Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2025, Vol. 51 ›› Issue (7): 1725-1735.doi: 10.3724/SP.J.1006.2025.44201

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

QTL mapping of tuber eye depth based on BSA-seq technique

SHAO Shun-Wei1,2(), CHEN Zhuo1, LAN Zhen-Dong1,2, CAI Xing-Kui2, ZOU Hua-Fen1, LI Chen-Xi2, TANG Jing-Hua1, ZHU Xi1, ZHANG Yu1, DONG Jian-Ke2, JIN Hui1,*(), SONG Bo-Tao2,*()   

  1. 1Institute of South Subtropical Crop Research, Chinese Academy of Tropical Agricultural Sciences / Key Laboratory of Tropical Fruit Biology, Ministry of Agriculture and Rural Affairs / Key Laboratory for Post-harvest Physiology and Preservation of Tropical Horticultural Products of Hainan, Zhanjiang 524091, Guangdong, China
    2National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops / Key Laboratory of Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs / Huazhong Agricultural University, Wuhan 430070, Hubei, China
  • Received:2024-12-03 Accepted:2025-04-27 Online:2025-07-12 Published:2025-05-07
  • Contact: *E-mail: jh3635315@sina.com; E-mail: songbotao@mail.hzau.edu.cn
  • Supported by:
    Guangdong Provincial Key Areas Research and Development Program(2022B0202060001);Special Fund for Basic Scientific Research Operating Expenses of Central-level Public Welfare Research Institutes(1630062024011);Hainan Provincial Natural Science Foundation Youth Fund(323QN296);Hainan Provincial Natural Science Foundation Youth Fund(323QN328);Regional Fund of the National Natural Science Foundation of China(32360459)

Abstract:

Eye depth is an important trait of potato tubers, significantly affecting both their appearance and processing quality. To identify quantitative trait loci (QTLs) associated with eye depth, a cross was made between the tetraploid deep-eyed variety “Hua Shu 12” (female) and the shallow-eyed advanced line “Tian 2002-4-5” (male), generating 255 clonal F1 progeny. Based on field phenotypic data collected over two consecutive years, 20 deep-eyed and 20 shallow-eyed individuals were selected to construct bulks for QTL mapping. The BSA-seq approach was employed to detect QTLs related to eye depth, and combined with traditional QTL mapping methods, a complete interval mapping analysis was conducted to construct a genetic linkage map. Two QTLs associated with eye depth were successfully identified. Phenotypic correlation analysis across both years suggested that tuber eye depth is primarily controlled by genetic factors. The LOD score for locus qEyd10.1 on chromosome 10 was 4.96, with a phenotypic variance explained (PVE) of 14.49%, while qEyd3.1 on chromosome 3 had a LOD score of 3.29 and a PVE of 10.18%. Notably, qEyd3.1 corresponds to a previously reported eye depth locus, whereas qEyd10.1 represents a novel QTL. Both loci exhibited negative additive effects, indicating that the allele responsible for reduced eye depth was inherited from the shallow-eyed parent “Tian 2002-4-5”. Through candidate gene annotation within the mapped intervals and analysis of gene structural variation between deep- and shallow-eyed materials, four candidate genes: Soltu.DM.10G029390.1, Soltu.DM.03G036540.1, Soltu.DM.03G036140.1, and Soltu.DM.03G036580.1 were preliminarily identified as potentially associated with eye depth. This study, by integrating BSA-seq with conventional QTL mapping in autotetraploid potato, provides a preliminary identification of candidate genes regulating tuber eye depth. These findings lay a foundation for future gene cloning and genetic mechanism studies, and offer a valuable reference for breeding new tetraploid potato varieties with shallower eyes.

Key words: potato, eye depth, QTL mapping, bulked segregant analysis sequencing, genetic linkage map

Fig. 1

Identification of tuber eye depth in an F1 segregating population A: phenotypic scale of eye depth from level 1 (very shallow) to level 5 (very deep); B: phenotypic frequency distribution of the F1 population in 2023-2024, with the X-axis representing five levels of eye depth and the Y-axis showing the corresponding frequency."

