Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica

   

Mechanism of low O2 and high CO2 storage environment delaying aging of potato tuber

TIAN Jia-Chun, GE Xia,LI Shou-Qiang,LI Mei,TIAN Shi-Long*,ZHANG Ya-Qian,CHENG Jian-Xin,LI Yu-Mei   

  1. Agricultural Products Storage and Processing Research Institute, Gansu Academy of Agricultural Sciences, Lanzhou 730070, Gansu, China
  • Received:2025-05-21 Revised:2025-08-13 Accepted:2025-08-13 Published:2025-08-21
  • Supported by:
    This study was supported by the National Natural Science Foundation of China (32160596) and the China Agriculture Research System of MOF and MARA (CARS-09-P26).

Abstract:

This study aimed to investigate the mechanism by which a low-oxygen and high-carbon dioxide storage environment delays the aging of potato tubers. Using the Longshu 17 cultivar as the research subject, we evaluated nutritional quality, appearance, and physiological parameters, along with transcriptomic profiling at mid-storage (60 days) and late-storage (150 days) stages. Phenotypic and transcriptomic responses of tubers to the low O2 high CO2 environment were analyzed to elucidate the molecular regulatory mechanisms underlying tuber preservation. The results showed that this storage condition significantly delayed starch degradation and reduced the accumulation of reducing sugars during cold storage. It also inhibited sprouting and water loss, preserved optimal skin color, suppressed the activities of phenylalanine ammonia-lyase and peroxidase, and positively regulated three endogenous hormones. Transcriptomic analysis revealed that compared to the control (CK), the low O?/high CO? treatment (CA) led to 741 differentially expressed genes (DEGs) at mid-storage, including 378 upregulated and 363 downregulated genes. At the end of storage, 1658 DEGs were identified, with 1211 upregulated and 447 downregulated. Bioinformatics analysis indicated that the low O?/high CO? environment significantly modulated pathways related to phenylpropanoid biosynthesis, starch and sucrose metabolism, plant hormone signal transduction, and MAPK signaling. In conclusion, this study provides a theoretical basis for controlled atmosphere storage of potatoes and offers new insights into the molecular mechanisms involved in tuber aging and preservation.

Key words: potato, low O2 and high CO2, delay aging, transcriptomics, metabolic pathways

[1] Thoma J L, Cantrell C L, Zheljazkov V D. Effects of essential oil fumigation on potato sprouting at room-temperature storage. Plants, 2022, 11: 3109.
[2] 张益瑄, 马宇, 王童童, 盛苏奥, 宋家凤, 吕钊彦, 朱晓彪, 侯华兰. 马铃薯DIR家族全基因组鉴定及表达模式分析. 生物技术通报, 2025, 41(3): 123–136.
Zhang Y X, Ma Y, Wang T T, Sheng S A, Song J F, Lyu Z Y, Zhu X B, Hou H L. Genome-wide identification and expression profiles of DIR gene family in potato. Biotechnol Bull, 2025, 41(3): 123–136 (in Chinese with English abstract).
[3] Li M, Zheng X Y, Zhang X J, Tian S L, Chen J X, Li S Q, Ge X, Tian J C. Inhibitory impact of Chlorine dioxide on potato tuber sprouting via inducing oxidative stress. Sci Hortic, 2024, 330: 113102.
[4] Thoma J L, Cantrell C L, Tamang P, Zheljazkov V D. Determining the optimum mixture of three essential oils for potato sprout suppression at room temperature storage. Front Plant Sci, 2023, 14: 1199117.
[5] 俞婷, 黄丹丹, 朱炎辉, 杨梅宏, 艾菊, 高冬丽. 马铃薯Stpatatin 05基因转录调控因子筛选及互作验证. 生物技术通报, 2025, 41(3): 137–145.
Yu T, Huang D D, Zhu Y H, Yang M H, Ai J, Gao D L. Screening and interaction verification of transcription factors stpatatin 05 gene in potato. Biotechnol Bull, 2025, 41(3): 137–145 (in Chinese with English abstract).
[6] 赵娜, 刘宇曦, 张朝澍, 石瑛. 不同马铃薯淀粉含量差异的转录组学解析. 作物学报, 2024, 50: 1503–1513.
Zhao N, Liu Y X, Zhang C S, Shi Y. Transcriptomic analysis of differences in the starch content of different potatoes. Acta Agron Sin, 2024, 50: 1503–1513 (in Chinese with English abstract).
