Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica

   

Functional analysis of TaEMF2 in regulating wheat heading date

WU Li-Fen1,2,XIA Chuan2,ZHANG Li-Chao2,KONG Xiu-Ying2,CHEN Jing-Tang1,3,*,LIU Xu1,2,*   

  1. 1 College of Agronomy, Hebei Agricultural University / Hebei Sub-Center for National Maize Improvement Center / State Key Laboratory of North China Crop Improvement and Regulation, Baoding 071001, Hebei, China; 2 Institute of Crop Sciences, Chinese Academy of Agricultural Sciences / State Key Laboratory of Crop Gene Resources and Breeding, Beijing 100081, China; 3 College of Agronomy, Qingdao Agricultural University, Qingdao 266109, Shandong, China
  • Received:2024-04-15 Revised:2024-08-15 Accepted:2024-08-15 Published:2024-09-02
  • Supported by:
    This study was supported by the National Key Research and Development Program of China (2022YFF1002902).

Abstract:

A suitable heading date (flowering time) is a crucial breeding goal for achieving high and stable crop yields. EMF2 is an important gene involved in the regulation of heading date, but its function in wheat remains unclear. In this study, TaEMF2-2D, the orthologous gene of the rice heading date regulatory gene OsEMF2b, was cloned from wheat. Subcellular localization assays revealed that TaEMF2-2D is a nucleus and cytoplasm protein. To elucidate the role of TaEMF2 in regulating wheat heading date, we used the CRISPR/Cas9 gene editing system to knockout TaEMF2, which resulted in a delayed heading date in wheat. Conversely, overexpression of TaEMF2-2D caused an early heading date. Further analysis showed that the expression levels of the flowering-related genes VRN1 and VRN3 were significantly reduced in the knockout lines, while their expression levels were significantly increased in the overexpression plants, as determined by RT-qPCR. These results suggest that the TaEMF2 gene influences wheat heading date by regulating the expression levels of VRN1 and VRN3.

Key words: wheat (Triticum aestivum L.), heading date, TaEMF2 gene, CRISPR/Cas9 gene editing, overexpression

[1] Xing L J, Li J, Xu Y Y, Xu Z H, Chong K. Phosphorylation modification of wheat lectin VER2 is associated with vernalization-induced O-GlcNAc signaling and intracellular motility. PLoS One, 2009, 4: e4854.

[2] Yan L L, Fu D L, Li C X, Blechl A, Tranquilli G, Bonafede M, Sanchez A, Valarik M, Yasuda S, Dubcovsky J. The wheat and barley vernalization gene VRN3 is an orthologue of FT. Proc Natl Acad Sci USA, 2006, 103: 19581‒19586.

[3] Yan L L, Loukoianov A, Blechl A, Tranquilli G, Ramakrishna W, Sanmiguel P, Bennetzen J L, Echenique V, Dubcovsky J. The wheat VRN2 gene is a flowering repressor down-regulated by vernalization. Science, 2004, 303: 1640‒1644.

[4] Yan L L, Loukoianov A, Tranquilli G, Helguera M, Fahima T, Dubcovsky J. Positional cloning of the wheat vernalization gene VRN1. Proc Natl Acad Sci USA, 2003, 100: 6263‒6268.

[5] Yong W D, Xu Y Y, Xu W Z, Wang X, Li N, Wu J S, Liang T B, Chong K, Xu Z H, Tan K H, Zhu Z Q. Vernalization-induced flowering in wheat is mediated by a lectin-like gene VER2. Planta, 2003, 217: 261‒270.

[6] Kippes N, Debernardi J M, Vasquez-Gross H A, Akpinar B A, Budak H, Kato K, Chao S, Akhunov E, Dubcovsky J. Identification of the VERNALIZATION 4 gene reveals the origin of spring growth habit in ancient wheats from South Asia. Proc Natl Acad Sci USA, 2015, 112: E5401–E5410.

[7] Xu S J, Dong Q, Deng M, Lin D X, Xiao J, Cheng P L, Xing L J, Niu Y D, Gao C X, Zhang W H, Xu Y Y, Chong K. The vernalization-induced long non-coding RNA VAS functions with the transcription factor TaRF2b to promote TaVRN1 expression for flowering in hexaploid wheat. Mol Plant, 2021, 14: 15251538.

