Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2025, Vol. 51 ›› Issue (7): 1736-1746.doi: 10.3724/SP.J.1006.2025.44141

• CROP GENETICS & BREEDING · GERMPLASM RESOURCES · MOLECULAR GENETICS • Previous Articles     Next Articles

Cloning and functional analysis of glutathione S-transferase gene IbGSTU7 in sweetpotato

YIN Yu-Meng1,**,WANG Yan-Nan1,**,KANG Zhi-He1,QIAO Shou-Chen1,BIAN Qian-Qian1,LI Ya-Wei1,CAO Guo-Zheng1,ZHAO Guo-Rui1,XU Dan-Dan2,YANG Yu-Feng1,*   

  1. 1 Cereal Crop Research Institute, Henan Academy of Agricultural Sciences, Zhengzhou 450002, Henan, China; 2 Tongxu Academy of Agricultural Sciences, Kaifeng 475400, Henan, China
  • Received:2024-08-30 Revised:2025-04-27 Accepted:2025-04-27 Online:2025-07-12 Published:2025-05-07
  • Supported by:
    This study was supported by the China Agriculture Research System of MOF and MARA (CARS-10), the Special Fund for Henan Agriculture Research System (HARS-22-04-G1), the Outstanding Youth Science and Technology Fund of Henan Academy of Agricultural Sciences (2024YQ17), the Autonomous Innovation Project of Henan Academy of Agricultural Sciences (2024ZC014), and the Central Government Guides Local Funds for Scientific and Technological Development of Henan Province (Z20231811177). 

Abstract:

In this study, the IbGSTU7 gene was cloned based on our previously obtained transcriptome data from a sweetpotato skin color mutant. The open reading frame (ORF) of IbGSTU7 is 660 bp in length and encodes a protein comprising 219 amino acids. Protein sequence analysis revealed that IbGSTU7 is an acidichydrophilic, and structurally stable protein, showing the closest phylogenetic relationship to its homolog in Ipomoea triloba, a wild relative of sweetpotato. Subcellular localization analysis indicated that IbGSTU7 is localized in the cytoplasm. Quantitative RT-PCR analysis demonstrated that IbGSTU7 is expressed across major sweetpotato tissues, with the highest transcript level observed in the skin of storage roots. Furthermore, its expression was inducible by drought, salt, and exogenous abscisic acid (ABA) treatments. The IbGSTU7 gene was subsequently overexpressed in sweetpotato using an Agrobacterium tumefaciens-mediated transformation method. In overexpression (OE) lines, anthocyanin content in the skin of storage roots and the expression levels of anthocyanin biosynthesis-related genes IbPAL and IbUFGT were significantly increased. Additionally, the OE plants exhibited enhanced tolerance to PEG-simulated drought stress, as evidenced by significant increases in fresh weight and root length compared to wild-type (WT) plants. Under drought conditions, OE lines showed a marked reduction in hydrogen peroxide (H2O2) levels, accompanied by significant upregulation of reactive oxygen species (ROS) scavenging-related genes IbMDHAR and IbPOD. These findings provide novel insights into the role of IbGSTU7 in regulating anthocyanin accumulation and improving drought stress tolerance in sweetpotato.

Key words: sweetpotato, IbGSTU7, overexpression, anthocyanin, drought resistance

[1] 王雁楠, 陈金金, 卞倩倩, 胡琳琳, 张莉, 尹雨萌, 乔守晨, 曹郭郑, 康志河, 赵国瑞, . 转录组与代谢组联合分析揭示遮阴胁迫下甘薯的代谢响应途径. 作物学报, 2023, 49: 17851798.
Wang Y N, Chen J J, Bian Q Q, Hu L L, Zhang L, Yin Y M, Qiao S C, Cao G Z, Kang Z H, Zhao G R, et al. Integrated analysis of transcriptome and metabolome reveals the metabolic response pathways of sweetpotato under shade stress. Acta Agron Sin, 2023, 49: 1785–1798 (in Chinese with English abstract).

[2] 王欣, 李强, 曹清河, 马代夫. 中国甘薯产业和种业发展现状与未来展望. 中国农业科学, 2021, 54: 483492.
Wang X, Li Q, Cao Q H, Ma D F. Current status and future prospective of sweetpotato production and seed industry in China. Sci Agric Sin, 2021, 54: 483–492 (in Chinese with English abstract).

