Acta Agronomica Sinica ›› 2025, Vol. 51 ›› Issue (2): 312-323.doi: 10.3724/SP.J.1006.2025.41045
• CROP GENETICS & BREEDING · GERMPLASM RESOURCES · MOLECULAR GENETICS • Previous Articles Next Articles
YONG Rui1,2,HU Wen-Jing2,*,WU Di2,WANG Zun-Jie2,LI Dong-Sheng2,ZHAO Die2,YOU Jun-Chao2,XIAO Yong-Gui3,WANG Chun-Ping1,*
[1] Marza F, Bai G H, Carver B F, Zhou W C. Quantitative trait loci for yield and related traits in the wheat population Ning7840 ´ Clark. Theor Appl Genet, 2006, 112: 688–698. [2] Ma Z Q, Zhao D M, Zhang C Q, Zhang Z Z, Xue S L, Lin F, Kong Z X, Tian D G, Luo Q Y. Molecular genetic analysis of five spike-related traits in wheat using RIL and immortalized F2 populations. Mol Genet Genomics, 2007, 277: 31–42. [3] Deng S M, Wu X R, Wu Y Y, Zhou R H, Wang H G, Jia J Z, Liu S B. Characterization and precise mapping of a QTL increasing spike number with pleiotropic effects in wheat. Theor Appl Genet, 2011, 122: 281–289. [4] Wang J S, Liu W H, Wang H, Li L H, Wu J, Yang X M, Li X Q, Gao A N. QTL mapping of yield–related traits in the wheat germplasm 3228. Euphytica, 2011, 177: 277–292. [5] Cui F, Zhao C H, Ding A M, Li J, Wang L, Li X F, Bao Y G, Li J M, Wang H G. Construction of an integrative linkage map and QTL mapping of grain yield-related traits using three related wheat RIL populations. Theor Appl Genet, 2014, 127: 659–675. [6] 吴秋红, 陈娇娇, 陈永兴, 周升辉, 傅琳, 张德云, 肖尧, 王国鑫, 王振忠, 王立新, 韩俊, 袁成国, 尤明山, 刘志勇. 燕大1817/北农6号重组自交系群体穗部性状的QTL定位. 作物学报, 2015, 41: 349–358. WU Q H, Chen J J, Chen Y X, Zhou S H, Fu L, Zhang D Y, Xiao X, Wang G X, Wang Z Z, Wang L X, Han J, Yuan C G, You M S, Liu Z Y. Mapping Quantitative Trait Loci Related to Spike Traits Using a RILs Population of Yanda 1817 × Beinong 6 in Wheat (Triticum aestivum L.). Crop J, 2015, 41: 349–358 (in Chinese with English abstract). [7] 周淼平, 任丽娟, 张旭, 余桂红, 马鸿翔, 陆维忠. 小麦产量性状的QTL分析. 麦类作物学报, 2016, 26: 35–40. Zhou M P, Ren L J, Zhang X, Yu G H, Ma H X, Lu W Z. Analysis of QTLs for yield traits of wheat. J Triticeae Crops, 2006, 26: 35–40 (in Chinese with English abstract). [8] Onyemaobi I, Ayalew H, Liu H, Siddique K H M, Yan G J. Identification and validation of a major chromosome region for high grain number per spike under meiotic stage water stress in wheat (Triticum aestivum L.). PLoS One, 2018, 13: e0194075. [9] 刘凯, 邓志英, 李青芳, 张莹, 孙彩铃, 田纪春, 陈建省. 利用高密度 SNP 遗传图谱定位小麦穗部性状基因. 作物学报, 2016, 42: 820–831. Liu K, Deng Z Y, Li Q F, Zhang Y, Sun C L, Tian J C, Chen J (S/X). Mapping QTLs for wheat panicle traits with high density SNP genetic map. Acta Agron Sin, 2016, 42: 820–831 (in Chinese with English abstract). [10] Mason R E, Hays D B, Mondal S, Ibrahim A M H, Basnet B R. QTL for yield, yield components and canopy temperature depression in wheat under late sown field conditions. Euphytica, 2013, 194: 243–259. [11] Guo Z F, Chen D J, Alqudah A M, Röder M S, Ganal M W, Schnurbusch T. Genome-wide association analyses of 54 traits identified multiple loci for the determination of floret fertility in wheat. New Phytol, 2017, 214: 257–270. [12] Zhang Z, Huang J, Gao Y M, Liu Y, Li J P, Zhou X N, Yao C S, Wang Z M, Sun Z C, Zhang Y H. Suppressed ABA signal