Table 1

Descriptive statistics of tuber eye depth in the F1 generation segregating population"

年份Year 平均值Mean 标准差SD 变异系数CV (%) 峰度Kurt 偏度Skew
2023 2.40 1.05 43.75 -0.24 0.54
2024 2.44 1.02 41.80 -0.03 0.59

Table 2

Correlation analysis of tuber eye depth over two years in the F1 segregating population"

年份 Year 2023ZJ 2024ZJ
2023ZJ 1.00 0.85**
2024ZJ 0.85** 1.00

Table 3

Quality control analysis of sequencing data"

样本名
Sample name
总碱基数
Total bases (bp)
Q20碱基占比
Q20 base (%)
Q30碱基占比
Q30 base (%)
比对率
Mapping rate (%)
GC含量
GC content (%)
深芽眼混池Deep-eyed DNA pool 14,939,252,950 97.36 92.64 98.92 37.13
浅芽眼混池Shallow-eyed DNA pool 16,436,302,586 97.40 92.72 99.00 37.39

Fig. 2

Detection and annotation of SNPs and InDels A: SNP annotation results; B: InDel annotation results."

Fig. 3

BSA-seq analysis for identifying candidate genomic regions associated with tuber eye depth in potato A: ED4 association results; The X-axis represents the distribution of InDel positions on the chromosome, while the Y-axis represents the signal values corresponding to the ED algorithm. The black line represents the Tri-kernel-smooth model fit calculated for all InDel sites, and the orange line indicates the threshold. B: DeepBSA association results using different algorithms; The X-axis represents the distribution of SNP positions on the chromosome, while the Y-axis represents the signal values corresponding to different algorithms. The red line represents the Tri-kernel-smooth model fit calculated for all SNP sites, and the blue line indicates the default threshold."

Table S1

Marker information for constructing genetic maps"

位置
Position (bp)
引物名称
Primer name
正向引物
Forward sequence (5'-3')
反向引物
Reverse sequence (5'-3')
58,290,035 indel0307 GTCTGAAGCACTGTGGAG CTAACAGCATTGATGGATGG
58,318,797 indel0309 ACTGGAGATAGAGATATTGC CAGTGGTCTATCGTATGAAT
58,422,470 indel0314 CACCTTCAGATGTCATTACCT ACTTACTCCTTGGCAGAATAG
58,585,026 indel0323 CGGGTCAAATTGGGCTAA GGCAAGTTAGACTCGGTATA
58,660,135 indel0325 GTCACCAATACCTACTGTTAC CAGAGCAATGTGTAGATGTC
59,039,795 indel0340 CGTGTGTTTATTTGGTTGTG TAGCAGAGGTGGAGTCAG
59,132,974 indel0345 AGAATAGATTCACGCTCAGT GACATCCAGTTCCACAATAC
60,152,320 indel0378 ACTCATCAGCTCAAGTAACA GCTGCTCCTCTATTTCTATG
60,185,141 indel0380 ATCTCAGCGACTAAAGTACA ATTACGGTCCGATAAGAACA
60,301,220 indel0390 CGTACTTCCGCTCCAATT CCACCGTTCTCTTCTTCAT
59,921,955 indel1050 ATTACAACGGCAACACTTC GGAATCCAGATTGAGTAGAGA
60,122,521 indel1059 TTCTATGTCTGCCATTACCA TTCTCCTCCAATGAACACAA
60,244,293 indel1069 GCTAGAGCAACCGTTCTT AATTGAAGTCCAAGCCAGTA
60,299,315 indel1077 CCTCGCTATAATAGTCATCCT GCACAGAAGAAGGTATCAGA
60,526,228 indel1087 TGCCTTGCTTACTCTTCAG TCGTTCTTTATCAGGTCACA
60,647,541 indel1097 GAATGCTTGATGGTTGCTTA CCGTATTGTGCTCTCCTC
59,999,462 indel-10-5 TTAACTGTGCCTGGAATGT GCCTAATAGACTTGCTGTTC
59,253,178 EYD10-31 CGGTTGACATTGAGTTGAAT TGTGACAAGATGATGGAGG
58,449,862 EYD10-36 GTTGGACATAAGGAAGTTCT TTGATGACATTGGACACTAC
58,525,040 EYD10-37 CGGATTCTTCGCCTGAAT AAAGGGAAGGGAATAATTGC
58,636,373 EYD10-39 TCCCATCTGTTTGCCTTAC CCTGTGAGAGTGGTGTTAC
59,935,156 i-10-6 CACTACTTACCCATCCGCTAG GTGTGGAATGTGGACTCTCAA
59,959,532 i-10-7 AGAGTTGCAGGCATTAGTAGC ACCAGTGAGATACCAAGAGGA
59,928,242 I10-6 ACAGATGTACCAGAGGAAGACA CCACAACAGTTGCGTTACCA
60,136,249 I10-17 GAGCCTTGTAGCCCAATAGTTT ATCCTCAGACATGGCAACCT
60,296,620 I10-19 GTAGTTCCAGTTCCAGTTCCA GCATTAGCATTCTTGATTCCAC