[3] Yan H, Ma M, Ahmad M Q, Arisha M H, Tang W, Li C, Zhang Y G, Kou M, Wang X, Gao R F, et al. High-density single nucleotide polymorphisms genetic map construction and quantitative trait locus mapping of color-related traits of purple sweet potato [Ipomoea batatas (L.) Lam.]. Front Plant Sci, 2022, 12: 797041.

[4] Drapal M, Rossel G, Heider B, Fraser P D. Metabolic diversity in sweet potato (Ipomoea batatas, Lam.) leaves and storage roots. Hortic Res, 2019, 6: 2.

[5] Khoo H E, Azlan A, Tang S T, Lim S M. Anthocyanidins and anthocyanins: colored pigments as food, pharmaceutical ingredients, and the potential health benefits. Food Nutr Res, 2017, 61: 1361779.

[6] Holton T A, Cornish E C. Genetics and biochemistry of anthocyanin biosynthesis. Plant Cell, 1995, 7: 1071–1083.

[7] Sunil L, Shetty N P. Biosynthesis and regulation of anthocyanin pathway genes. Appl Microbiol Biotechnol, 2022, 106: 1783–1798.

[8] Honda C, Kotoda N, Wada M, Kondo S, Kobayashi S, Soejima J, Zhang Z L, Tsuda T, Moriguchi T. Anthocyanin biosynthetic genes are coordinately expressed during red coloration in apple skin. Plant Physiol Biochem, 2002, 40: 955–962.

[9] Petroni K, Tonelli C. Recent advances on the regulation of anthocyanin synthesis in reproductive organs. Plant Sci, 2011, 181: 219–229.

[10] 刘泽. 花青素还原酶调控绿豆芽下胚轴花青苷积累的机理. 南京农业大学硕士学位论文, 江苏南京, 2022.
Liu Z. Mechanism of Anthocyanin Reductase Regulation of Anthocyanin Accumulation in Mung Bean Hypocotyl. MS Thesis of Nanjing Agricultural University, Nanjing, Jiangsu, China, 2022 (in Chinese with English abstract).

[11] Goodman C D, Casati P, Walbot V. A multidrug resistance-associated protein involved in anthocyanin transport in Zea mays. Plant Cell, 2004, 16: 1812–1826.

[12] Zhao J. Flavonoid transport mechanisms: how to go, and with whom. Trends Plant Sci, 2015, 20: 576–585.

[13] Marrs K A, Alfenito M R, Lloyd A M, Walbot V. A glutathione S-transferase involved in vacuolar transfer encoded by the maize gene Bronze-2. Nature, 1995, 375: 397–400.

[14] Alfenito M R, Souer E, Goodman C D, Buell R, Mol J, Koes R, Walbot V. Functional complementation of anthocyanin sequestration in the vacuole by widely divergent glutathione S-transferases. Plant Cell, 1998, 10: 1135–1149.

[15] Kitamura S, Shikazono N, Tanaka A. TRANSPARENT TESTA 19 is involved in the accumulation of both anthocyanins and proanthocyanidins in Arabidopsis. Plant J, 2004, 37: 104–114.

[16] Conn S, Curtin C, Bézier A, Franco C, Zhang W. Purification, molecular cloning, and characterization of glutathione S-transferases (GSTs) from pigmented Vitis vinifera L. cell suspension cultures as putative anthocyanin transport proteins. J Exp Bot, 2008, 59: 3621–3634.

[17] Hu B, Zhao J T, Lai B, Qin Y H, Wang H C, Hu G B. LcGST4 is an anthocyanin-related glutathione S-transferase gene in Litchi chinensis Sonn. Plant Cell Rep, 2016, 35: 831–843.

[18] 刘禹姗, 陈丽, 邓宇, 蔡莉, 李亚东, 孙海悦. 越橘谷胱甘肽巯基转移酶基因的克隆及表达. 吉林农业大学学报, 2017, 39: 423431.
Liu Y S, Chen L, Deng Y, Cai L, Li Y D, Sun H Y. Cloning and expression analysis of glutathione S-transferase gene in blueberry. J Jilin Agric Univ, 2017, 39: 423–431 (in Chinese with English abstract).

[19] Zhang Y Y, Zhang Z N, Guo S J, Qu P Y, Liu J P, Cheng C Z. Characterization of blueberry glutathione S-transferase (GST) genes and functional analysis of VcGSTF8 reveal the role of ‘MYB/bHLH-GSTF’ module in anthocyanin accumulation. Ind Crops Prod, 2024, 218: 119006.