transduction in the spike promotes sucrose use in the stem and reduces grain number in wheat under water stress. J Exp Bot, 2020, 71: 7241–7256. [13] Kuzay S, Xu Y F, Zhang J L, Katz A, Pearce S, Su Z Q, Fraser M, Anderson J A, Brown-Guedira G, DeWitt N, Haugrud A P, Faris J D, Akhunov E, Bai G H, Dubcovsky J. Identification of a candidate gene for a QTL for spikelet number per spike on wheat chromosome arm 7AL by high-resolution genetic mapping. Theor Appl Genet, 2019, 132: 2689–2705. [14] Sakuma S, Golan G, Guo Z F, Ogawa T, Tagiri A, Sugimoto K, Bernhardt N, Brassac J, Mascher M, Hensel G, Ohnishi S, Jinno H, Yamashita Y, Ayalon I, Peleg Z, Schnurbusch T, Komatsuda T. Unleashing floret fertility in wheat through the mutation of a homeobox gene. Proc Natl Acad Sci USA, 2019, 116: 5182–5187. [15] Zhou J G, Liu Q, Tian R, Chen H X, Wang J, Yang Y Y, Zhao C H, Liu Y L, Tang H P, Deng M, Xu Q, Jiang Q T, Chen G Y, Qi P F, Jiang Y F, Chen G D, Tang L W, Ren Y, Zheng Z, Liu C J, Zheng Y L, He Y J, Wei Y M, Ma J. A co-located QTL for seven spike architecture-related traits shows promising breeding use potential in common wheat (Triticum aestivum L.). Theoretical and applied genetics. Theor Appl Genet, 2024, 137: 31. [16] Li T, Deng G B, Tang Y Y, Su Y, Wang J H, Cheng J, Yang Z, Qiu X B, Pu X, Zhang H L, Liang J J, Yu M Q, Wei Y M, Long H. Identification and validation of a novel locus controlling spikelet number in bread wheat (Triticum aestivum L.). Front Plant Sci, 2021, 12: 611106. [17] Zeng V, Uauy C, Chen Y. Identification of a novel SNP in the miR172 binding site of Q homoeolog AP2L-D5 is associated with spike compactness and agronomic traits in wheat (Triticum aestivum L.). Theor Appl Genet, 2023, 137: 13. [18] Wang Y G, Du F, Wang J, Wang K, Tian C H, Qi X Q, Lu F, Liu X G, Ye X G, Jiao Y L. Improving bread wheat yield through modulating an unselected AP2/ERF gene. Nat Plants, 2022, 8: 930–939. [19] Shen L P, Zhang L L, Yin C B, Xu X W, Liu Y Y, Shen K C, Wu H, Sun Z W, Wang K, He Z H, Zhang X Y, Hao C Y, Hou J, Bi A, Zhao X B, Xu D X, Ye B T, Yu X C, Wang Z Y, Liu D N, Hao Y F, Lu F, Guo Z F. The wheat sucrose synthase gene TaSus1 is a major determinant of grain number per spike. Crop J, 2024, 12: 295–300. [20] Zhang J Y, Tang Y Y, Pu X, Qiu X B, Wang J H, Li T, Yang Z, Zhou Y, Chang Y X, Liang J J, Zhang H L, Deng G B, Long H. Genetic and transcriptomic dissection of an artificially induced paired spikelets mutant of wheat (Triticum aestivum L.). Theor Appl Genet, 2022, 135: 2543–2554. [21] Zhang X Y, Jia H Y, Li T, Wu J Z, Nagarajan R, Lei L, Powers C, Kan C C, Hua W, Liu Z Y, Chen C, Carver B F, Yan L L. TaCol-B5 modifies spike architecture and enhances grain yield in wheat. Science, 2022, 376: 180–183. [22] 赵蝶, 胡文静, 程晓明, 王书平, 张春梅, 李东升, 高德荣. 扬麦4号/偃展1号RIL群体株高QTL挖掘及其对赤霉病抗性的效应分析与验证. 作物学报, 2023, 49: 3215–3226. Zhao D, Hu W J, Cheng X M, Wang S P, Zhang C M, Li D S, Gao D R. Detection and verification of QTL for plant height in Yangmai 4/Yanzhan 1 recombinant inbred lines population and their genetic effects on Fusarium head blight resistance. Acta Agron Sin, 2023, 49: 3215–3226 (in Chinese with English abstract). [23] 廖森. 