Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2025, Vol. 51 ›› Issue (2): 301-311.doi: 10.3724/SP.J.1006.2025.44098

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Cloning and characterization of drought tolerance function of kinase gene IbHT1 in sweetpotato

WANG Yu-Xin(), CHEN Tian-Yu, ZHAI Hong, ZHANG Huan, GAO Shao-Pei, HE Shao-Zhen, ZHAO Ning, LIU Qing-Chang()   

  1. Key Laboratory of Sweetpotato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs / College of Agronomy & Biotechnology, China Agricultural University, Beijing 100193, China
  • Received:2024-06-17 Accepted:2024-09-18 Online:2025-02-12 Published:2024-10-11
  • Contact: E-mail: liuqc@cau.edu.cn
  • Supported by:
    China Agriculture Research System of MOF and MARA(CARS-10)

Abstract:

HT1 (HIGH LEAF TEMPERATURE 1) is a protein kinase known for its role in regulating stomatal movement in Arabidopsis. However, its function in sweetpotato has not been reported. In this study, the IbHT1 gene was cloned from the sweetpotato line Xushu 55-2. The full-length CDS of IbHT1 is 1140 bp, encoding a 379-amino acid protein that contains a conserved STKc_MAP3K_Like domain, with a predicted molecular weight of 43.07 kD and an isoelectric point (pI) of 8.83. The genomic sequence of IbHT1 spans 2796 bp, comprising 3 exons and 2 introns. Subcellular localization analysis revealed that the IbHT1 protein is localized to the cell membrane, and yeast assays confirmed it lacks transactivation activity. Expression of IbHT1 was down-regulated in response to 20% PEG-6000 treatment. Overexpression of IbHT1 significantly reduced drought tolerance in sweetpotato, while RNA interference (RNAi) of IbHT1 markedly enhanced drought tolerance. Additionally, 10 proteins interacting with IbHT1 were identified through yeast library screening. These findings suggest that IbHT1 may regulate drought tolerance in sweetpotato by interacting with other proteins.

Key words: sweetpotato, IbHT1, RNA interference, drought tolerance, interaction protein

Table 1

Primers used in this study"

引物名称
Primer name
序列
Primer sequence (5°-3°)
IbHT1基因CDS及基因组引物Primers for CDS and genomic DNA
IbHT1-ORF-F ATGGGTGGCTATTGCTTCAA
IbHT1-ORF-R TCAGACATGTACAGGTATGGATGAA
实时荧光定量引物Primers for RT-qPCR
Actin-F AGCAGCATGAAGATTAAGGTTGTAGCACT
Actin-R GGAAAATTAGAAGCACTTCCTGTGAAC
IbHT1-F GGAGCTCACCACTTCTTTGC
IbHT1-R CGCGGAGACTATGTCTGTGA
亚细胞定位和过表达载体引物Primers for subcellular localization and overexpression vectors
IbHT1-OE-F ACGGGGGACGAGCTCGGTACCATGGGTGGCTATTGCTTCAA
IbHT1-OE-R CATGTCGACTCTAGAGGATCCGACATGTACAGGTATGGATGAACTG
转录激活活性分析引物Primers for transactivation activity assay
pGBKT7-IbHT1-F ATGGCCATGGAGGCCGAATTCATGGGTGGCTATTGCTTCAA
pGBKT7-IbHT1-R CCGCTGCAGGTCGACGGATCCTCAGACATGTACAGGTATGGATGAA
蛋白纯化分析引物Primers for protein purification
pET-28a-IbHT1-F CAGCAAATGGGTCGCGGATCCATGGGTGGCTATTGCTTCAA
pET-28a-IbHT1-R TTGTCGACGGAGCTCGAATTCGACATGTACAGGTATGGATGAA
RNA干扰载体引物Primers for RNAi vectors
IbHT1-RNAi-F1 TTTGGAGAGGACACGCTCGAGATGGGTGGCTATTGCTTCAAT
IbHT1-RNAi-R1 AGAAATTCTTACACATTTAAATGCCTCCCACGTTTCGACAT
IbHT1-RNAi-F2 AATTTGCAGGTATTTGGATCCGCCTCCCACGTTTCGACAT
IbHT1-RNAi-R2 GGTCTTAATTAACTCTCTAGAATGGGTGGCTATTGCTTCAAT
转基因植株鉴定引物Primers for identifying transgenic plants
35S-IbHT1-F GACGCACAATCCCACTATCC
IbHT1-ORF-R TCAGACATGTACAGGTATGGATGAA
int-F CAACCACAAAAGTATCTATGAGCCT
int-R TTCACATGTCAGAAACATTCTGATG

Fig. 1

Cloning and sequence analysis of the IbHT1 gene A: amplification product of IbHT1; B: multiple alignments of IbHT1 with its homologs from other plant species; C: schematic representation of IbHT1; D: phylogenetic analysis of IbHT1; E: comparison of the genomic structures between IbHT1 and AtHT1."