[20] Qiu L K, Chen K, Pan J, Ma Z Y, Zhang J J, Wang J, Cheng T R, Zheng T C, Pan H T, Zhang Q X. Genome-wide analysis of glutathione S-transferase genes in four Prunus species and the function of PmGSTF2, activated by PmMYBa1, in regulating anthocyanin accumulation in Prunus mume. Int J Biol Macromol, 2024, 281: 136506.

[21] Jiang S H, Chen M, He N B, Chen X L, Wang N, Sun Q G, Zhang T L, Xu H F, Fang H C, Wang Y C, et al. MdGSTF6, activated by MdMYB1, plays an essential role in anthocyanin accumulation in apple. Hortic Res, 2019, 6: 40.

[22] Shao D N, Li Y J, Zhu Q H, Zhang X Y, Liu F, Xue F, Sun J. GhGSTF12, a glutathione S-transferase gene, is essential for anthocyanin accumulation in cotton (Gossypium hirsutum L.). Plant Sci, 2021, 305: 110827.

[23] Kou M, Liu Y J, Li Z Y, Zhang Y G, Tang W, Yan H, Wang X, Chen X G, Su Z X, Arisha M H, et al. A novel glutathione S-transferase gene from sweetpotato, IbGSTF4, is involved in anthocyanin sequestration. Plant Physiol Biochem, 2019, 135: 395–403.

[24] Gill S S, Tuteja N. Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol Biochem, 2010, 48: 909–930.

[25] Dong T T, Han R P, Yu J W, Zhu M K, Zhang Y, Gong Y, Li Z Y. Anthocyanins accumulation and molecular analysis of correlated genes by metabolome and transcriptome in green and purple asparaguses (Asparagus officinalis, L.). Food Chem, 2019, 271: 18–28.

[26] Nakabayashi R, Mori T, Saito K. Alternation of flavonoid accumulation under drought stress in Arabidopsis thaliana. Plant Signal Behav, 2014, 9: e29518.

[27] Xu Z H, Mahmood K, Rothstein S J. ROS induces anthocyanin production via late biosynthetic genes and anthocyanin deficiency confers the hypersensitivity to ROS-generating stresses in Arabidopsis. Plant Cell Physiol, 2017, 58: 1364–1377.

[28] Wang J, Li D L, Peng Y X, Cai M H, Liang Z, Yuan Z P, Du X M, Wang J H, Schnable P S, Gu R L, et al. The anthocyanin accumulation related ZmBZ1, facilitates seedling salinity stress tolerance via ROS scavenging. Int J Mol Sci, 2022, 23: 16123.

[29] Hu Y F, Zhao H Y, Xue L Y, Nie N, Zhang H, Zhao N, He S Z, Liu Q C, Gao S P, Zhai H. IbMYC2 contributes to salt and drought stress tolerance via modulating anthocyanin accumulation and ROS-scavenging system in sweet potato. Int J Mol Sci, 2024, 25: 2096.

[30] Yang Y F, Shi D Y, Wang Y N, Zhang L, Chen X G, Yang X P, Xiong H Z, Bhattarai G, Ravelombola W, Olaoye D, et al. Transcript profiling for regulation of sweet potato skin color in Sushu8 and its mutant Zhengshu20. Plant Physiol Biochem, 2020, 148: 1–9.

[31] Strasser R, Bondili J S, Schoberer J, Svoboda B, Liebminger E, Glössl J, Altmann F, Steinkellner H, Mach L. Enzymatic properties and subcellular localization of Arabidopsis beta-N-acetylhexosaminidases. Plant Physiol, 2007, 145: 5–16.

[32] 张铅, 禹阳, 刘帅, 贾赵东, 马佩勇, 金昊秀, 郭尚洙, 边小峰. 一种高效的甘薯遗传转化方法. 江苏师范大学学报(自然科学版), 2023, 41(2): 1823.
Zhang Q, Yu Y, Liu S, Jia Z D, Ma P Y, Jin H X, Guo S Z, Bian X F. An efficient method for sweetpotato genetic transformation. J Jiangsu Norm Univ (Nat Sci Edn), 2023, 41(2): 18–23 (in Chinese with English abstract).

