou Y, Chang Y X, Liang J J, Zhang H L, Deng G B, Long H. Genetic and transcriptomic dissection of an artificially induced paired spikelets mutant of wheat (Triticum aestivum L.). Theor Appl Genet, 2022, 135: 2543-2554.
[21] Zhang X Y, Jia H Y, Li T, Wu J Z, Nagarajan R, Lei L, Powers C, Kan C C, Hua W, Liu Z Y, Chen C, Carver B F, Yan L L. TaCol-B5modifies spike architecture and enhances grain yield in wheat. Science, 2022, 376: 180-183.
[22] 赵蝶, 胡文静, 程晓明, 王书平, 张春梅, 李东升, 高德荣. 扬麦4号/偃展1号RIL群体株高QTL挖掘及其对赤霉病抗性的效应分析与验证. 作物学报, 2023, 49: 3215-3226.
doi: 10.3724/SP.J.1006.2023.31005
Zhao D, Hu W J, Cheng X M, Wang S P, Zhang C M, Li D S, Gao D R. Detection and verification of QTL for plant height in Yangmai 4/Yanzhan 1 recombinant inbred lines population and their genetic effects on Fusarium head blight resistance. Acta Agron Sin, 2023, 49: 3215-3226 (in Chinese with English abstract).
doi: 10.3724/SP.J.1006.2023.31005
[23] 廖森.扬麦12/偃展1号重组自交系群体赤霉病抗性与相关性状的遗传解析. 长江大学硕士学士论文, 湖北荆州, 2022.
Liao S. Genetic Analysis for Fusarium Head Blight and Related Traits of Wheat (Triticum aestivum L.) Based on a Recombinant Inbred Line Population from Yangmai 12 and Yanzhan 1. MS Thesis of Yangtze University, Jingzhou, Hubei, China, 2022 (in Chinese with English abstract).
[24] 赵蝶, 胡文静, 高德荣, 方正武, 王书平, 程晓明, 张晓祥. 小麦株高QTL的定位及对重要农艺性状的多效性分析. 麦类作物学报, 2023, 43: 1534-1542.
Zhao D, Hu W J, Gao D R, Fang Z W, Wang S P, Cheng X M, Zhang X X. QTL mapping of wheat plant height and analysis of their genetic effects on important agronomic traits. J Triticeae Crops, 2023, 43: 1534-1542 (in Chinese with English abstract).
[25] Ma Z Q, Sorrells M E. Genetic analysis of fertility restoration in wheat using restriction fragment length polymorphisms. Crop Sci, 1995, 35: 1137-1143.
[26] Beales J, Turner A, Griffiths S, Snape J W, Laurie D A. A pseudo-response regulator is misexpressed in the photoperiod insensitive Ppd-D1a mutant of wheat (Triticum aestivum L.). Theor Appl Genet, 2007, 115: 721-733.
doi: 10.1007/s00122-007-0603-4 pmid: 17634915
[27] Ellis M, Bonnett D G, Rebetzke G J. A 192 bp allele at the Xgwm261 locus is not always associated with the Rht8 dwarfing gene in wheat (Triticum aestivum L.). Euphytica, 2007, 157: 209-214.
[28] Ellis H, Spielmeyer W, Gale R, Rebetzke J, Richards A. “Perfect” markers for the Rht-B1b and Rht-D1b dwarfing genes in wheat. Theor Appl Genet, 2002, 105: 1038-1042.
doi: 10.1007/s00122-002-1048-4 pmid: 12582931
[29] Giroux M J, Morris C F. A Glycine to serine change in puroindoline b is associated with wheat grain hardness and low levels of starch-surface friabilin. Theor Appl Genet, 1997, 95: 857-864.