Fig. 2

Expression analysis of IbHT1 in Xushu 55-2 A: expression of IbHT1 in in vitro-grown Xushu 55-2 plants exposed to 20% PEG-6000; B: expression of IbHT1 in the roots (R), stems (S), petioles (P), and leaves (L) of in vitro-grown Xushu 55-2 plants; C: expression of IbHT1 in the storage roots (SR), pencil roots (PR), fibrous roots (FR), stems (S), and leaves (L) of field-grown Xushu 55-2 plants. ** indicates significant differences at P < 0.01 according to Student’s t-test, Different lowercase letters indicate significant differences at P < 0.05 based on one-way ANOVA followed by post-hoc Tukey’s test."

Fig. 3

Subcellular localization of IbHT1 in rice protoplasts PIP2A- mCherry, the membrane marker. Bars: 20 μm."

Fig. 4

Transactivation activity assay of IbHT1 in yeast cells"

Fig. 5

His-IbHT1 purified protein"

Fig. 6

Production of the IbHT1 transgenic sweetpotato plants A: embryogenic suspension cultures of Lizixiang proliferating in MS medium containing 2.0 mg L-1 2,4-D; B: hygromycin (Hyg)-resistant calli (bright yellow) formed after selection on MS medium containing 2.0 mg L-1 2,4-D, 100 mg L-1 cefotaxime sodium and 11.0 mg L-1 Hyg; C: regeneration of plantlets from the Hyg-resistant calli on MS medium with 1.0 mg L-1 ABA and 100 mg L-1 cefotaxime sodium; D: the whole regenerated plant developed on MS basal medium; E, F: PCR analysis of the IbHT1 transgenic sweetpotato plants. M: DL 2000 marker; W: water (negative control); WT: Lizixiang (negative control); P: plasmid (positive control); OH-1-OH-11: overexpression plants; RH-1-RH-4: RNAi plants; G, H: expression analysis of IbHT1 in the transgenic sweetpotato plants under normal condition. ** indicates significant differences at P < 0.01 according to Student’s t-test."

Fig. 7

Identification of drought tolerance for the IbHT1 transgenic sweetpotato plants A, B: phenotype and weight of plants cultured on MS basal medium (control); C, D: phenotype and weight of plants cultured on MS medium containing 20% PEG-6000. Bars: 10 cm. * and ** indicate significant differences at P < 0.05 and P < 0.01, respectively, according to Student’s t-test. WT: wild-type; OH-10 and OH-11: IbHT1-overexpression plant lines; RH-3 and RH-4: IbHT1-RNAi plant lines."

Table 2

Interaction proteins of IbHT1 screened by yeast two-hybrid"