[33] 任志彤. 过表达IbCbEFPIbSnRK1基因甘薯植株的特性鉴定及分子机理分析. 中国农业大学博士学位论文, 北京, 2018.
Ren Z T. Characteristic Identification and Molecular Mechanism of Sweetpotato (Ipomoea batatas (L.) Lam.) Plants Overexpressing IbCbEFP and IbSnRKl. PhD Dissertation of China Agricultural University, Beijing, China, 2018 (in Chinese with English abstract).

[34] 王学奎, 黄见良. 植物生理生化实验原理与技术3. 北京: 高等教育出版社, 2015. pp 131–133.
Wang X K, Huang J L. Principles and Techniques of Plant Physiological Biochemical Experiment. 3rd edn. Beijing: Higher Education Press, 2015. pp 131–133 (in Chinese).

[35] Wang H X, Yang J, Zhang M, Fan W J, Firon N, Pattanaik S, Yuan L, Zhang P. Altered phenylpropanoid metabolism in the maize lc-expressed sweet potato (Ipomoea batatas) affects storage root development. Sci Rep, 2016, 6: 18645.

[36] 张亚真, 张芬, 王丽鸳, 韦康, 成浩. 植物谷胱甘肽转移酶在类黄酮累积中的作用. 植物生理学报, 2015, 51: 18151820.
Zhang Y Z, Zhang F, Wang L Y, Wei K, Cheng H. Plant glutathione S-transferases: roles in flavonoid accumulation. Plant Physiol J, 2015, 51: 1815–1820 (in Chinese with English abstract).

[37] Sylvestre-Gonon E, Law S R, Schwartz M, Robe K, Keech O, Didierjean C, Dubos C, Rouhier N, Hecker A. Functional, structural and biochemical features of plant serinyl-glutathione transferases. Front Plant Sci, 2019, 10: 608.

[38] Zhao Y W, Wang C K, Huang X Y, Hu D G. Genome-wide analysis of the glutathione S-transferase (GST) genes and functional identification of MdGSTU12 reveals the involvement in the regulation of anthocyanin accumulation in apple. Genes, 2021, 12: 1733.

[39] 王璐, 戴思兰, 金雪花, 黄河, 洪艳. 植物花青素苷转运机制的研究进展. 生物工程学报, 2014, 30: 848863.
Wang L, Dai S L, Jin X H, Huang H, Hong Y. Advances in plant anthocyanin transport mechanism. Chin J Biotechnol, 2014, 30: 848–863 (in Chinese with English abstract).

[40] Jiang H W, Liu M J, Chen I C, Huang C H, Chao L Y, Hsieh H L. A glutathione S-transferase regulated by light and hormones participates in the modulation of Arabidopsis seedling development. Plant Physiol, 2010, 154: 1646–1658.

[41]谢开珍, 刘佳琪, 任磊, 张婷婷, 王爱民. 甘薯苯丙烷类代谢及其酶基因研究进展. 植物学研究, 2019, 8: 355–365. 
Xie K Z, Liu J Q, Ren L, Zhang T T, Wang A M. Advances in phenylaprapanoid metabolism and its enzyme genes in sweet potato. Bot Res, 2019, 8: 355–365 (in Chinese with English abstract).

[42] Nakabayashi R, Saito K. Integrated metabolomics for abiotic stress responses in plants. Curr Opin Plant Biol, 2015, 24: 10–16.

[43] Mittler R, Zandalinas S I, Fichman Y, Van Breusegem F. Reactive oxygen species signalling in plant stress responses. Nat Rev Mol Cell Biol, 2022, 23: 663–679.

[44] Thirumalaikumar V P, Devkar V, Mehterov N, Ali S, Ozgur R, Turkan I, Mueller-Roeber B, Balazadeh S. NAC transcription factor JUNGBRUNNEN1 enhances drought tolerance in tomato. Plant Biotechnol J, 2018, 16: 354–366.

[45] Qi Q, Dong Y Y, Liang Y L, Li K Z, Xu H N, Sun X D. Overexpression of SlMDHAR in transgenic tobacco increased salt stress tolerance involving S-nitrosylation regulation. Plant Sci, 2020, 299: 110609.

[46] Aleem M, Riaz A, Raza Q, Aleem M, Aslam M, Kong K K, Atif R M, Kashif M, Bhat J A, Zhao T J. Genome-wide characterization and functional analysis of class III peroxidase gene family in soybean reveal regulatory roles of GsPOD40 in drought tolerance. Genomics, 2022, 114: 45–60. 