[30] He X Y, He Z H, Zhang L P, Sun D J, Morris C F, Fuerst E P, Xia X C. Allelic variation of polyphenol oxidase (PPO) genes located on chromosomes 2A and 2D and development of functional markers for the PPO genes in common wheat. Theor Appl Genet, 2007, 115: 47-58.
doi: 10.1007/s00122-007-0539-8 pmid: 17426955
[31] Hou J, Jiang Q Y, Hao C Y, Wang Y Q, Zhang H N, Zhang X Y. Global selection on sucrose synthase haplotypes during a century of wheat breeding. Plant Physiol, 2014, 164: 1918-1929.
doi: 10.1104/pp.113.232454 pmid: 24402050
[32] Liu S X, Chao S, Anderson J A. New DNA markers for high molecular weight glutenin subunits in wheat. Theor Appl Genet, 2008, 118: 177-183.
doi: 10.1007/s00122-008-0886-0 pmid: 18797838
[33] Rasheed A, Wen W E, Gao F M, Zhai S N, Jin H, Liu J D, Guo Q, Zhang Y J, Dreisigacker S, Xia X C, He Z H. Development and validation of KASP assays for genes underpinning key economic traits in bread wheat. Theor Appl Genet, 2016, 129: 1843-1860.
doi: 10.1007/s00122-016-2743-x pmid: 27306516
[34] Somers D J, Fedak G, Savard M. Molecular mapping of novel genes controlling Fusarium head blight resistance and deoxynivalenol accumulation in spring wheat. Genome, 2003, 46: 555-564.
doi: 10.1139/g03-033 pmid: 12897863
[35] Yang Y, Ma Y Z, Xu Z S, Chen X M, He Z H, Yu Z, Wilkinson M, Jones H D, Shewry P R, Xia L Q. Isolation and characterization of Viviparous-1 genes in wheat cultivars with distinct ABA sensitivity and pre-harvest sprouting tolerance. J Exp Bot, 2007, 58: 2863-2871.
doi: 10.1093/jxb/erm073 pmid: 17630295
[36] Zikhali M, Wingen L U, Griffiths S. Delimitation of the Earliness per se D1 (Eps-D1) flowering gene to a subtelomeric chromosomal deletion in bread wheat (Triticum aestivum). J Exp Bot, 2016, 67: 287-299.
[37] Hu W J, Wu H Y, Lu C B, Zheng X, Jia J, Xu W G. Genetic dissection of quantitative trait loci for spikelets compactness in two Yanzhan1-derived recombinant inbred line wheat populations. Plant Breed, 2022, 141: 719-732.
[38] Hu W J, Gao D R, Liao S, Cheng S H, Jia J Z, Xu W G. Identification of a pleiotropic QTL cluster for Fusarium head blight resistance, spikelet compactness, grain number per spike and thousand-grain weight in common wheat. Crop J, 2023, 11: 672-677.
doi: 10.1016/j.cj.2022.09.007
[39] Kosambi D D. The estimation of map distances from recombination values. Ann Hum Genet, 1943, 12: 172-175.
[40] Ma J, Ding P Y, Liu J J, Li T, Zou Y Y, Habib A, Mu Y, Tang H P, Jiang Q T, Liu Y X, Chen G Y, Wang J R, Deng M, Qi P F, Li W, Pu Z E, Zheng Y L, Wei Y M, Lan X J. Identification and validation of a major and stably expressed QTL for spikelet number per spike in bread wheat. Theor Appl Genet, 2019, 132: 3155-3167.
doi: 10.1007/s00122-019-03415-z pmid: 31435704
[41] Churchill G A, Doerge R W. Empirical threshold values for quantitative trait mapping. Genetics, 1994, 138: 963-971.
doi: 10.1093/genetics/138.3.963 pmid: 7851788
[42] Voorrips R E. MapChart: software for the graphical presentation of linkage maps and QTLs. J Hered, 2002, 93: 77-78.
doi: 10.1093/jhered/93.1.77 pmid: 12011185
[43] 胡文静, 张勇, 陆成彬, 王凤菊, 刘金栋, 蒋正宁, 王金平, 朱展望, 徐小婷, 郝元峰, 何中虎, 高德荣. 小麦品种扬麦16赤霉病抗扩展QTL定位及分析. 作物学报, 2020, 46: 157-165.
doi: 10.3724/SP.J.1006.2020.91048
Hu W J, Zhang Y, Lu C B, Wang F J, Liu J D, Jiang Z N, Wang J P, Zhu Z W, Xu X T, Hao Y F, He Z H, Gao D R. Mapping and genetic analysis of QTLs for Fusarium head blight resistance to disease spread in Yangmai 16. Acta Agron Sin 2020, 46: 157-165 (in Chinese with English abstract).