蛋白名称 Protein name 功能描述 Functional description
IbHT1互作蛋白-1
IbHT1 interaction protein-1
铁硫簇共伴侣蛋白HscB同源物
Iron-sulfur cluster co-chaperone protein HscB homolog
IbHT1互作蛋白-2
IbHT1 interaction protein-2
尿苷激酶样蛋白类似物
Uridine kinase-like protein 1, chloroplastic
IbHT1互作蛋白-3
IbHT1 interaction protein-3
转录因子VOZ1类似物
Transcription factor VOZ1-like
IbHT1互作蛋白-4
IbHT1 interaction protein-4
转录因子MYB1R1类似物
Transcription factor MYB1R1-like
IbHT1互作蛋白-5
IbHT1 interaction protein-5
ACR11蛋白类似物
ACR11-like
IbHT1互作蛋白-6
IbHT1 interaction protein-6
ATP合成酶
ATP synthase gamma chain, chloroplastic
IbHT1互作蛋白-7
IbHT1 interaction protein-7
DUF3444蛋白
DUF3444 protein
IbHT1互作蛋白-8
IbHT1 interaction protein-8
30S核糖体蛋白S6 α类似物
30S ribosomal protein S6 alpha, chloroplastic-like
IbHT1互作蛋白-9
IbHT1 interaction protein-9
鸟氨酸转氨酶
Ornithine aminotransferase, mitochondrial
IbHT1互作蛋白-10
IbHT1 interaction protein-10
细胞色素P450
Cytochrome P450
[1] 赵杨, 杨永青, 丁杨林, 张蘅, 谢彦杰, 赵春钊, 刘林川, 王鹏程. 植物非生物逆境学科发展综述. 植物生理学报, 2024, 60: 248-270.
Zhao Y, Yang Y Q, Ding Y L, Zhang H, Xie Y J, Zhao C Z, Liu L C, Wang P C. Plant abiotic stress biology: a decade update. Plant Physiol J, 2024, 60: 248-270 (in Chinese with English abstract).
[2] Zhu J K. Abiotic stress signaling and responses in plants. Cell, 2016, 167: 313-324.
[3] 任洪雷, 朱筱, 张丰屹, 张必弦, 王家军, 王金生, 吴俊江, 王广金, 邱丽娟. 干旱胁迫的影响及抗旱性研究进展. 分子植物育种, 网络首发[2024-01-22], https://link.cnki.net/urlid/46.1068.S.20240119.
Ren H L, Zhu X, Zhang F Y, Zhang B X, Wang J J, Wang J S, Wu J J, Wang G J, Qiu L J. Effect of drought stress and research progress of drought resistance. Mol Plant Breed, Published online [2024-01-22], https://link.cnki.net/urlid/46.1068.S.20240119. (in Chinese with English abstract).
[4] 朱婷婷, 王彦霞, 裴丽丽, 谢传磊, 陈明, 陈隽, 周永斌, 马有志, 徐兆师. 植物蛋白激酶与作物非生物胁迫抗性的研究. 植物遗传资源学报, 2017, 18: 763-770.
doi: 10.13430/j.cnki.jpgr.2017.04.020
Zhu T T, Wang Y X, Pei L L, Xie C L, Chen M, Chen J, Zhou Y B, Ma Y Z, Xu Z S. Research progress of plant protein kinase and abiotic stress resistance. J Plant Genet Resour, 2017, 18: 763-770 (in Chinese with English abstract).
doi: 10.13430/j.cnki.jpgr.2017.04.020
[5] 张鑫苗, 伍国强, 魏明. MAPK在植物响应逆境胁迫中的作用. 草业学报, 2024, 33(1): 182-197.
doi: 10.11686/cyxb2023090
Zhang X M, Wu G Q, Wei M. The role of MAPK in plant response to abiotic stress. Acta Pratac Sin, 2024, 33(1): 182-197 (in Chinese with English abstract).
[6] Chen X X, Ding Y L, Yang Y Q, Song C P, Wang B S, Yang S H, Guo Y, Gong Z Z. Protein kinases in plant responses to drought, salt, and cold stress. J Integr Plant Biol, 2021, 63: 53-78.
doi: 10.1111/jipb.13061
[7] Chen J, Wang L H, Yuan M. Update on the roles of rice MAPK cascades. Int J Mol Sci, 2021, 22: 1679.
[8] Li Y Y, Cai H X, Liu P, Wang C Y, Gao H Y, Wu C G, Yan K, Zhang S Z, Huang J G, Zheng C C. Arabidopsis MAPKKK18 positively regulates drought stress resistance via downstream MAPKK3. Biochem Biophys Res Commun, 2017, 484: 292-297.
[9] Ning J, Li X H, Hicks L M, Xiong L Z. A Raf-Like MAPKKK gene DSM1 mediates drought resistance through reactive oxygen species scavenging in rice. Plant Physiol, 2010, 152: 876-890.
[10] Ma H G, Chen J, Zhang Z Z, Ma L, Yang Z Y, Zhang Q L, Li X H, Xiao J H, Wang S P. MAPK kinase 10.2 promotes disease resistance and drought tolerance by activating different MAPKs in rice. Plant J, 2017, 92: 557-570.
[11] Zhao L L, Yan J W, Xiang Y, Sun Y, Zhang A Y. ZmWRKY104 transcription factor phosphorylated by ZmMPK6 functioning in ABA-induced antioxidant defense and enhance drought tolerance in maize. Biology, 2021, 10: 893.