[1] XIA Qi, GUO Ying, WANG Kun-Mei, WANG Si-Yi, JU Jian-Ye, PENG Ya-Wen, LIU Zhong-Song, XIA Shi-Tou. Correlation between salicylic acid and anthocyanins accumulation in seeds of different varieties in Brassica napus [J]. Acta Agronomica Sinica, 2025, 51(5): 1189-1197.
[2] JIN Xin-Xin, SONG Ya-Hui, SU Qiao, YANG Yong-Qing, LI Yu-Rong, WANG Jin. Identification and comprehensive evaluation of drought resistance in high oleic acid Jihua peanut varieties [J]. Acta Agronomica Sinica, 2025, 51(3): 797-811.
[3] HUO Ru-Xue, GE Xiang-Han, SHI Jia, LI Xue-Rui, DAI Sheng-Jie, LIU Zhen-Ning, LI Zong-Yun. Functional analysis of the sweetpotato histidine kinase protein IbHK5 in response to drought and salt stresses [J]. Acta Agronomica Sinica, 2025, 51(3): 650-666.
[4] WANG Yu-Xin, CHEN Tian-Yu, ZHAI Hong, ZHANG Huan, GAO Shao-Pei, HE Shao-Zhen, ZHAO Ning, LIU Qing-Chang. Cloning and characterization of drought tolerance function of kinase gene IbHT1 in sweetpotato [J]. Acta Agronomica Sinica, 2025, 51(2): 301-311.
[5] LIU Zhen, CHEN Li-Min, LI Zhi-Tao, ZHU Jin-Yong, WANG Wei-Lu, QI Zhe-Ying, YAO Pan-Feng, BI Zhen-Zhen, SUN Chao, BAI Jiang-Ping, LIU Yu-Hui. Genome-wide identification and expression analysis of ARM gene family in potato (Solanum tuberosum L.) [J]. Acta Agronomica Sinica, 2024, 50(6): 1451-1466.
[6] ZHU Xiao-Ya, ZHANG Qiang-Qiang, ZHAO Peng, LIU Ming, WANG Jing, JIN Rong, YU Yong-Chao, TANG Zhong-Hou. Transcriptome and metabolomic analysis of foliar spraying of Salvia miltiorrhiza carbon dots to alleviate low phosphorus stress in sweetpotato [J]. Acta Agronomica Sinica, 2024, 50(2): 383-393.
[7] WU Li-Fen, XIA Chuan, ZHANG Li-Chao, KONG Xiu-Ying, CHEN Jing-Tang, LIU Xu. Functional analysis of TaEMF2 in regulating wheat heading date [J]. Acta Agronomica Sinica, 2024, 50(12): 2940-2949.
[8] RONG Yu-Xuan, HUI Liu-Yang, WANG Pei-Qi, SUN Si-Min, ZHANG Xian-Long, YUAN Dao-Jun, YANG Xi-Yan. Identification of the CLE gene family in Gossypium hirsutum and functional analysis of the drought resistance of GhCLE13 [J]. Acta Agronomica Sinica, 2024, 50(12): 2925-2939.
[9] WANG Ying-Heng, CUI Li-Li, CAI Qiu-Hua, LIN Qiang, WU Fang-Xi, CHEN Fei-He, XIE Hong-Guang, ZHU Yong-Sheng, CHEN Li-Ping, XIE Hua-An, ZHANG Jian-Fu. Metabolome and transcriptome analysis reveal molecular response to drought stress in indica rice Fuxiangzhan [J]. Acta Agronomica Sinica, 2024, 50(12): 2998-3012.
[10] SU Yi-Jun, ZHAO Lu-Kuan, TANG Fen, DAI Xi-Bin, SUN Ya-Wei, ZHOU Zhi-Lin, LIU Ya-Ju, CAO Qing-He. Genetic diversity and population structure analysis of 378 introduced sweetpotato germplasm collections [J]. Acta Agronomica Sinica, 2023, 49(9): 2582-2593.
[11] JIA Rui-Xue, CHEN Yi-Hang, ZHANG Rong, TANG Chao-Chen, WANG Zhang-Ying. Simultaneous determination of 13 carotenoids in sweetpotato by Ultra- Performance Liquid Chromatography [J]. Acta Agronomica Sinica, 2023, 49(8): 2259-2274.