[7] Kulakova A V, Efremov G I, Shchennikova A V, Kochieva E Z. Dependence of the content of starch and reducing sugars on the level of expression of the genes of β-amylases StBAM1 and StBAM9 and the amylase inhibitor StAI during long-term low-temperature storage of potato tubers. Vavilovskii Zhurnal Genet Selektsii, 2022, 26: 507–514.
[8] Datir S S, Regan S. Role of alkaline/neutral invertases in postharvest storage of potato. Postharvest Biol Technol, 2022, 184: 111779.
[9] Herman D J, Knowles L O, Knowles N R. Low oxygen storage modulates invertase activity to attenuate cold-induced sweetening and loss of process quality in potato (Solanum tuberosum L.). Posth Biol Technol, 2016, 121: 106–117.
[10]田甲春, 田世龙, 李守强, 葛霞, 李梅, 程建新. 低O2高CO2贮藏环境对马铃薯块茎淀粉-糖代谢的影响. 核农学报, 2021, 35: 1832–1840.
Tian J C, Tian S L, Li S Q, Ge X, Li M, Cheng J X. Effects of low oxygen and high carbon dioxide storage environment on starch-glucose metabolism of potato tubers. J Nucl Agric Sci, 2021, 35: 1832–1840 (in Chinese with English abstract).
[11]田甲春, 田世龙, 李守强, 葛霞, 李梅, 程建新, 张辉元. 低氧高二氧化碳贮藏环境对马铃薯品质的影响. 食品科学, 2020, 41(15): 275–281.
Tian J C, Tian S L, Li S Q, Ge X, Li M, Cheng J X, Zhang H Y. Effects of low oxygen and high carbon dioxide storage environment on potato quality. Food Sci, 2020, 41(15): 275–281 (in Chinese with English abstract).
[12] 于弘弢. 微环境气调对蓝莓品质变化的调控作用. 辽宁大学硕士学位论文, 辽宁沈阳, 2021.
Yu H T. Regulation of Quality of Blueberries by Microenvironmental Modified Atomosphere Packing. MS Thesis of Liaoning University, Shenyang, Liaoning, China, 2021 (in Chinese with English abstract).
[13] Zhang J Y, Jiang H, Li Y T, Wang S J, Wang B, Xiao J S, Cao Y P. Transcriptomic and physiological analysis reveals the possible mechanism of ultrasound inhibiting strawberry (Fragaria × Ananassa Duch.) postharvest softening. Front Nutr, 2022, 9: 1066043.
[14] 李可昕, 韩晨瑞, 孙敏敏, 曹建康. 基于转录组学分析1-MCP与EBR联合处理对鲜黄花菜采后衰老的影响. 食品科学, 2024, 45(4): 279–288.
Li K X, Han C R, Sun M M, Cao J K. Transcriptomic analysis of the effect of combined treatment with 1-methylcyclopropene and 2, 4-epibrassionolide on the postharvest senescence of fresh daylily (Hemerocallis citrina). Food Sci, 2024, 45(4): 279–288 (in Chinese with English abstract).
[15] 洪晨, 郭丽娜, 张莘妍, 欧阳宁宁, 吴平, 马海乐. 基于转录组学分析超声胁迫诱导鲜切紫甘蓝酚类物质合成机制. 食品科学, 2025, 46(14): 37–48.
Hong C, Guo L N, Zhang X Y, Ou-Yang N N, Wu P, Ma H L. Transcriptomics analysis to elucidate the mechanisms underlying the synthesis of phenolic compounds in fresh-cut red cabbages under ultrasound stress. Food Sci, 2025, 46(14): 37–48(in Chinese with English abstract).
[16] Dobránszki J, Hidvégi N, Gulyás A, Tóth B, Teixeira da Silva J A. Abiotic stress elements in in vitro potato (Solanum tuberosum L.) exposed to air-based and liquid-based ultrasound: a comparative transcriptomic assessment. Prog Biophys Mol Biol, 2020, 158: 47–56.
[17] 杨双鹤, 申挥, 罗海波, 苏火生, 邹琴, 俞源河, 陈亚男, 余元善, 胡腾根, 董霞, 等. 近冰温贮藏在延缓甜龙竹笋采后木质化衰老中的作用. 食品科学, 2024, 45(17): 216–225.
Yang S H, Shen H, Luo H B, Su H S, Zou Q, Yu Y H, Chen Y N, Yu Y S, Hu T G, Dong X, et al. Effect of near-freezing temperature storage on delaying postharvest lignification of Dendrocalamus brandisii shoots. Food Sci, 2024, 45(17): 216–225 (in Chinese with English abstract).
[18] 葛霞, 徐瑞, 李梅, 田甲春, 李守强, 程建新, 田世龙. 香芹酮对马铃薯种薯发芽的调控机制. 中国农业科学, 2020, 53: 4929–4939.