[12] Li F J, Li M Y, Wang P, Cox K L Jr, Duan L S, Dever J K, Shan L B, Li Z H, He P. Regulation of cotton (Gossypium hirsutum) drought responses by mitogen-activated protein (MAP) kinase cascade-mediated phosphorylation of GhWRKY59. New Phytol 2017, 215: 1462-1475.
[13] Jeong S, Lim C W, Lee S C. The pepper MAP Kinase CaAIMK1 positively regulates ABA and drought stress responses. Front Plant Sci, 2020, 11: 720.
doi: 10.3389/fpls.2020.00720 pmid: 32528517
[14] Wang J Y, Chitsaz F, Derbyshire M K, Gonzales N R, Gwadz M, Lu S N, Marchler G H, Song J S, Thanki N, Yamashita R A, Yang M Z, Zhang D C, Zheng C J, Lanczycki C J, Marchler-Bauer A. The conserved domain database in 2023. Nucleic Acids Res, 2023, 51: D384-D388.
[15] Hashimoto M, Negi J, Young J, Israelsson M, Schroeder J I, Iba K. Arabidopsis HT1 kinase controls stomatal movements in response to CO2. Nat Cell Biol, 2006, 8: 391-397.
pmid: 16518390
[16] Matrosova A, Bogireddi H, Mateo-Peñas A, Hashimoto-Sugimoto M, Iba K, Schroeder J I, Israelsson-Nordström M. The HT1 protein kinase is essential for red light-induced stomatal opening and genetically interacts with OST1 in red light and CO2-induced stomatal movement responses. New Phytol, 2015, 208: 1126-1137.
[17] Horak H, Sierla M, Toldsepp K, Wang C, Wang Y S, Nuhkat M, Valk E, Pechter P, Merilo E, Salojarvi J, Overmyer K, Loog M, Brosche M, Schroeder J I, Kangasjarvi J, Kollist H. A dominant mutation in the HT1 kinase uncovers roles of MAP kinases and GHR1 in CO2-induced stomatal closure. Plant Cell, 2016, 28: 2493-2509.
[18] Gahlowt P, Tripathi D K, Singh S, Gupta R, Singh V P. Does MPK4/12-HT1 function as a CO2/bicarbonate sensor to regulate the stomatal conductance under high CO levels. Plant Cell Rep, 2023, 42: 2043-2045.
doi: 10.1007/s00299-023-03077-8 pmid: 37815540
[19] 后猛, 李臣, 张允刚, 闫会, 王欣, 唐维, 宋炜涵, 高闰飞, 李强. 优质高产淀粉型甘薯徐薯37选育及性状鉴定. 江苏师范大学学报(自然科学版), 2023, 41(3): 45-47.
Hou M, Li C, Zhang Y G, Yan H, Wang X, Tang W, Song W H, Gao R F, Li Q. Breeding and character identification of a sweetpotato variety Xushu 37 for starch use with high yield and quality. J Jiangsu Norm Univ (Nat Sci Edn), 2023, 41(3): 45-47 (in Chinese with English abstract).
[20] Wang Z, Li X, Gao X R, Dai Z R, Peng K, Jia L C, Wu Y K, Liu Q C, Zhai H, Gao S P, Zhao N, He S Z, Zhang H. IbMYB73 targets abscisic acid-responsive IbGER5 to regulate root growth and stress tolerance in sweet potato. Plant Physiol, 2024, 194: 787-804.
[21] Yan M X, Li M, Wang Y Z, Wang X Y, Moeinzadeh M H, Quispe-Huamanquispe D G, Fan W J, Fang Y J, Wang Y Q, Nie H Z, Wang Z Y, Tanaka A, Heider B, Kreuze J F, Gheysen G, Wang H X, Vingron M, Bock R, Yang J. Haplotype-based phylogenetic analysis and population genomics uncover the origin and domestication of sweetpotato. Mol Plant, 2024, 17: 277-296.
[22] 吴胜男, 孙凯, 张海, 刘峰, 王凤. 甘薯分子标记辅助育种研究进展. 黑龙江农业科学, 2022, (9): 111-115.
Wu S N, Sun K, Zhang H, Liu F, Wang F. Research progress of sweet potato molecular marker-assisted breeding. Heilongjiang Agric Sci, 2022, (9): 111-115 (in Chinese with English abstract).
[23] Jin R, Kim B H, Ji C Y, Kim H S, Li H M, Ma D F, Kwak S S. Overexpressing IbCBF3 increases low temperature and drought stress tolerance in transgenic sweetpotato. Plant Physiol Biochem, 2017, 118: 45-54.