Fig. 4

QTL mapping of tuber eye depth A: genetic linkage map of qEyd10.1; B: genetic linkage map of qEyd3.1. The red line on the chromosome is the location of the QTL, and the red dashed line is the threshold line for a LOD value of 2.5."

Table 4

QTLs associated with tuber eye depth in the F1 population"

性状
Trait
染色体
Chr.
物理位置
Physical position
(bp)
图谱位置
Map position
(cM)
左侧标记
Left marker
右侧标记
Right marker
LOD 值
LOD value
表型贡献率
PVE
(%)
加性效应
Add
Eyd 10 60,122,521-60,136,249 27 I10-17 indel1059 4.96 14.49 -0.69
3 59,039,795-60,301,220 28 indel0390 indel0340 3.29 10.18 -0.31

Table S2

Candidate genes and functional prediction"

QTL 候选基因
Candidate genes
候选基因物理位置
Candidate gene physical site (bp)
基因功能注释
Gene function annotation
qEyd10.1 Soltu.DM.10G029390.1 60,131,627-60,132,517 富含半胱氨酸/组氨酸的C1结构域家族蛋白
Cysteine/histidine-rich C1 domain family protein
qEyd3.1 Soltu.DM.03G036540.1 59,516,183-59,516,315 MYB结构域蛋白; 编码特定的转录因子, DNA结合
MYB domain protein; coding specific transcription factors, DNA binding
Soltu.DM.03G036140.1 59,187,760-59,195,940 蛋白磷酸酶2A, 调节亚基PR55; 启用蛋白质磷酸酶调节因子活性, 实现蛋白质结合
Protein phosphatase 2A, regulatory subunit PR55; activate the activity of protein phosphatase regulatory factors, enabling protein binding
Soltu.DM.03G036580.1 59,541,306-59,541,454 蛋白激酶超家族蛋白; 实现蛋白质结合, 启用蛋白质丝氨酸/苏氨酸/酪氨酸激酶活性
Epidermal patterning factor proteins domain containing protein; enable protein binding and activate protein serine/threonine/tyrosine kinase activity
[1] 李结平, 单友蛟. 马铃薯育种技术的优化与新形势下的发展. 中国马铃薯, 2023, 37(3): 265-272.
Li J P, Shan Y J. Optimization on potato breeding technology and its development under new situation. Chin Potato J, 2023, 37(3): 265-272 (in Chinese with English abstract).
[2] Fan G Y, Wang Q R, Xu J F, Chen N, Zhu W W, Duan S G, Yang X H, De Jong W S, Guo Y D, Jin L P, et al. Fine mapping and candidate gene prediction of tuber shape controlling Ro locus based on integrating genetic and transcriptomic analyses in potato. Int J Mol Sci, 2022, 23: 1470.
[3] 门福义, 刘梦芸. 马铃薯栽培生理. 北京: 中国农业出版社, 1995.
Men F Y, Liu M Y. Potato Cultivation Physiology. Beijing: China Agriculture Press, 1995 (in Chinese).
[4] 刘梦芸, 门福义. 马铃薯块茎生长发育的研究. 内蒙古农牧学院学报, 1987, (2): 104-116.
Liu M Y, Men F Y. Research on the growth and development of potato tubers. J Inner Mongolia Coll Agric Animal Husb, 1987, (2): 104-116 (in Chinese).
[5] 韦孟, 许慧珍, 张宁, 司怀军, 唐勋. 中国马铃薯加工业现状调查分析及发展对策. 中国马铃薯, 2024, 38(2): 176-185.
Wei M, Xu H Z, Zhang N, Si H J, Tang X. Investigation on current situation of potato processing industry and relevant countermeasure in China. Chin Potato J, 2024, 38(2): 176-185 (in Chinese with English abstract).