扬麦12/偃展1号重组自交系群体赤霉病抗性与相关性状的遗传解析. 长江大学硕士学士论文, 湖北荆州, 2022. pp 13. Liao S. Genetic Analysis for Fusarium Head Blight and Related Traits of Wheat (Triticum aestivum L.) Based on a Recombinant Inbred Line Population from Yangmai 12 and Yanzhan 1. MS Thesis of Changjiang University, Jingzhou, Hubei, China, 2022. p 13 (in Chinese). [24] 赵蝶, 胡文静, 高德荣, 方正武, 王书平, 程晓明, 张晓祥. 小麦株高QTL的定位及对重要农艺性状的多效性分析. 麦类作物学报, 2023, 43: 1534–1542. Zhao D, Hu W J, Gao D R, Fang Z W, Wang S P, Cheng X M, Zhang X X. QTL mapping of wheat plant height and analysis of their genetic effects on important agronomic traits. J Triticeae Crops. 2023, 43: 1534–1542 (in Chinese with English abstract). [25] Ma Z Q, Sorrells M E. Genetic analysis of fertility restoration in wheat using restriction fragment length polymorphisms. Crop Sci, 1995, 35: 1137–1143. [26] Beales J, Turner A, Griffiths S, Snape J W, Laurie D A. A pseudo-response regulator is misexpressed in the photoperiod insensitive Ppd-D1a mutant of wheat (Triticum aestivum L.). Theor Appl Genet, 2007, 115: 721–733. [27] Ellis M, Bonnett D G, Rebetzke G J. A 192bp allele at the Xgwm261 locus is not always associated with the Rht8 dwarfing gene in wheat (Triticum aestivum L.). Euphytica, 2007, 157: 209–214. [28] Ellis M H, Spielmeyer W, Gale K, Rebetzke G, Richards R. “Perfect” markers for the Rht-B1b and Rht-D1b dwarfing genes in wheat. Theor Appl Genet, 2002, 105: 1038–1042. [29] Giroux M J, Morris C F. A Glycine to serine changes in puroindoline b is associated with wheat grain hardness and low levels of starch-surface friabilin. Theor Appl Genet, 1997, 95: 857–864. [30] He X Y, He Z H, Zhang L P, Sun D J, Morris C F, Fuerst E P, Xia X C. Allelic variation of polyphenol oxidase (PPO) genes located on chromosomes 2A and 2D and development of functional markers for the PPO genes in common wheat. Theor Appl Genet, 2007, 115: 47–58. [31] Hou J, Jiang Q Y, Hao C Y, Wang Y Q, Zhang H N, Zhang X Y. Global selection on sucrose synthase haplotypes during a century of wheat breeding. Plant Physiol, 2014, 164: 1918–1929. [32] Liu S X, Chao S, Anderson J A. New DNA markers for high molecular weight glutenin subunits in wheat. Theor Appl Genet, 2008, 118: 177–183. [33] Rasheed A, Wen W E, Gao F M, Zhai S N, Jin H, Liu J D, Guo Q, Zhang Y J, Dreisigacker S, Xia X C, He Z H. Development and validation of KASP assays for genes underpinning key economic traits in bread wheat. Theor Appl Genet, 2016, 129: 1843–1860. [34] Somers D J, Fedak G, Savard M. Molecular mapping of novel genes controlling Fusarium head blight resistance and deoxynivalenol accumulation in spring wheat. Genome, 2003, 46: 555–564. [35] Yang Y, Ma Y Z, Xu Z S, Chen X M, He Z H, Yu Z, Wilkinson M, Jones H D, Shewry P R, Xia L Q. Isolation and characterization of Viviparous-1 genes in wheat cultivars with distinct ABA sensitivity and pre-harvest sprouting tolerance. J Exp Bot, 2007, 58: 2863–2871. [36] Zikhali M, Wingen L U, Griffiths S. Delimitation of the Earliness per se D1(Eps-D1) flowering gene to a subtelomeric chromosomal deletion in bread wheat (Triticum aestivum). J Exp Bot, 2016, 67: 