[24] Zhou Y Y, Zhai H, Xing S H, Wei Z H, He S Z, Zhang H, Gao S P, Zhao N, Liu Q C. A novel small open reading frame gene. IbEGF, enhances drought tolerance in transgenic sweet potato. Front Plant Sci, 2022, 13: 965069.
[25] Ren Z T, He S Z, Zhou Y Y, Zhao N, Jiang T, Zhai H, Liu Q C. A sucrose non-fermenting-1-related protein kinase-1 gene, IbSnRK1, confers salt, drought and cold tolerance in sweet potato. Crop J, 2020, 8: 905-917.
[26] Wang Y X, Zhang H, Gao S P, Zhai H, He S Z, Zhao N, Liu Q C. An ABA-inducible gene IbTSJT1positively regulates drought tolerance in transgenic sweetpotato. J Integr Agric, Published online [2023-10-18], https://doi.org/10.1016/j.jia.2023.10.015
[27] Zhang H, Gao X R, Zhi Y H, Li X, Zhang Q, Niu J B, Wang J, Zhai H, Zhao N, Li J G, Liu Q C, He S Z. A non-tandem CCCH-type zinc-finger protein, IbC3H18, functions as a nuclear transcriptional activator and enhances abiotic stress tolerance in sweet potato. New Phytol, 2019, 223: 1918-1936.
doi: 10.1111/nph.15925 pmid: 31091337
[28] Zhang H, Wang Z, Li X, Gao X R, Dai Z R, Cui Y F, Zhi Y H, Liu Q C, Zhai H, Gao S P, Zhao N, He S Z. The IbBBX24- IbTOE3-IbPRX17 module enhances abiotic stress tolerance by scavenging reactive oxygen species in sweet potato. New Phytol, 2022, 233: 1133-1152.
[29] Xue L Y, Wei Z H, Zhai H, Xing S H, Wang Y X, He S Z, Gao S P, Zhao N, Zhang H, Liu Q C. The IbPYL8-IbbHLH66- IbbHLH118 complex mediates the abscisic acid-dependent drought response in sweet potato. New Phytol, 2022, 236: 2151-2171.
[30] 周桦楠, 于涛, 刘冠求, 潘家荃, 万博, 刘振雷. 甘薯MAPK基因家族的鉴定及生物信息学分析. 沈阳农业大学学报, 2021, 52: 513-520.
Zhou H N, Yu T, Liu G Q, Pan J Q, Wan B, Liu Z L. Genome-wide identification and bioinformatic analysis of mitogen activated protein kinase gene family in sweet potato. J Shenyang Agric Univ, 2021, 52: 513-520 (in Chinese with English abstract).
[31] 靳容, 刘明, 赵鹏, 张强强, 张爱君, 唐忠厚. 甘薯丝裂原活化蛋白激酶MPK6对低温胁迫的响应. 中国农业科学, 2021, 54: 4265-4273.
doi: 10.3864/j.issn.0578-1752.2021.20.002
Jin R, Liu M, Zhao P, Zhang Q Q, Zhang A J, Tang Z H. IbMKP6, A mitogen-activated protein kinase, confers low temperature tolerance in sweetpotato. Sci Agric Sin, 2021, 54: 4265-4273 (in Chinese with English abstract).
[32] 靖小菁, 杨新笋, 靳晓杰, 刘意, 雷剑, 王连军, 柴沙沙, 张文英, 焦春海. 甘薯蔓割病(Fusarium oxysporum f. sp. batatas)相关基因IbMAPKK9的克隆与特性分析. 作物学报, 2023, 49: 3289-3301.
doi: 10.3724/SP.J.1006.2023.24284
Jing X J, Yang X S, Jin X J, Liu Y, Lei J, Wang L J, Chai S S, Zhang W Y, Jiao C H. Cloning and characterization of IbMAPKK9 gene associated with Fusarium oxysporum f. sp. batatas in sweet potato. Acta Agron Sin, 2023, 49: 3289-3301 (in Chinese with English abstract).
[33] Zhu H, Zhou Y Y, Zhai H, He S Z, Zhao N, Liu Q C. Transcriptome profiling reveals insights into the molecular mechanism of drought tolerance in sweetpotato. J Integr Agric, 2019, 18: 9-23.
doi: 10.1016/S2095-3119(18)61934-3
[34] Xing S H, Zhu H, Zhou Y Y, Xue L Y, Wei Z H, Wang Y X, He S Z, Zhang H, Gao S P, Zhao N, Zhai H, Liu Q C. A cytochrome P450 superfamily gene, IbCYP82D47, increases carotenoid contents in transgenic sweet potato. Plant Sci, 2022, 318: 111233.
[35] Kumar S, Stecher G, Li M, Knyaz C, Tamura K. MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol, 2018, 35: 1547-1549.
doi: 10.1093/molbev/msy096 pmid: 29722887
[36] Rogers S O, Bendich A J. Extraction of DNA from milligram amounts of fresh, herbarium and mummified plant tissues. Plant Mol Biol, 1985, 5: 69-76.