Ge X, Xu R, Li M, Tian J C, Li S Q, Cheng J X, Tian S L. Regulation mechanism of carvone on seed potato sprouting. Sci Agric Sin, 2020, 53: 4929–4939 (in Chinese with English abstract).
[19] Rinaldo D, Sotin H, Pétro D, Le-Bail G, Guyot S. Browning susceptibility of new hybrids of yam (Dioscorea alata) as related to their total phenolic content and their phenolic profile determined using LC-UV-MS. LWT Food Sci Technol, 2022, 162: 113410.
[20] 莫小引, 管兰兰, 汤鹏宇, 王宜崧, 孟繁博, 黄道梅, 刘义, 安诗语, 林茂. 基于非靶向代谢组学分析红托竹荪干品褐变过程中的代谢物变化. 食品与发酵工业, 网络首发[2025-04-29], https://doi.org/10.13995/j.cnki.11-1802/ts.042315.
Mo X Y, Guan L L, Tang P Y, Wang Y S, Meng F B, Huang D M, Liu Y, An S Y, Lin M. Metabolite changes in the browning process of Dictyophora rubrovolvata dry products based on non-targeted metabolomic analysis, Food Ferm Ind, Published online [2025-04-29], https://doi.org/10.13995/j.cnki.11-1802/ts.042315 (in Chinese with English abstract).
[21] Zheng X Y, Li M, Tian S L, Li S Q, Chen J X, Zhang X J, Wu X H, Ge X, Tian J C, Mu Y W, et al. Integrated analysis of transcriptome and metabolome reveals the mechanism of chlorine dioxide repressed potato (Solanum tuberosum L.) Tuber sprouting. Front Plant Sci, 2022, 13: 887179.
[22] 吕春娟, 刘东, 许奕雯, 田甲春, 田世龙, 葛霞. 3-癸烯-2-酮对马铃薯的抑芽作用机理. 核农学报, 2024, 38: 1125–1136.
Lyu C J, Liu D, Xu Y W, Tian J C, Tian S L, Ge X. The sprout inhibiting mechanism of 3-Decene-2-One on potato. J Nucl Agric Sci, 2024, 38: 1125–1136 (in Chinese with English abstract).
[23] 宋雪微. 加工型马铃薯的品质差异及低温糖化特性研究. 东北农业大学硕士学位论文, 黑龙江哈尔滨, 2022.
Song X W. Study on Quality Difference and Low-temperature Sweetening Characteristics of Processed Potato. MS Thesis of Northeast Agricultural University, Harbin, Heilongjiang, China, 2022 (in Chinese with English abstract).
[24] Li J X, Ishii T, Yoshioka M, Hino Y, Nomoto M, Tada Y, Yoshioka H, Takahashi H, Yamauchi T, Nakazono M. CDPK5 and CDPK13 play key roles in acclimation to low oxygen through the control of RBOH-mediated ROS production in rice. Plant Physiol, 2024, 197: kiae293.
[25] Matsuura-Endo C, Kobayashi A, Noda T, Takigawa S, Yamauchi H, Mori M. Changes in sugar content and activity of vacuolar acid invertase during low-temperature storage of potato tubers from six Japanese cultivars. J Plant Res, 2004, 117: 131–137.
[26] 阳芳, 何高镜, 郭圣军, 刘清, 胡新喜, 贺利雄. 影响马铃薯块茎低温糖化的植物激素相关基因的表达. 湖南农业大学学报(自然科学
版), 2022, 48(2): 160–167.
Yang F, He G J, Guo S J, Liu Q, Hu X X, He L X. Expression analysis of potato cold-induced sweetening related genes in phytohormone pathway. J Hunan Agric Univ (Nat Sci), 2022, 48(2): 160–167 (in Chinese with English abstract).
[27] Min T, Xie J, Zheng M L, Yi Y, Hou W F, Wang L M, Ai Y W, Wang H X. The effect of different temperatures on browning incidence and phenol compound metabolism in fresh-cut Lotus (Nelumbo nucifera G.) root. Posth Biol Technol, 2017, 123: 69–76.
[28] 李文博, 张新祺, 赵亚婷, 田瑞, 吴颖颉, 范雅青, 张璇, 李佳欣, 朱璇. 采前喷施壳寡糖对采后西梅黑斑病的控制. 食品科学, 2025, 46(7): 283–291. 
Li W B, Zhang X Q, Zhao Y T, Tian R, Wu Y J, Fan Y Q, Zhang X, Li J X, Zhu X. Control of postharvest prune black spot disease by preharvest chitosan oligosaccharide spraying. Food Sci, 2025, 46(7): 283–291 (in Chinese with English abstract). 