287–299. [37] Hu W J, Wu H Y, Lu C B, Zheng X, Jia J Z, Xu W G. Genetic dissection of quantitative trait loci for spikelets compactness in two Yanzhan1-derived recombinant inbred line wheat populations. Plant Breed, 2022, 141: 719–732. [38] Hu W J, Gao D R, Liao S, Cheng S H, Jia J Z, Xu W G. Identification of a pleiotropic QTL cluster for Fusarium head blight resistance, spikelet compactness, grain number per spike and thousand-grain weight in common wheat. Crop J, 2023, 11: 672–677. [39] Kosambi D D. The estimation of map distances from recombination values. Ann Eugen, 1943, 12: 172–175. [40] Ma J, Ding P Y, Liu J J, Li T, Zou Y Y, Habib A, Mu Y, Tang H P, Jiang Q T, Liu Y X, Chen G Y, Wang J R, Deng M, Qi P F, Li W, Pu Z E, Zheng Y L, Wei Y M, Lan X J. Identification and validation of a major and stably expressed QTL for spikelet number per spike in bread wheat. Theor Appl Genet, 2019, 132: 3155–3167. [41] Churchill G A, Doerge R W. Empirical threshold values for quantitative trait mapping. Genetics, 1994, 138: 963–971. [42] Voorrips R E. MapChart: software for the graphical presentation of linkage maps and QTLs. J Hered, 2002, 93: 77–78. [43] 胡文静, 张勇, 陆成彬, 王凤菊, 刘金栋, 蒋正宁, 王金平, 朱展望, 徐小婷, 郝元峰, 何中虎, 高德荣. 小麦品种扬麦16赤霉病抗扩展QTL定位及分析. 作物学报, 2020, 46: 157. Hu W J, Zhang Y, Lu C B, Wang F J, Liu J D, Jiang Z N, Wang J P, Zhu Z W, Xu X T, Hao Y F, He Z H, Gao D R. Mapping and genetic analysis of QTLs for Fusarium head blight resistance to disease spread in Yangmai 16. Acta Agron Sin, 2020, 46: 157–165 (in Chinese with English abstract). [44] 姜朋, 何漪, 张旭, 吴磊, 张平平, 马鸿翔. 宁麦9号与扬麦158株高及其构成因素的遗传解析. 作物学报, 2020, 46: 858–868. Jiang P, He Y, Zhang X, Wu L, Zhang P P, Ma H X. Genetic analysis of plant height and its components for wheat (Triticum aestivum L.) cultivars Ningmai 9 and Yangmai 158. Acta Agron Sin, 2020, 46: 858–868 (in Chinese with English abstract). [45] Xu X T, Zhu Z W, Jia A L, Wang F J, Wang J P, Zhang Y L, Fu C, Fu L P, Bai G H, Xia X C, Hao Y F, He Z H. Mapping of QTL for partial resistance to powdery mildew in two Chinese common wheat cultivars. Euphytica, 2019, 216: 3. [46] Jiang P, Zhang X, Wu L, He Y, Zhuang W, Cheng X, Ge W, Ma H, Kong L. A novel QTL on chromosome 5AL of Yangmai 158 increases resistance to Fusarhium head blight in wheat. Plant Pathol, 2020, 69: 249–258. [47] Hu W J, Li D S, Yi X, Zhang C M, Zhang Y. Molecular mapping and validation of quantitative trait loci for spike-related traits and plant height in wheat. Acta Agron Sin, 2022, 48: 1346–1356. [48] Patil R M, Tamhankar S A, Oak M D, Raut A L, Honrao B K, Rao V S, Misra S C. Mapping of QTL for agronomic traits and kernel characters in durum wheat (Triticum durum Desf.). Euphytica, 2013, 190: 117–129. [49] Cui F, Zhang N, Fan X L, Zhang W, Zhao C H, Yang L J, Pan R Q, Chen M, Han J, Zhao X Q, Ji J, Tong Y P, Zhang H X, Jia J Z, Zhao G Y, Li J M. Utilization of a wheat660K SNP array-derived high-density genetic map for high-resolution mapping of a major QTL for kernel number. Sci Rep, 2017, 7: 1–12. [50] 崔俊鹏, 赵慧, 张倩倩, 宫娜, 刘朦朦, 张萌娜, 侯玉竹, 刘成, 李林志, 周芳婷, 吴永振, 孙晗, 赵春华, 崔法. 小麦穗粒数主效QTL-qKnps–4A遗传效应解析. 