doi: 10.1007/BF00020088 pmid: 24306565
[37] Zhou Y Y, Zhu H, He S Z, Zhai H, Zhao N, Xing S H, Wei Z H, Liu Q C. A novel sweetpotato transcription factor gen. IbMYB116 enhances drought tolerance in transgenic Arabidopsis. Front Plant Sci 2019, 10: 1025.
[38] Zhang H, Zhang Q, Zhai H, Gao S P, Yang L, Wang Z, Xu Y T, Huo J X, Ren Z T, Zhao N, Wang X F, Li J G, Liu Q C, He S Z. IbBBX24 promotes the jasmonic acid pathway and enhances Fusarium wilt resistance in sweet potato. Plant Cell, 2020, 32: 1102-1123.
[39] Shitamichi N, Matsuoka D, Sasayama D, Furuya T, Nanmori T. Over-expression of MAP3Kδ4, an ABA-inducible Raf-like MAP3K that confers salt tolerance i. Arabidopsis. Plant Biotechnol 2013, 30: 111-118.
[40] Li X, Wang Z, Sun S F, Dai Z R, Zhang J, Wang W B, Peng K, Geng W H, Xia S H, Liu Q C, Zhai H, Gao S P, Zhao N, Tian F, Zhang H, He S Z. IbNIEL-mediated degradation of IbNAC087 regulates jasmonic acid-dependent salt and drought tolerance in sweet potato. J Integr Plant Biol, 2024, 66: 176-195.
doi: 10.1111/jipb.13612
[41] Katiyar A, Smita S, Lenka S K, Rajwanshi R, Chinnusamy V, Bansal K C. Genome-wide classification and expression analysis of MYB transcription factor families in rice and Arabidopsis. BMC Genomics, 2012, 13: 544.
doi: 10.1186/1471-2164-13-544 pmid: 23050870
[42] Baldoni E, Genga A, Cominelli E. Plant MYB transcription factors: their role in drought response mechanisms. Int J Mol Sci, 2015, 16: 15811-15851.
doi: 10.3390/ijms160715811 pmid: 26184177
[43] Abe H, Urao T, Ito T, Seki M, Shinozaki K, Yamaguchi-Shinozaki K. Arabidopsis AtMYC2 (bHLH) and AtMYB2 (MYB) function as transcriptional activators in abscisic acid signaling. Plant Cell, 2003, 15: 63-78.
[44] Li X M, Zhong M, Qu L N, Yang J X, Liu X Q, Zhao Q, Liu X M, Zhao X Y.AtMYB32 regulates the ABA response by targeting ABI3, ABI4 and ABI5 and the drought response by targeting CBF4 in Arabidopsis. Plant Sci, 2021, 310: 110983.
[45] Wyrzykowska A, Bielewicz D, Plewka P, Soltys-Kalina D, Wasilewicz-Flis I, Marczewski W, Jarmolowski A, Szweykowska- Kulinska Z. The MYB33, MYB65, and MYB101 transcription factors affect Arabidopsis and potato responses to drought by regulating the ABA signaling pathway. Physiol Plant, 2022, 174: e13775.
[46] Yang A, Dai X Y, Zhang W H. A R2R3-type MYB gene, OsMYB2, is involved in salt, cold, and dehydration tolerance in rice. J Exp Bot, 2012, 63: 2541-2556.
doi: 10.1093/jxb/err431 pmid: 22301384
[47] Tang Y H, Bao X X, Zhi Y L, Wu Q, Guo Y R, Yin X H, Zeng L Q, Li J, Zhang J, He W L, Liu W H, Wang Q W, Jia C K, Li Z K, Liu K. Overexpression of a MYB family gene, OsMYB6, increases drought and salinity stress tolerance in transgenic rice. Front Plant Sci, 2019, 10: 168.
[48] Peng Y, Tang N, Zou J, Ran J, Chen X B. Rice MYB transcription factor OsMYB1R1 negatively regulates drought resistance. Plant Growth Regul, 2023, 99: 515-525.
[49] Chen T Z, Li W J, Hu X H, Guo J R, Liu A M, Zhang B L. A cotton MYB transcription factor, GbMYB5, is positively involved in plant adaptive response to drought stress. Plant Cell Physiol, 2015, 56: 917-929.
[50] Shin D J, Moon S J, Han S, Kim B G, Park S R, Lee S K, Yoon H J, Lee H E, Kwon H B, Baek D, Yi B Y, Byun M O. Expression of StMYB1R-1, a novel potato single MYB-Like domain transcription factor, increases drought tolerance. Plant Physiol, 2011, 155: 421-432.