[44] 姜朋, 何漪, 张旭, 吴磊, 张平平, 马鸿翔. 宁麦9号与扬麦158株高及其构成因素的遗传解析. 作物学报, 2020, 46: 858-868.
doi: 10.3724/SP.J.1006.2020.91063
Jiang P, He Y, Zhang X, Wu L, Zhang P P, Ma H X. Genetic analysis of plant height and its components for wheat (Triticum aestivum L.) cultivars Ningmai 9 and Yangmai 158. Acta Agron Sin, 2020, 46: 858-868 (in Chinese with English abstract).
[45] Xu X T, Zhu Z W, Jia A L, Wang F J, Wang J P, Zhang Y L, Fu C, Fu L P, Bai G H, Xia X C, Hao Y F, He Z H. Mapping of QTL for partial resistance to powdery mildew in two Chinese common wheat cultivars. Euphytica, 2019, 216: 3.
[46] Jiang P, Zhang X, Wu L, He Y, Zhuang W, Cheng X, Ge W, Ma H, Kong L. A novel QTL on chromosome 5AL of Yangmai 158 increases resistance to Fusarhium head blight in wheat. Plant Pathol, 2020, 69: 249-258.
doi: 10.1111/ppa.13130
[47] 胡文静, 李东升, 裔新, 张春梅, 张勇. 小麦穗部性状和株高的QTL定位及育种标记开发和验证. 作物学报, 2022, 48, 1346-1356.
doi: 10.3724/SP.J.1006.2022.11055
Hu W J, Li D S, Yi X, Zhang C M, Zhang Y. Molecular mapping and validation of quantitative trait loci for spike-related traits and plant height in wheat. Acta Agron Sin, 2022, 48: 1346-1356 (in Chinese with English abstract).
[48] Patil R M, Tamhankar S A, Oak M D, Raut A L, Honrao B K, Rao V S, Misra S C. Mapping of QTL for agronomic traits and kernel characters in durum wheat (Triticum durum Desf.). Euphytica, 2013, 190: 117-129.
[49] Cui F, Zhang N, Fan X L, Zhang W, Zhao C H, Yang L J, Pan R Q, Chen M, Han J, Zhao X Q, Ji J, Tong Y P, Zhang H X, Jia J Z, Zhao G Y, Li J M. Utilization of a wheat660K SNP array-derived high-density genetic map for high-resolution mapping of a major QTL for kernel number. Sci Rep, 2017, 7: 3788.
doi: 10.1038/s41598-017-04028-6 pmid: 28630475
[50] 崔俊鹏, 赵慧, 张倩倩, 宫娜, 刘朦朦, 张萌娜, 侯玉竹, 刘成, 李林志, 周芳婷, 吴永振, 孙晗, 赵春华, 崔法. 小麦穗粒数主效QTL-qKnps-4A遗传效应解析. 分子植物育种, 2019, 17: 3632-3640.
Cui J P, Zhao H, Zhang Q Q, Gong N, Liu M M, Zhang M N, Hou Y Z, Liu C, Li L Z, Zhou F T, Wu Y Z, Sun H, Zhao C H, Cui F. Genetic effects analysis of major QTL-qKnps-4A for kernel per spike in common wheat. Mol Plant Breed, 2019, 17: 3632-3640 (in Chinese with English abstract).
[51] Li T, Deng G B, Su Y, Yang Z, Tang Y Y, Wang J H, Qiu X, Pu X, Li J, Liu Z H, Zhang H, Liang J J, Yang W Y, Yu M Q, Wei Y M, Long H. Identification and validation of two major QTLs for spike compactness and length in bread wheat (Triticum aestivum L.) showing pleiotropic effects on yield-related traits. Theor Appl Genet, 2021, 134: 3625-3641.