[29] 韦雪. 气调包装和脉冲强光对鲜切马铃薯褐变及营养品质的影响. 新疆农业大学硕士学位论文, 新疆乌鲁木齐, 2022.
Wei X. Effects of Modified Atmosphere Packaging and Pulsed Light on Browning and Nutritional Quality of Fresh-cut Potatoes. MS Thesis of Xinjiang Agricultural University, Urumqi, Xinjiang, China, 2022 (in Chinese with English abstract). 
[30] 李云云, 赵春霞, 程曦, 李婧, 张敏. 高氧气调包装对双孢蘑菇微生物及其品质的影响. 食品科学, 2016, 37(2): 261–265.
Li Y Y, Zhao C X, Cheng X, Li J, Zhang M. Effects of high-oxygen modified atmosphere packaging on microorganisms and quality maintenance in Agaricus bisporus. Food Sci, 2016, 37(2): 261–265 (in Chinese with English abstract). 
[31] 张睿, 王秀娟, 高伟. 植物激素对次生代谢产物的调控研究. 中国中药杂志, 2020, 45: 4205–4210.
Zhang R, Wang X J, Gao W. Regulation mechanism of plant hormones on secondary metabolites. China J Chin Mater Med‌, 2020, 45: 4205–4210 (in Chinese with English abstract).
[32] 朱迪, 王冰冰, 贺苗苗. 马铃薯GH3基因家族成员的鉴定及表达分析. 农业生物技术学报, 2025, 33: 498–512.
Zhu D, Wang B B, He M M. Identification and expression analysis of GH3 gene family members in potato (Solanum tuberosum). J Agric Biotechnol, 2025, 33: 498–512 (in Chinese with English abstract). 
[33] Sonnewald S, Sonnewald U. Regulation of potato tuber sprouting. Planta, 2014, 239: 27–38.
[34] Boivin M, Bourdeau N, Barnabé S, Desgagné-Penix I. Sprout suppressive molecules effective on potato (Solanum tuberosum) tubers during storage: a review. Am J Potato Res, 2020, 97: 451–463.
[35] 毛林莉. 马铃薯低温贮藏及回温过程糖代谢机制研究. 武汉轻工大学硕士学位论文, 湖北武汉, 2023.
Mao L L. Study of Sugar Metabolism During Low Temperature Storage and Rewarming of Potato. MS Thesis of Wuhan Polytechnic University, Wuhan, Hubei, China, 2023 (in Chinese with English abstract).
[36] Rushton P J, Somssich I E, Ringler P, Shen Q J. WRKY transcription factors. Trends Plant Sci, 2010, 15: 247–258.
[37] Ding Z J, Yan J Y, Li G X, Wu Z C, Zhang S Q, Zheng S J. WRKY41 controls Arabidopsis seed dormancy via direct regulation of ABI3 transcript levels not downstream of ABA. Plant J, 2014, 79: 810–823.
[38] 陈彩锦, 马琳, 包明芳, 蒋庆雪, 张国辉, 张尚沛, 高婷, 王学敏, 刘文辉. WRKY基因家族在植物中的研究进展. 草地学报, 2025, 33: 2059–2069.
Chen C J, Ma L, Bao M F, Jiang Q X, Zhang G H, Zhang S P, Gao T, Wang X M, Liu W H. Research Progress on the Role of WRKY Family Genes in Plants. Acta Agrest Sin, 2025, 33: 2059–2069 (in Chinese with English abstract)
[1] LI Qiu-Yun, LI Shi-Gui, FAN Jun-Liang, LIU Hao-Tian, ZHAO Xiao-Bin, LYU Shuo, WANG Yan-Hao, YUE Yun, ZHANG Ning, SI Huai-Jun. Effects of ionic zinc and nano-zinc on physiological characteristics, yield, and quality of potato [J]. Acta Agronomica Sinica, 2025, 51(7): 1838-1849.
[2] YIN Yu-Meng, WANG Yan-Nan, KANG Zhi-He, QIAO Shou-Chen, BIAN Qian-Qian, LI Ya-Wei, CAO Guo-Zheng, ZHAO Guo-Rui, XU Dan-Dan, YANG Yu-Feng. Cloning and functional analysis of glutathione S-transferase gene IbGSTU7 in sweetpotato [J]. Acta Agronomica Sinica, 2025, 51(7): 1736-1746.