分子植物育种, 2019, 17: 3632–3640. Cui J P, Zhao H, Zhang Q Q, Gong N, Liu M M, Zhang M N, Hou Y Z, Liu C, Li L Z, Zhou F T, Wu Y Z, Sun H, Zhao C H, Cui F. Genetic effects analysis of major QTL-qKnps–4A for kernel per spike in common wheat. Mol Plant Breed, 2019, 17: 3632–3640 (in Chinese with English abstract). [51] Li T, Deng G B, Su Y, Yang Z, Tang Y Y, Wang J H, Qiu X, Pu X, Li J, Liu Z H, Zhang H, Liang J J, Yang W Y, Yu M Q, Wei Y M, Long H. Identification and validation of two major QTLs for spike compactness and length in bread wheat (Triticum aestivum L.) showing pleiotropic effects on yield-related traits. Theor Appl Genet, 2021, 134: 3625–3641. [52] Xu S J, Dong Q, Deng M, Lin D X, Xiao J, Cheng P L, Xing L J, Niu Y D, Gao C X, Zhang W H, Xu Y Y, Chong K. The vernalization-induced long non-coding RNA VAS functions with the transcription factor TaRF2b to promote TaVRN1 expression for flowering in hexaploid wheat. Mol Plant, 2021, 14: 1525–1538. [53] 武炳瑾, 简俊涛, 张德强, 马文洁, 冯洁, 崔紫霞, 张传量, 孙道杰. 利用90k芯片技术进行小麦穗部性状QTL定位. 作物学报, 2017, 43: 1087–1095. Wu B J, Jian J T, Zhang D Q, Ma W J, Feng J, Cui Z X, Zhang C L, Sun D J. QTL mapping for spike traits of wheat using 90k chip technology. Acta Agron Sin, 2017, 43: 1087–1095 (in Chinese with English abstract). [54] 孙宇慧, 刘天相, 石善党, 丁梦云, 高欣, 王中华, 李春莲. 小麦穗粒数及千粒重主效QTL共定位区QC-7AL的精细定位及遗传效应分析. 麦类作物学报, 2018, 38: 1288–1292. Sun Y H, Liu T X, Shi S D, Ding M Y, Gao X, Wang Z H, Li C L. Fine mapping of A major QTL cluster QC-7AL and the effect on kernel number per spike and thousand-kernel weight in wheat (Triticum aestivum L.). J Triticeae Crops, 2018, 38: 1288–1292 (in Chinese with English abstract). [55] 张冬玲. 小麦穗粒数和千粒重的关联分析及冠层温度和叶绿素含量对产量的影响, 中国农业科学院博士研究, 北京, 2014. pp 27–29. Zhang D L. Study on Association Mapping of Grain Number and 1000-kernals Weights and Affection of Canopy Temperature/Chlorophyll Content on Yield of Wheat. PhD Dissertation of Graduate School of Chinese Academy of Agricultural Sciences, Beijing, China, 2014. pp 27–29 (in Chinese). [56] Zhao C H, Zhou J G, Li C, You J N, Liu Y L, Tang H P, Deng M, Xu Q, Zhang Y Z, Jiang Q T, Chen G Y, Qi P F, Jiang Y F, Wang J R, Li W, Pu Z E, Chen G D, Jiang Y, Zheng Z, Liu C J, Zheng Y L, Wei Y M, Ma J. A major QTL simultaneously increases the number of spikelets per spike and thousand-kernel weight in a wheat line. Theor Appl Genet, 2023, 136: 213. [57] Si Y Q, Tian S Q, Niu J Q, Yu Z Q, Ma S W, Lu Q, Wu H L, Ling H Q, Zheng S S. Dissection and validation of a promising QTL controlling spikelet number on 5B in bread wheat. Theor Appl Genet, 2023, 136: 240. |
[1] | GUO Shu-Hui, PAN Zhuan-Xia, ZHAO Zhan-Sheng, YANG Liu-Liu, HUANG-FU Zhang-Long, GUO Bao-Sheng, HU Xiao-Li, LU Ya-Dan, DING Xiao, WU Cui-Cui, LAN Gang, LYU Bei-Bei, TAN Feng-Ping, LI Peng-Bo. Genetic analysis of a major fiber length locus on chromosome D11 of upland cotton [J]. Acta Agronomica Sinica, 2025, 51(2): 383-394. |
[2] | YANG Jing-Fa, YU Xin-Lian, YAO You-Hua, YAO Xiao-Hua, WANG Lei, WU Kun-Lun, LI Xin. QTL mapping of tiller angle in qingke (Hordeum vulgare L.) [J]. Acta Agronomica Sinica, 2025, 51(1): 260-272. |