[52] Xu S J, Dong Q, Deng M, Lin D X, Xiao J, Cheng P L, Xing L J, Niu Y D, Gao C X, Zhang W H, Xu Y Y, Chong K. The vernalization-induced long non-coding RNA VAS functions with the transcription factor TaRF2b to promote TaVRN1 expression for flowering in hexaploid wheat. Mol Plant, 2021, 14: 1525-1538.
[53] 武炳瑾, 简俊涛, 张德强, 马文洁, 冯洁, 崔紫霞, 张传量, 孙道杰. 利用90k芯片技术进行小麦穗部性状QTL定位. 作物学报, 2017, 43: 1087-1095.
doi: 10.3724/SP.J.1006.2017.01087
Wu B J, Jian J T, Zhang D Q, Ma W J, Feng J, Cui Z X, Zhang C L, Sun D J. QTL mapping for spike traits of wheat using 90k chip technology. Acta Agron Sin, 2017, 43: 1087-1095 (in Chinese with English abstract).
[54] 孙宇慧, 刘天相, 石善党, 丁梦云, 高欣, 王中华, 李春莲. 小麦穗粒数及千粒重主效QTL共定位区QC-7AL的精细定位及遗传效应分析. 麦类作物学报, 2018, 38: 1288-1292.
Sun Y H, Liu T X, Shi S D, Ding M Y, Gao X, Wang Z H, Li C L. Fine mapping of A major QTL cluster QC-7AL and the effect on kernel number per spike and thousand-kernel weight in wheat (Triticum aestivum L.). J Triticeae Crops, 2018, 38: 1288-1292 (in Chinese with English abstract).
[55] 张冬玲.小麦穗粒数和千粒重的关联分析及冠层温度和叶绿素含量对产量的影响. 中国农业科学院博士学位论文, 北京, 2014.
Zhang D L.. Study on Association Mapping of Grain Number and 1000-kernals Weights and Affection of Canopy Temperature/Chlorophyll Content on Yield of Wheat. PhD Dissertation of Graduate School of Chinese Academy of Agricultural Sciences, Beijing, China, 2014 (in Chinese with English abstract).
[56] Zhao C H, Zhou J G, Li C, You J N, Liu Y L, Tang H P, Deng M, Xu Q, Zhang Y Z, Jiang Q T, Chen G Y, Qi P F, Jiang Y F, Wang J R, Li W, Pu Z E, Chen G D, Jiang Y, Zheng Z, Liu C J, Zheng Y L, Wei Y M, Ma J. A major QTL simultaneously increases the number of spikelets per spike and thousand-kernel weight in a wheat line. Theor Appl Genet, 2023, 136: 213.
doi: 10.1007/s00122-023-04459-y pmid: 37740730
[57] Si Y Q, Tian S Q, Niu J Q, Yu Z Q, Ma S W, Lu Q, Wu H L, Ling H Q, Zheng S S. Dissection and validation of a promising QTL controlling spikelet number on 5B in bread wheat. Theor Appl Genet, 2023, 136: 240.
doi: 10.1007/s00122-023-04488-7 pmid: 37930446
[1] GUO Shu-Hui, PAN Zhuan-Xia, ZHAO Zhan-Sheng, YANG Liu-Liu, HUANG-FU Zhang-Long, GUO Bao-Sheng, HU Xiao-Li, LU Ya-Dan, DING Xiao, WU Cui-Cui, LAN Gang, LYU Bei-Bei, TAN Feng-Ping, LI Peng-Bo. Genetic analysis of a major fiber length locus on chromosome D11 of upland cotton [J]. Acta Agronomica Sinica, 2025, 51(2): 383-394.
[2] YANG Jing-Fa, YU Xin-Lian, YAO You-Hua, YAO Xiao-Hua, WANG Lei, WU Kun-Lun, LI Xin. QTL mapping of tiller angle in qingke (Hordeum vulgare L.) [J]. Acta Agronomica Sinica, 2025, 51(1): 260-272.