[51] Li B, Zheng J C, Wang T T, Min D H, Wei W L, Chen J, Zhou Y B, Chen M, Xu Z S, Ma Y Z. Expression analyses of soybean VOZ transcription factors and the role of GmVOZ1G in drought and salt stress tolerance. Int J Mol Sci, 2020, 21: 2177.
[52] Song C, Lee J, Kim T, Hong J C, Lim C O. VOZ1, a transcriptional repressor of DREB2C, mediates heat stress responses i. Arabidopsis. Planta 2018, 247: 1439-1448.
[53] Chong L, Xu R, Huang P C, Guo P C, Zhu M K, Du H, Sun X L, Ku L X, Zhu J K, Zhu Y F. The tomato OST1-VOZ1 module regulates drought-mediated flowering. Plant Cell, 2022, 34: 2001-2018.
[1] HUO Ru-Xue, GE Xiang-Han, SHI Jia, LI Xue-Rui, DAI Sheng-Jie, LIU Zhen-Ning, LI Zong-Yun. Functional analysis of the sweetpotato histidine kinase protein IbHK5 in response to drought and salt stresses [J]. Acta Agronomica Sinica, 2025, 51(3): 650-666.
[2] LIU Bo, CHI Ming, CAO Meng-Qi, TANG Da, YANG Heng-Zhao, ZHANG Wei-Hua, XUE Cong. Impact of potato StuPPO9 gene overexpression on drought resistance in Nicotiana benthamiana [J]. Acta Agronomica Sinica, 2024, 50(9): 2237-2247.
[3] LIU Shuang, LI Shen, WANG Dong-Mei, SHA Xiao-Qian, HE Guan-Hua, ZHANG Deng-Feng, LI Yong-Xiang, LIU Xu-Yang, WANG Tian-Yu, LI Yu, LI Chun-Hui. Superior allele genes mining for drought tolerance in maize based on introgression line from a cross between maize and teosinte [J]. Acta Agronomica Sinica, 2024, 50(8): 1896-1906.
[4] ZHANG Xiao-Fang, ZHU Qi, HUA Yun-Yan, JIA Li-Hui-Ying, QIU Shi-You, CHEN Yu-Jie, MA Tao, DING Wo-Na. Screening and validation of OsCYP22 interacting proteins in rice [J]. Acta Agronomica Sinica, 2024, 50(6): 1628-1634.
[5] ZHU Zhong-Lin, WEN Yue, ZHOU Qi, WU Yan-Fei, DU Xue-Zhu, SHENG Feng. Mechanism of loding residence and drought tolerance of OsCNGC10 gene in rice [J]. Acta Agronomica Sinica, 2024, 50(5): 1351-1360.
[6] LI Yang-Yang, WU Dan, XU Jun-Hong, CHEN Zhuo-Yong, XU Xin-Yuan, XU Jin-Pan, TANG Zhong-Lin, ZHANG Ya-Ru, ZHU Li, YAN Zhuo-Li, ZHOU Qing-Yuan, LI Jia-Na, LIU Lie-Zhao, TANG Zhang-Lin. Identification of candidate genes associated with drought tolerance based on QTL and transcriptome sequencing in Brassica napus L. [J]. Acta Agronomica Sinica, 2024, 50(4): 820-835.
[7] ZHU Xiao-Ya, ZHANG Qiang-Qiang, ZHAO Peng, LIU Ming, WANG Jing, JIN Rong, YU Yong-Chao, TANG Zhong-Hou. Transcriptome and metabolomic analysis of foliar spraying of Salvia miltiorrhiza carbon dots to alleviate low phosphorus stress in sweetpotato [J]. Acta Agronomica Sinica, 2024, 50(2): 383-393.
[8] SU Yi-Jun, ZHAO Lu-Kuan, TANG Fen, DAI Xi-Bin, SUN Ya-Wei, ZHOU Zhi-Lin, LIU Ya-Ju, CAO Qing-He. Genetic diversity and population structure analysis of 378 introduced sweetpotato germplasm collections [J]. Acta Agronomica Sinica, 2023, 49(9): 2582-2593.
[9] JIA Rui-Xue, CHEN Yi-Hang, ZHANG Rong, TANG Chao-Chen, WANG Zhang-Ying. Simultaneous determination of 13 carotenoids in sweetpotato by Ultra- Performance Liquid Chromatography [J]. Acta Agronomica Sinica, 2023, 49(8): 2259-2274.
[10] WANG Yan-Nan, CHEN Jin-Jin, BIAN Qian-Qian, HU Lin-Lin, ZHANG Li, YIN Yu-Meng, QIAO Shou-Chen, CAO Guo-Zheng, KANG Zhi-He, ZHAO Guo-Rui, YANG Guo-Hong, YANG Yu-Feng. Integrated analysis of transcriptome and metabolome reveals the metabolic response pathways of sweetpotato under shade stress [J]. Acta Agronomica Sinica, 2023, 49(7): 1785-1798.
[11] YUAN Da-Shuang, ZHANG Xiao-Li, ZHU Dong-Ming, YANG You-Hong, YAO Meng-Nan, LIANG Ying. Effects of BnMAPK2 on drought tolerance in Brassica napus [J]. Acta Agronomica Sinica, 2023, 49(6): 1518-1531.