[8] Lewis E B. A gene complex controlling segmentation in Drosophila. Nature, 1978, 276: 565‒570.

[9] Margueron R, Reinberg D. The Polycomb complex PRC2 and its mark in life. Nature, 2011, 469: 343‒349.

[10] De Lucia F, Crevillen P, Jones A M E, Greb T, Dean C. A PHD-polycomb repressive complex 2 triggers the epigenetic silencing of FLC during vernalization. Proc Natl Acad Sci USA, 2008, 105: 16831‒16836.

[11] Wood C C, Robertson M, Tanner G, Peacock W J, Dennis E S, Helliwell C A. The Arabidopsis thaliana vernalization response requires a polycomb-like protein complex that also includes VERNALIZATION INSENSITIVE 3. Proc Natl Acad Sci USA, 2006, 103: 14631‒14636.

[12] Gendall A R, Levy Y Y, Wilson A, Dean C. The VERNALIZATION 2 gene mediates the epigenetic regulation of vernalization in Arabidopsis. Cell, 2001, 107: 525‒535.

[13] Baroux C, Pien S, Grossniklaus U. Chromatin modification and remodeling during early seed development. Curr Opin Genet Dev, 2007, 17: 473‒479.

[14] Berger F, Chaudhury A. Parental memories shape seeds. Trends Plant Sci, 2009, 14: 550‒556.

[15] Goodrich J, Puangsomlee P, Martin M, Long D, Meyerowitz E M, Coupland G. A Polycomb-group gene regulates homeotic gene expression in Arabidopsis. Nature, 1997, 386: 44‒51.

[16] Schonrock N, Bouveret R, Leroy O, Borghi L, Kohler C, Gruissem W, Hennig L. Polycomb-group proteins repress the floral activator AGL19 in the FLC-independent vernalization pathway. Genes Dev, 2006, 20: 1667‒1678.

[17] Park H Y, Lee S Y, Seok H Y, Kim S H, Sung Z R, Moon Y H. EMF1 interacts with EIP1, EIP6 or EIP9 involved in the regulation of flowering time in Arabidopsis. Plant Cell Physiol, 2011, 52: 1376‒1388.

[18] Sanchez R, Kim M Y, Calonje M, Moon Y H, Sung Z R. Temporal and spatial requirement of EMF1 activity for Arabidopsis vegetative and reproductive development. Mol Plant, 2009, 2: 643‒653.

[19] Yoshida N, Yanai Y, Chen L, Kato Y, Hiratsuka J, Miwa T, Sung Z R, Takahashi S. EMBRYONIC FLOWER2, a novel polycomb group protein homolog, mediates shoot development and flowering in Arabidopsis. Plant Cell, 2001, 13: 2471‒2481.

[20] Tonosaki K, Ono A, Kunisada M, Nishino M, Nagata H, Sakamoto S, Kijima S T, Furuumi H, Nonomura K I, Sato Y, Ohme-Takagi M, Endo M, Comai L, Hatakeyama K, Kawakatsu T, Kinoshita T. Mutation of the imprinted gene OsEMF2a induces autonomous endosperm development and delayed cellularization in rice. Plant Cell, 2021, 33: 85‒103.

[21] Conrad L J, Khanday I, Johnson C, Guiderdoni E, An G, Vijayraghavan U, Sundaresan V. The polycomb group gene EMF2B is essential for maintenance of floral meristem determinacy in rice. Plant J, 2014, 80: 883‒894.

[22] Chen C, Li T T, Zhu S, Liu Z H, Shi Z Y, Zheng X M, Chen R, Huang J F, Shen Y, Luo S Y, Wang L, Liu Q Q, Zhiguo E. Characterization of imprinted genes in rice reveals conservation of regulation and imprinting with other plant species. Plant Physiol, 2018, 177: 1754‒1771.