[3] GAO Wei-Dong, HU Chen-Zhen, ZHANG Long, ZHANG Yan-Yan, ZHANG Pei-Pei, YANG De-Long, CHEN Tao. Cloning and functional analysis of ubiquitin-conjugating enzymes TaUBC16 gene in wheat [J]. Acta Agronomica Sinica, 2024, 50(8): 1971-1988.
[4] HAN Li, TANG Sheng-Sheng, LI Jia, HU Hai-Bin, LIU Long-Long, WU Bin. Construction of SNP high-density genetic map and localization of QTL for β-glucan content in oats [J]. Acta Agronomica Sinica, 2024, 50(7): 1710-1718.
[5] BI Jun-Ge, ZENG Zhan-Kui, LI Qiong, HONG Zhuang-Zhuang, YAN Qun-Xiang, ZHAO Yue, WANG Chun-Ping. QTL mapping and KASP marker development of grain quality-relating traits in two wheat RIL populations [J]. Acta Agronomica Sinica, 2024, 50(7): 1669-1683.
[6] WANG Rui, SUN Bo, ZHANG Yun-Long, ZHANG Ming-Qi, FAN Ya-Ming, TIAN Hong-Li, ZHAO Yi-Kun, YI Hong-Mei, KUANG Meng, WANG Feng-Ge. Application analysis of chloroplast markers on rapid classification in maize germplasm [J]. Acta Agronomica Sinica, 2024, 50(7): 1867-1876.
[7] QIN Na, YE Zhen-Yan, ZHU Can-Can, FU Sen-Jie, DAI Shu-Tao, SONG Ying-Hui, JING Ya, WANG Chun-Yi, LI Jun-Xia. QTL mapping for flavonoid content and seed color in foxtail millet [J]. Acta Agronomica Sinica, 2024, 50(7): 1719-1727.
[8] ZHENG Xue-Qing, WANG Xing-Rong, ZHANG Yan-Jun, GONG Dian-Ming, QIU Fa-Zhan. Mapping of QTL for ear-related traits and prediction of key candidate genes in maize [J]. Acta Agronomica Sinica, 2024, 50(6): 1435-1450.
[9] ZHANG Yue, WANG Zhi-Hui, HUAI Dong-Xin, LIU Nian, JIANG Hui-Fang, LIAO Bo-Shou, LEI Yong. Research progress on genetic basis and QTL mapping of oil content in peanut seed [J]. Acta Agronomica Sinica, 2024, 50(3): 529-542.
[10] HAO Qian-Lin, YANG Ting-Zhi, LYU Xin-Ru, QIN Hui-Min, WANG Ya-Lin, JIA Chen-Fei, XIA Xian-Chun, MA Wu-Jun, XU Deng-An. QTL mapping and GWAS analysis of coleoptile length in bread wheat [J]. Acta Agronomica Sinica, 2024, 50(3): 590-602.
[11] WU Li-Fen, XIA Chuan, ZHANG Li-Chao, KONG Xiu-Ying, CHEN Jing-Tang, LIU Xu. Functional analysis of TaEMF2 in regulating wheat heading date [J]. Acta Agronomica Sinica, 2024, 50(12): 2940-2949.
[12] LIU Ting-Xuan, GU Yong-Zhe, ZHANG Zhi-Hao, WANG Jun, SUN Jun-Ming, QIU Li-Juan. Mapping soybean protein QTLs based on high-density genetic map [J]. Acta Agronomica Sinica, 2023, 49(6): 1532-1541.
[13] YANG Jun-Fang, WANG Zhou, QIAO Lin-Yi, WANG Ya, ZHAO Yi-Ting, ZHANG Hong-Bin, SHEN DengGao, WANG HongWei, CAO Yue. QTL mapping of seed size traits based on a high-density genetic map in castor [J]. Acta Agronomica Sinica, 2023, 49(3): 719-730.