[3] | GAO Wei-Dong, HU Chen-Zhen, ZHANG Long, ZHANG Yan-Yan, ZHANG Pei-Pei, YANG De-Long, CHEN Tao. Cloning and functional analysis of ubiquitin-conjugating enzymes TaUBC16 gene in wheat [J]. Acta Agronomica Sinica, 2024, 50(8): 1971-1988. |
[4] | HAN Li, TANG Sheng-Sheng, LI Jia, HU Hai-Bin, LIU Long-Long, WU Bin. Construction of SNP high-density genetic map and localization of QTL for β-glucan content in oats [J]. Acta Agronomica Sinica, 2024, 50(7): 1710-1718. |
[5] | BI Jun-Ge, ZENG Zhan-Kui, LI Qiong, HONG Zhuang-Zhuang, YAN Qun-Xiang, ZHAO Yue, WANG Chun-Ping. QTL mapping and KASP marker development of grain quality-relating traits in two wheat RIL populations [J]. Acta Agronomica Sinica, 2024, 50(7): 1669-1683. |
[6] | WANG Rui, SUN Bo, ZHANG Yun-Long, ZHANG Ming-Qi, FAN Ya-Ming, TIAN Hong-Li, ZHAO Yi-Kun, YI Hong-Mei, KUANG Meng, WANG Feng-Ge. Application analysis of chloroplast markers on rapid classification in maize germplasm [J]. Acta Agronomica Sinica, 2024, 50(7): 1867-1876. |
[7] | QIN Na, YE Zhen-Yan, ZHU Can-Can, FU Sen-Jie, DAI Shu-Tao, SONG Ying-Hui, JING Ya, WANG Chun-Yi, LI Jun-Xia. QTL mapping for flavonoid content and seed color in foxtail millet [J]. Acta Agronomica Sinica, 2024, 50(7): 1719-1727. |
[8] | ZHENG Xue-Qing, WANG Xing-Rong, ZHANG Yan-Jun, GONG Dian-Ming, QIU Fa-Zhan. Mapping of QTL for ear-related traits and prediction of key candidate genes in maize [J]. Acta Agronomica Sinica, 2024, 50(6): 1435-1450. |
[9] | ZHANG Yue, WANG Zhi-Hui, HUAI Dong-Xin, LIU Nian, JIANG Hui-Fang, LIAO Bo-Shou, LEI Yong. Research progress on genetic basis and QTL mapping of oil content in peanut seed [J]. Acta Agronomica Sinica, 2024, 50(3): 529-542. |
[10] | HAO Qian-Lin, YANG Ting-Zhi, LYU Xin-Ru, QIN Hui-Min, WANG Ya-Lin, JIA Chen-Fei, XIA Xian-Chun, MA Wu-Jun, XU Deng-An. QTL mapping and GWAS analysis of coleoptile length in bread wheat [J]. Acta Agronomica Sinica, 2024, 50(3): 590-602. |
[11] | LIU Ting-Xuan, GU Yong-Zhe, ZHANG Zhi-Hao, WANG Jun, SUN Jun-Ming, QIU Li-Juan. Mapping soybean protein QTLs based on high-density genetic map [J]. Acta Agronomica Sinica, 2023, 49(6): 1532-1541. |
[12] | YANG Jun-Fang, WANG Zhou, QIAO Lin-Yi, WANG Ya, ZHAO Yi-Ting, ZHANG Hong-Bin, SHEN DengGao, WANG HongWei, CAO Yue. QTL mapping of seed size traits based on a high-density genetic map in castor [J]. Acta Agronomica Sinica, 2023, 49(3): 719-730. |
[13] | YANG Bin, QIAO Ling, ZHAO Jia-Jia, WU Bang-Bang, WEN Hong-Wei, ZHANG Shu-Wei, ZHENG Xing-Wei, ZHENG Jun. QTL mapping and validation of chlorophyll content of flag leaves in wheat (Triticum aestivum L.) [J]. Acta Agronomica Sinica, 2023, 49(3): 744-754. |
[14] | YANG Shuo, WU Yang-Chun, LIU Xin-Lei, TANG Xiao-Fei, XUE Yong-Guo, CAO Dan, WANG Wan, LIU Ting-Xuan, QI Hang, LUAN Xiao-Yan, QIU Li-Juan. Fine mapping of qPRO-20-1 related to high protein content in soybean [J]. Acta Agronomica Sinica, 2023, 49(2): 310-320. |
[15] | ZHANG Yi-Ning, ZHANG Yan-Fei, WANG Min, WANG Jing-Yi, LI Long, LI Chao-Nan, YANG De-Long, MAO Xin-Guo, JING Rui-Lian. Transcription factor gene TaPHR1 involved in regulation spikelet number per spike in common wheat [J]. Acta Agronomica Sinica, 2023, 49(12): 3176-3187. |
|