[23] Yang J, Lee S, Hang R L, Kim S R, Lee Y S, Cao X F, Amasino R, An G. OsVIL2 functions with PRC2 to induce flowering by repressing OsLFL1 in rice. Plant J, 2013, 73: 566‒578.

[24] Xie S Y, Chen M, Pei R, Ouyang Y D, Yao J L. OsEMF2b acts as a regulator of flowering transition and floral organ identity by mediating H3K27me3 deposition at OsLFL1 and OsMADS4 in rice. Plant Mol Biol Rep, 2015, 33: 121‒132.

[25] Ma Q F, Qu Z Y, Wang X Y, Qiao K K, Mangi N, Fan S L. EMBRYONIC FLOWER2B, coming from a stable QTL, represses the floral transition in cotton. Int J Biol Macromol, 2020, 163: 1087‒1096.

[26] Liu M S, Chen L F O, Lin C H, Lai Y M, Huang J Y, Sung Z R. Molecular and functional characterization of broccoli EMBRYONIC FLOWER 2 genes. Plant Cell Physiol, 2012, 53: 1217‒1231.

[27] Zhou X, Wang L L, Yan J, Ye J B, Cheng S Y, Xu F, Wang G Y, Zhang W W, Liao Y L, Liu X M. Functional characterization of the EMBRYONIC FLOWER 2 gene involved in flowering in Ginkgo biloba. Front Plant Sci, 2021, 12: 681166.

[28] 杨浩. 绿竹成花相关基因BoEMF2的克隆和功能分析. 浙江农林大学硕士学位论文, 浙江杭州, 2011.

Yang H. Cloning and Functional Analysis of the BoEMF2 Gene Related to the Flowering of Green Bamboo. MS Thesis of Zhejiang A&F University, Hangzhou, Zhejiang, China, 2011 (in Chinese with English abstract).

[29] Chanvivattana Y, Bishopp A, Schubert D, Stock C, Moon Y H, Sung Z R, Goodrich J. Interaction of Polycomb-group proteins controlling flowering in Arabidopsis. Development, 2004, 131: 5263‒5276.

[30] Jiang D H, Wang Y Q, Wang Y Z, He Y H. Repression of flowering locus c and flowering locus t by the Arabidopsis Polycomb repressive complex 2 components. PLoS One, 2008, 3: e3404.

[31] Chou M L, Haung M D, Yang C H. EMF genes interact with late-flowering genes in regulating floral initiation genes during shoot development in Arabidopsis thaliana. Plant Cell Physiol, 2001, 42: 499‒507.

[32] Zhang X L, Li W J, Liu Y, Li Y Z, Li Y, Yang W D, Chen X S, Pi L M, Yang H C. Replication protein RPA2A regulates floral transition by cooperating with PRC2 in Arabidopsis. New Phytol, 2022, 235: 2439‒2453.