[3] SHAO Shun-Wei, CHEN Zhuo, LAN Zhen-Dong, CAI Xing-Kui, ZOU Hua-Fen, LI Chen-Xi, TANG Jing-Hua, ZHU Xi, ZHANG Yu, DONG Jian-Ke, JIN Hui, SONG Bo-Tao. QTL mapping of tuber eye depth based on BSA-seq technique [J]. Acta Agronomica Sinica, 2025, 51(7): 1725-1735.
[4] YANG Shuang, BAI Lei, GUO Hua-Chun, MIAO Ya-Sheng, LI Jun. Morphological characteristics, types, and developmental process of potato leaf trichomes [J]. Acta Agronomica Sinica, 2025, 51(6): 1582-1598.
[5] XU Jie, XIA Lu-Lu, TANG Zhen-San, LI Wen-Li, ZHAO Tian-Tian, CHENG Li-Xiang, ZHANG Feng. Odor quality analysis of potato tuber after steaming and baking [J]. Acta Agronomica Sinica, 2025, 51(5): 1409-1420.
[6] ZHAO Xi-Juan, ZHANG Fan, LIU Sheng-Xuan, QIN Jun, CHEN Hui-Lan, LIN Yuan, LUO Hong-Bing, LIU Yi, SONG Bo-Tao, HU Xin-Xi, WANG En-Shuang. Optimization of extraction methods for four endogenous hormones in potatoes and analysis of their content during the process of releasing dormancy in tubers [J]. Acta Agronomica Sinica, 2025, 51(4): 1050-1060.
[7] YANG Xin-Yue, XIAO Ren-Hao, ZHANG Lin-Xi, TANG Ming-Jun, SUN Guang-Yan, DU Kang, LYU Chang-Wen, TANG Dao-Bin, WANG Ji-Chun. Effects of waterlogging at different growth stages on the stress-resistance physiological characteristics and yield formation of sweet potato [J]. Acta Agronomica Sinica, 2025, 51(3): 744-754.
[8] SU Ming, WU Jia-Rui, HONG Zi-Qiang, LI Fan-Guo, ZHOU Tian, WU Hong-Liang, KANG Jian-Hong. Response of potato tuber starch formation and yield to phosphorus fertilizer reduction in the semi-arid region of Northwest China [J]. Acta Agronomica Sinica, 2025, 51(3): 713-727.
[9] HUO Ru-Xue, GE Xiang-Han, SHI Jia, LI Xue-Rui, DAI Sheng-Jie, LIU Zhen-Ning, LI Zong-Yun. Functional analysis of the sweetpotato histidine kinase protein IbHK5 in response to drought and salt stresses [J]. Acta Agronomica Sinica, 2025, 51(3): 650-666.
[10] WANG Yu-Xin, CHEN Tian-Yu, ZHAI Hong, ZHANG Huan, GAO Shao-Pei, HE Shao-Zhen, ZHAO Ning, LIU Qing-Chang. Cloning and characterization of drought tolerance function of kinase gene IbHT1 in sweetpotato [J]. Acta Agronomica Sinica, 2025, 51(2): 301-311.
[11] SONG Qian-Na, SONG Hui-Yang, LI Jing-Hao, DUAN Yong-Hong, MEI Chao, FENG Rui-Yun. Response of transcription factor StFBH3 under abiotic stress in potato [J]. Acta Agronomica Sinica, 2025, 51(1): 247-259.
[12] QI Jia-Min, XU Chun-Miao, XIAO Bin. Genome-wide identification and expression analysis of TIFY gene family in potato (Solanum tuberosum L.) [J]. Acta Agronomica Sinica, 2024, 50(9): 2297-2309.
[13] ZHOU Hong-Yuan, YANG Hui-Qin, LUO Wei, SHI Zhen-Ming, MA Ling. Screening and functional identification of chlorogenic acid regulatory factors in potato [J]. Acta Agronomica Sinica, 2024, 50(7): 1740-1749.
[14] LIU Yuan-Yuan, DONG Jian-Ke, YING Jing-Wen, MEI Wen-Xiang, CHENG Gang, GUO Jing-Jing, JIAO Wen-Biao, SONG Bo-Tao. Creating cold resistant germplasm of potato using Solanum boliviense [J]. Acta Agronomica Sinica, 2024, 50(6): 1384-1393.
[15] LIU Zhen, CHEN Li-Min, LI Zhi-Tao, ZHU Jin-Yong, WANG Wei-Lu, QI Zhe-Ying, YAO Pan-Feng, BI Zhen-Zhen, SUN Chao, BAI Jiang-Ping, LIU Yu-Hui. Genome-wide identification and expression analysis of ARM gene family in potato (Solanum tuberosum L.) [J]. Acta Agronomica Sinica, 2024, 50(6): 1451-1466.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!