[12] WANG Yan-Nan, CHEN Jin-Jin, BIAN Qian-Qian, HU Lin-Lin, ZHANG Li, YIN Yu-Meng, QIAO Shou-Chen, CAO Guo-Zheng, KANG Zhi-He, ZHAO Guo-Rui, YANG Guo-Hong, YANG Yu-Feng. Integrated analysis of transcriptome and metabolome reveals the metabolic response pathways of sweetpotato under shade stress [J]. Acta Agronomica Sinica, 2023, 49(7): 1785-1798.
[13] ZHU Xu-Dong, YANG Lan-Feng, CHEN Yuan-Yuan, HOU Ze-Hao, LUO Yi-Rou, XIONG Ze-Hao, FANG Zheng-Wu. Biological functional analysis of common buckwheat (Fagopyrum esculentum) FeSGT1 gene in enhancing drought stress resistance [J]. Acta Agronomica Sinica, 2023, 49(6): 1573-1583.
[14] CHEN Yi-Hang, TANG Chao-Chen, ZHANG Xiong-Jian, YAO Zhu-Fang, JIANG Bing-Zhi, WANG Zhang-Ying. Construction of core collection of sweetpotato based on phenotypic traits and SSR markers [J]. Acta Agronomica Sinica, 2023, 49(5): 1249-1261.
[15] LIU Ming, FAN Wen-Jing, ZHAO Peng, JIN Rong, ZHANG Qiang-Qiang, ZHU Xiao-Ya, WANG Jing, LI Qiang. Genotypes screening and comprehensive evaluation of sweetpotato tolerant to low potassium stress at seedling stage [J]. Acta Agronomica Sinica, 2023, 49(4): 926-937.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Li Shaoqing, Li Yangsheng, Wu Fushun, Liao Jianglin, Li Damo. Optimum Fertilization and Its Corresponding Mechanism under Complete Submergence at Booting Stage in Rice[J]. Acta Agronomica Sinica, 2002, 28(01): 115 -120 .
[2] Wang Lanzhen;Mi Guohua;Chen Fanjun;Zhang Fusuo. Response to Phosphorus Deficiency of Two Winter Wheat Cultivars with Different Yield Components[J]. Acta Agron Sin, 2003, 29(06): 867 -870 .
[3] YANG Jian-Chang;ZHANG Jian-Hua;WANG Zhi-Qin;ZH0U Qing-Sen. Changes in Contents of Polyamines in the Flag Leaf and Their Relationship with Drought-resistance of Rice Cultivars under Water Deficiency Stress[J]. Acta Agron Sin, 2004, 30(11): 1069 -1075 .
[4] Yan Mei;Yang Guangsheng;Fu Tingdong;Yan Hongyan. Studies on the Ecotypical Male Sterile-fertile Line of Brassica napus L.Ⅲ. Sensitivity to Temperature of 8-8112AB and Its Inheritance[J]. Acta Agron Sin, 2003, 29(03): 330 -335 .
[5] Wang Yongsheng;Wang Jing;Duan Jingya;Wang Jinfa;Liu Liangshi. Isolation and Genetic Research of a Dwarf Tiilering Mutant Rice[J]. Acta Agron Sin, 2002, 28(02): 235 -239 .
[6] WANG Li-Yan;ZHAO Ke-Fu. Some Physiological Response of Zea mays under Salt-stress[J]. Acta Agron Sin, 2005, 31(02): 264 -268 .
[7] TIAN Meng-Liang;HUNAG Yu-Bi;TAN Gong-Xie;LIU Yong-Jian;RONG Ting-Zhao. Sequence Polymorphism of waxy Genes in Landraces of Waxy Maize from Southwest China[J]. Acta Agron Sin, 2008, 34(05): 729 -736 .
[8] HU Xi-Yuan;LI Jian-Ping;SONG Xi-Fang. Efficiency of Spatial Statistical Analysis in Superior Genotype Selection of Plant Breeding[J]. Acta Agron Sin, 2008, 34(03): 412 -417 .
[9] WANG Yan;QIU Li-Ming;XIE Wen-Juan;HUANG Wei;YE Feng;ZHANG Fu-Chun;MA Ji. Cold Tolerance of Transgenic Tobacco Carrying Gene Encoding Insect Antifreeze Protein[J]. Acta Agron Sin, 2008, 34(03): 397 -402 .
[10] XING Guang-Nan, ZHOU Bin, ZHAO Tuan-Jie, YU De-Yue, XING Han, HEN Shou-Yi, GAI Jun-Yi. Mapping QTLs of Resistance to Megacota cribraria (Fabricius) in Soybean[J]. Acta Agronomica Sinica, 2008, 34(03): 361 -368 .