[6] Zemtcova M A, Timofeeva I I. Technological assessment of potato varieties for suitability for conversion to crisps and French fries. Zaschita Kartofelya Potato Prot, 2011, 1: 17-20.
[7] 吕建春. 薄皮甜瓜(Cucumis melo L. var. chinensis pangalo)果皮花斑的遗传分析及基因定位. 中国农业科学院硕士学位论文, 北京, 2018.
Lyu J C. Inheritance and Gene Mapping of Spotted Trait in Melon (Cucumis melo L. var.chinensis Pangalo). MS Thesis of Chinese Academy of Agricultural Sciences, Beijing, China, 2018 (in Chinese with English abstract).
[8] Michelmore R W, Paran I, Kesseli R V. Identification of markers linked to disease-resistance genes by bulked segregant analysis: a rapid method to detect markers in specific genomic regions by using segregating populations. Proc Natl Acad Sci USA, 1991, 88: 9828-9832.
doi: 10.1073/pnas.88.21.9828 pmid: 1682921
[9] 周强. 玉米穗粒性状QTL的初步定位及两个百粒重QTL的验证. 河南农业大学硕士学位论文,河南郑州, 2012.
Zhou Q. QTL Detection for Ear-kernel Traits and Verification for Two 100-grain Weight QTLs in Maize. MS Thesis of Henan Agricultural University, Zhengzhou, Henan, China, 2012 (in Chinese with English abstract).
[10] 赵海燕. 基于BSA技术的水稻(Oryza sativa L.)粒长基因初步定位及候选基因分析. 华南农业大学硕士学位论文,广东广州, 2017.
Zhao H Y. Primary Mapping of Genes for Grain Length Using the Bulked Segregant Analysis Method and Analysis of Candidate Genes in Rice (Oryza sativa L.). MS Thesis of South China Agricultural University, Guangzhou, Guangdong, China, 2017 (in Chinese with English abstract).
[11] 吴建辉. 基于BSR-Seq和芯片技术的抗条锈基因Yr26候选基因分析及普通小麦成株期抗条锈QTL定位. 西北农林科技大学硕士学位论文, 陕西杨凌, 2017.
Wu J H. QTL Mapping for Adulp-Plant Resistance to Stripe Rust in Common Wheat and Candidate Gene Analysis of Yr26 Based on BSR-seq and Snp Array. MS Thesis of Northwest A&F University, Yangling, Shaanxi, China, 2017 (in Chinese with English abstract).
[12] 金兴红. 基于BSA法开发马铃薯淀粉含量相关SSR标记及候选基因的初步筛选. 内蒙古农业大学博士学位论文, 内蒙古呼和浩特, 2022.
Jin X H. Development of Potato SSR Molecular Markers Associated with Starch Content Based on BSA Method and Preliminary Screening of Candidate Genes. PhD Dissertation of Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China, 2022 (in Chinese with English abstract).
[13] 严昕, 项超, 刘荣, 李冠, 李孟伟, 李正丽, 宗绪晓, 杨涛. 基于BSA-seq技术对豌豆花色基因的精细定位. 作物学报, 2023, 49: 1006-1015.
doi: 10.3724/SP.J.1006.2023.24055
Yan X, Xiang C, Liu R, Li G, Li M W, Li Z L, Zong X X, Yang T. Fine mapping of flower colour gene in pea (Pisum sativum L.) based on BSA-seq technique. Acta Agron Sin, 2023, 49: 1006-1015 (in Chinese with English abstract).
[14] 朱文文.马铃薯块茎形状基因的遗传定位与分子标记开发. 中国农业科学院硕士学位论文, 北京, 2015.
Zhu W W. Genetic Mapping and Molecular Markers Development of Tuber Shape Gene in Potato. MS Thesis of Chinese Academy of Agricultural Sciences, Beijing, China, 2015 (in Chinese with English abstract).