[14] YANG Bin, QIAO Ling, ZHAO Jia-Jia, WU Bang-Bang, WEN Hong-Wei, ZHANG Shu-Wei, ZHENG Xing-Wei, ZHENG Jun. QTL mapping and validation of chlorophyll content of flag leaves in wheat (Triticum aestivum L.) [J]. Acta Agronomica Sinica, 2023, 49(3): 744-754.
[15] YANG Shuo, WU Yang-Chun, LIU Xin-Lei, TANG Xiao-Fei, XUE Yong-Guo, CAO Dan, WANG Wan, LIU Ting-Xuan, QI Hang, LUAN Xiao-Yan, QIU Li-Juan. Fine mapping of qPRO-20-1 related to high protein content in soybean [J]. Acta Agronomica Sinica, 2023, 49(2): 310-320.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Yan Mei;Yang Guangsheng;Fu Tingdong;Yan Hongyan. Studies on the Ecotypical Male Sterile-fertile Line of Brassica napus L.Ⅲ. Sensitivity to Temperature of 8-8112AB and Its Inheritance[J]. Acta Agron Sin, 2003, 29(03): 330 -335 .
[2] Wang Yongsheng;Wang Jing;Duan Jingya;Wang Jinfa;Liu Liangshi. Isolation and Genetic Research of a Dwarf Tiilering Mutant Rice[J]. Acta Agron Sin, 2002, 28(02): 235 -239 .
[3] Hu Yuqi;Liao Xiaohai. A STUDY ON THE COEFFICIENT OF LEAVES SHAPE OF MAIZE[J]. Acta Agron Sin, 1986, (01): 71 -72 .
[4] LIANG Tai-Bo;YIN Yan-Ping;CAI Rui-Guo;YAN Su-Hui;LI Wen-Yang;GENG Qing-Hui;WANG Ping;WANG Zhen-Lin. Starch Accumulation and Related Enzyme Activities in Superior and Inferior Grains of Large Spike Wheat[J]. Acta Agron Sin, 2008, 34(01): 150 -156 .
[5] WANG Cheng-Zhang;HAN Jin-Feng;SHI Ying-Hua;LI Zhen-Tian;LI De-Feng. Production Performance in Alfalfa with Different Classes of Fall Dormancy[J]. Acta Agron Sin, 2008, 34(01): 133 -141 .
[6] TIAN Zhi-Jian;Yi Rong;CHEN Jian-Rong;GUO Qing-Quan;ZHANG Xue-Wen;. Cloning and Expression of Cellulose Synthase Gene in Ramie [Boehme- ria nivea (Linn.) Gaud.][J]. Acta Agron Sin, 2008, 34(01): 76 -83 .
[7] ZHAO Xiu-Qin;ZHU Ling-Hua;XU Jian-Long;LI Zhi-Kang. QTL Mapping of Yield under Irrigation and Rainfed Field Conditions for Advanced Backcrossing Introgression Lines in Rice[J]. Acta Agron Sin, 2007, 33(09): 1536 -1542 .
[8] WU Ying ; SONG Feng-Sun ; LU Xu-Zhong; ZHAO Wei; YANG Jian-Bo; LI Li ;. Detecting Genetically Modified Soybean by Real-time Quantitative PCR Technique[J]. Acta Agron Sin, 2007, 33(10): 1733 -1737 .
[9] GOU Ling ; HUANG Jian-Jun; ZHANG Bin; LI Tao; SUN Rui; ZHAO Ming ;. Effects of Population Density on Stalk Lodging Resistant Mechanism and Agronomic Characteristics of Maize[J]. Acta Agron Sin, 2007, 33(10): 1688 -1695 .
[10] YU Jing;ZHANG Lin;CUI Hong;ZHANG Yong-Xia;CANG Jing;HAO Zai-Bin;LI Zhuo-Fu. Physiological and Biochemical Characteristics of Dongnongdongmai 1 before Wintering in High-Cold Area[J]. Acta Agron Sin, 2008, 34(11): 2019 -2025 .