[1] ZHAO Ling, LIANG Wen-Hua, ZHAO Chun-Fang, WEI Xiao-Dong, ZHOU Li-Hui, YAO Shu, WANG Cai-Lin, ZHANG Ya-Dong. Mapping of QTLs for heading date of rice with high-density bin genetic map [J]. Acta Agronomica Sinica, 2023, 49(1): 119-128.
[2] XU Kai, ZHENG Xing-Fei, ZHANG Hong-Yan, HU Zhong-Li, NING Zi-Lan, LI Lan-Zhi. Genome-wide association analysis of indica-rice heading date based on NCII genetic mating design [J]. Acta Agronomica Sinica, 2023, 49(1): 86-96.
[3] YUAN Da-Shuang, DENG Wan-Yu, WANG Zhen, PENG Qian, ZHANG Xiao-Li, YAO Meng-Nan, MIAO Wen-Jie, ZHU Dong-Ming, LI Jia-Na, LIANG Ying. Cloning and functional analysis of BnMAPK2 gene in Brassica napus [J]. Acta Agronomica Sinica, 2022, 48(4): 840-850.
[4] LIU Yan-Di, ZHAO Bao-Ping, ZHANG Yu, MI Jun-Zhen, WU Jun-Ying, LIU Jing-Hui. Relationship between yield differences of different genotypes of oats and leaf physiological characteristics [J]. Acta Agronomica Sinica, 2022, 48(11): 2953-2964.
[5] GUO Bao-Jian, WANG Shuang, LYU Chao, WANG Fei-Fei, XU Ru-Gen. Regulation of adventitious root development by HvLBD19 gene in barley (Hordeum vulgare L.) [J]. Acta Agronomica Sinica, 2022, 48(10): 2435-2442.
[6] LI Xiao-Xu, WANG Rui, ZHANG Li-Xia, SONG Ya-Meng, TIAN Xiao-Nan, GE Rong-Chao. Cloning and functional identification of gene OsATS in rice [J]. Acta Agronomica Sinica, 2021, 47(10): 2045-2052.
[7] ZHANG Huan, YANG Nai-Ke, SHANG Li-Li, GAO Xiao-Ru, LIU Qing-Chang, ZHAI Hong, GAO Shao-Pei, HE Shao-Zhen. Cloning and functional analysis of a drought tolerance-related gene IbNAC72 in sweet potato [J]. Acta Agronomica Sinica, 2020, 46(11): 1649-1658.
[8] MA Jin-Jiao,LAN Jin-Ping,ZHANG Tong,CHEN Yue,GUO Ya-Lu,LIU Yu-Qing,YAN Gao-Wei,WEI Jian,DOU Shi-Juan,YANG Ming,LI Li-Yun,LIU Guo-Zhen. Overexpression of OsMPK17 protein enhances drought tolerance of rice [J]. Acta Agronomica Sinica, 2020, 46(01): 20-30.
[9] Lhundrupnamgyal,Hui-Hui LI,Gang-Gang GUO, Chemiwangmo,Li-Yun GAO,Ya-Wei TANG, Nyematashi, Dawadondrup, Dolkar. Growth habit identification and diversity and stability analysis of heading date in Tibetan barley (Hordeum vulgare L.) [J]. Acta Agronomica Sinica, 2019, 45(12): 1796-1805.
[10] Hai-Xin LONG,Hai-Yang QIU,UZAIR Muhammad,Jing-Jing FANG,Jin-Feng ZHAO,Xue-Yong LI. Phenotypic Analysis and Gene Mapping of the Rice Narrow-leaf Mutant nal20 [J]. Acta Agronomica Sinica, 2018, 44(9): 1301-1310.
[11] Ji-Chi DONG,Jing YANG,Tao GUO,Li-Kai CHEN,Zhi-Qiang CHEN,Hui WANG. QTL Mapping for Heading Date in Rice Using High-density Bin Map [J]. Acta Agronomica Sinica, 2018, 44(6): 938-946.
[12] SHEN Cong-Cong,ZHU Ya-Jun,CHEN Kai,CHEN Hui-Zhen,WU Zhi-Chao,MENG Li-Jun,XU Jian-Long. Mapping of QTL for Heading Date and Plant Height Using MAGIC Populations of Rice [J]. Acta Agron Sin, 2017, 43(11): 1611-1621.
[13] XIANG Jia, LI Yan, FAN Ya-Wei, XU Jun-Hong, ZHENG Li-Yuan, HE Guang-Hua, YANG Zheng-Lin, WANG Nan, and ZHAO Fang-Ming*. Identification and Morphological Analysis of a Rice Chromosome Segment Substitution Line Carrying a Major Effect Gene for Late Heading Date and Mapping of Ehd4-2 [J]. Acta Agron Sin, 2015, 41(05): 683-691.
[14] CHEN Yu-Yu,ZHU Yu-Jun,ZHANG Hong-Wei,WANG Lin-Lin,FAN Ye-Yang,ZHUANG Jie-Yun. Validation and Dissection of Minor QTL qTGW1.2 for Thousand-Grain Weight in Rice (Oryza sativa L.) [J]. Acta Agron Sin, 2014, 40(05): 761-768.
[15] ZHAO Dong-Sheng,ZHANG Chang-Quan,GU Ming-Hong,LIU Qiao-Quan. Genetic and Expression Analyses of Ef7-l, a Novel Ef7 Allele, in Rice [J]. Acta Agron Sin, 2013, 39(10): 1799-1805.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!