[15] 金兴红, 于卓, 张霞, 于肖夏, 李佳奇, 李景伟. 基于BSA法开发马铃薯高淀粉相关SSR标记及候选基因筛选. 分子植物育种, 网络首发[2022-06-29], https://link.cnki.net/urlid/46.1068.S.20220629.1035.010.
Jin X H, Yu Z, Zhang X, Yu X X, Li J Q, Li J W. Development of potato SSR markers associated with high starch based on BSA method and screening of candidate genes. Mol Plant Breed, Published online [2022-06-29], https://link.cnki.net/urlid/46.1068.S.20220629.1035.010. (in Chinese with English abstract).
[16] 张霞, 于卓, 张海龙, 于肖夏, 杨馨月, 尹明达. 基于BSA技术的彩色马铃薯花青素含量相关SSR标记的开发与验证. 分子植物育种, 网络首发[2023-04-20], https://link.cnki.net/urlid/46.1068.S.20230420.1105.004.
Zhang X, Yu Z, Zhang H L, Yu X X, Yang X Y, Yin M D. Development of potato SSR markers associated with high starch based on BSA method and screening of candidate genes. Mol Plant Breed, Published online [2023-04-20], https://link.cnki.net/urlid/46.1068.S.20230420.1105.004. (in Chinese with English abstract).
[17] Li X Q, Jong H D, De Jong D M, De Jong W S. Inheritance and genetic mapping of tuber eye depth in cultivated diploid potatoes. Theor Appl Genet, 2005, 110: 1068-1073.
[18] 盛万民.马铃薯野生种Solanum demissum与栽培品种杂交后代的遗传分析. 东北农业大学博士学位论文, 黑龙江哈尔滨, 2009.
Sheng W M.Genetic Analysis on Hibird Populations Derived from Solanum Demissum Crossed Cultivated Varieties. PhD Dissertation of Northeast Agricultural University, Harbin, Heilongjiang, China, 2009 (in Chinese with English abstract).
[19] ŚLiwka J, Wasilewicz-Flis I, Jakuczun H, Gebhardt C. Tagging quantitative trait loci for dormancy, tuber shape, regularity of tuber shape, eye depth and flesh colour in diploid potato originated from six Solanum species. Plant Breed, 2008, 127: 49-55.
[20] Prashar A, Hornyik C, Young V, McLean K, Sharma S K, Dale M F, Bryan G J. Construction of a dense SNP map of a highly heterozygous diploid potato population and QTL analysis of tuber shape and eye depth. Theor Appl Genet, 2014, 127: 2159-2171.
doi: 10.1007/s00122-014-2369-9 pmid: 25159608
[21] Rosyara U R, De Jong W S, Douches D S, Endelman J B. Software for genome-wide association studies in autopolyploids and its application to potato. Plant Genome, 2016, 9: 1-10.
[22] Sharma S K, MacKenzie K, McLean K, Dale F, Daniels S, Bryan G J. Linkage disequilibrium and evaluation of genome-wide association mapping models in tetraploid potato. G3: Genes Genomes Genet, 2018, 8: 3185-3202.
[23] Pandey J, Scheuring D C, Koym J W, Isabel Vales M. Genomic regions associated with tuber traits in tetraploid potatoes and identification of superior clones for breeding purposes. Front Plant Sci, 2022, 13: 952263.
[24] 韩志刚.马铃薯种质主要农艺性状及淀粉含量的全基因组关联分析. 内蒙古农业大学博士学位论文, 内蒙古呼和浩特, 2021.
Han Z G. Genome-wide Association Analysis of Main Agronomic Traits and Starch Content of Potato Germplasm. PhD Dissertation of Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China, 2021 (in Chinese with English abstract).