[12] CHEN Yi-Hang, TANG Chao-Chen, ZHANG Xiong-Jian, YAO Zhu-Fang, JIANG Bing-Zhi, WANG Zhang-Ying. Construction of core collection of sweetpotato based on phenotypic traits and SSR markers [J]. Acta Agronomica Sinica, 2023, 49(5): 1249-1261.
[13] WU Shi-Yu, CHEN Kuang-Ji, LYU Zun-Fu, XU Xi-Ming, PANG Lin-Jiang, LU Guo-Quan. Effects of nitrogen fertilizer application rate on starch contents and properties during storage root expansion in sweetpotato [J]. Acta Agronomica Sinica, 2023, 49(4): 1090-1101.
[14] LIU Ming, FAN Wen-Jing, ZHAO Peng, JIN Rong, ZHANG Qiang-Qiang, ZHU Xiao-Ya, WANG Jing, LI Qiang. Genotypes screening and comprehensive evaluation of sweetpotato tolerant to low potassium stress at seedling stage [J]. Acta Agronomica Sinica, 2023, 49(4): 926-937.
[15] XU Zi-Yin, YU Xiao-Ling, ZOU Liang-Ping, ZHAO Ping-Juan, LI Wen-Bin, GENG Meng-Ting, RUAN Meng-Bin. Expression pattern analysis and interaction protein screening of cassava MYB transcription factor MeMYB60 [J]. Acta Agronomica Sinica, 2023, 49(4): 955-965.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] WANG Li-Yan;ZHAO Ke-Fu. Some Physiological Response of Zea mays under Salt-stress[J]. Acta Agron Sin, 2005, 31(02): 264 -268 .
[2] Qi Zhixiang;Yang Youming;Zhang Cunhua;Xu Chunian;Zhai Zhixi. Cloning and Analysis of cDNA Related to the Genes of Secondary Wall Thickening of Cotton (Gossypium hirsutum L.) Fiber[J]. Acta Agron Sin, 2003, 29(06): 860 -866 .
[3] NI Da-Hu;YI Cheng-Xin;LI Li;WANG Xiu-Feng;ZHANG Yi;ZHAO Kai-Jun;WANG Chun-Lian;ZHANG Qi;WANG Wen-Xiang;YANG Jian-Bo. Developing Rice Lines Resistant to Bacterial Blight and Blast with Molecular Marker-Assisted Selection[J]. Acta Agron Sin, 2008, 34(01): 100 -105 .
[4] DAI Xiao-Jun;LIANG Man-Zhong;CHEN Liang-Bi. Comparison of rDNA Internal Transcribed Spacer Sequences in Oryza sativa L.[J]. Acta Agron Sin, 2007, 33(11): 1874 -1878 .
[5] WANG Bao-Hua;WU Yao-Ting;HUANG Nai-Tai;GUO Wang-Zhen;ZHU Xie-Fei;ZHANG Tian-Zhen. QTL Analysis of Epistatic Effects on Yield and Yield Component Traits for Elite Hybrid Derived-RILs in Upland Cotton[J]. Acta Agron Sin, 2007, 33(11): 1755 -1762 .
[6] WANG Chun-Mei;FENG Yi-Gao;ZHUANG Li-Fang;CAO Ya-Ping;QI Zeng-Jun;BIE Tong-De;CAO Ai-Zhong;CHEN Pei-Du. Screening of Chromosome-Specific Markers for Chromosome 1R of Secale cereale, 1V of Haynaldia villosa and 1Rk#1 of Roegneria kamoji[J]. Acta Agron Sin, 2007, 33(11): 1741 -1747 .
[7] Zhao Qinghua;Huang Jianhua;Yan Changjing. A STUDY ON THE POLLEN GERMINATION OF BRASSICA NAPUS L.[J]. Acta Agron Sin, 1986, (01): 15 -20 .
[8] ZHOU Lu-Ying;LI Xiang-Dong;WANG Li-Li;TANG Xiao;LIN Ying-Jie. Effects of Different Ca Applications on Physiological Characteristics, Yield and Quality in Peanut[J]. Acta Agron Sin, 2008, 34(05): 879 -885 .
[9] WANG Li-Xin; LI Yun-Fu; CHANG Li-Fang; HUANG Lan ;; LI Hong-Bo ; GE Ling-Ling; Liu Li-Hua ;; YAO Ji ;; ZHAO Chang-Ping ;. Method of ID Constitution for Wheat Cultivars[J]. Acta Agron Sin, 2007, 33(10): 1738 -1740 .
[10] ZHENG Tian-Qing;XU Jian-Long;FU Bing-Ying;GAO Yong-Ming;Satish VERUKA;Renee LAFITTE;ZHAI Hu-Qu;WAN Jian-Min;ZHU Ling-Hua;LI Zhi-Kang. Preliminary Identification of Genetic Overlaps between Sheath Blight Resistance and Drought Tolerance in the Introgression Lines from Directional Selection[J]. Acta Agron Sin, 2007, 33(08): 1380 -1384 .