[25] 王舰. 马铃薯种质资源遗传多样性研究及块茎性状的全基因组关联分析. 中国农业大学博士学位论文, 北京, 2017.
Wang J. Genetic Diversity Assessment of Accessions and Genome-wide Association Analysis of Tuber Characters in Potato. PhD Dissertation of China Agricultural University, Beijing, China, 2017 (in Chinese with English abstract).
[26] 史可昕, 石瑛, 张朝澍. 基于BSA-seq技术的马铃薯块茎蛋白含量基因定位与分子标记开发. 西南农业学报, 2023, 36: 505-514.
Shi K X, Shi Y, Zhang C S. Gene mapping and molecular marker development of potato tuber protein content based on BSA-seq technology. Southwest China J Agric Sci, 2023, 36: 505-514 (in Chinese with English abstract).
[27] Fan G Y, Duan S G, Yang Y T, Duan Y F, Jian Y Q, Hu J, Liu Z Y, Guo Y D, Jin L P, Xu J F, et al. Fine-mapping and candidate gene analysis of tuber eye depth in potato. Hortic Plant J, 2024, 3: 269-283.
[28] Li H, Durbin R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics, 2009, 25: 1754-1760.
doi: 10.1093/bioinformatics/btp324 pmid: 19451168
[29] Xu X, Pan S K, Cheng S F, Zhang B, Mu D S, Ni P X, Zhang G Y, Yang S, Li R Q, Wang J, et al. Genome sequence and analysis of the tuber crop potato. Nature, 2011, 475: 189-195.
[30] Hill J T, Demarest B L, Bisgrove B W, Gorsi B, Su Y C, Joseph Yost H. MMAPPR: mutation mapping analysis pipeline for pooled RNA-seq. Genome Res, 2013, 23: 687-697.
doi: 10.1101/gr.146936.112 pmid: 23299975
[31] Li Z, Chen X X, Shi S Q, Zhang H W, Wang X, Chen H, Li W F, Li L. DeepBSA: a deep-learning algorithm improves bulked segregant analysis for dissecting complex traits. Mol Plant, 2022, 15: 1418-1427.
[32] Meng L, Li H H, Zhang L Y, Wang J K. QTL IciMapping: integrated software for genetic linkage map construction and quantitative trait locus mapping in biparental populations. Crop J, 2015, 3: 269-283.
doi: 10.1016/j.cj.2015.01.001
[33] Zhang F, Qu L, Gu Y C, Xu Z H, Xue H W. Resequencing and genome-wide association studies of autotetraploid potato. Mol Hortic, 2022, 2: 6.
doi: 10.1186/s43897-022-00027-y pmid: 37789415
[34] Zhao L, Zou M L, Deng K, Xia C C, Jiang S R, Zhang C J, Ma Y Z, Dong X R, He M H, Na T C, et al. Insights into the genetic determination of tuber shape and eye depth in potato natural population based on autotetraploid potato genome. Front Plant Sci, 2023, 14: 1080666.
[35] Hara-Skrzypiec A, Śliwka J, Jakuczun H, Zimnoch-Guzowska E. QTL for tuber morphology traits in diploid potato. J Appl Genet, 2018, 59: 123-132.
doi: 10.1007/s13353-018-0433-x pmid: 29492845
[36] Totsky I V, Rozanova I V, Safonova A D, Batov A S, Gureeva Y A, Kochetov A V, Khlestkina E K. Genomic regions of Solanum tuberosum L. associated with the tuber eye depth. Vavilovskii Zhurnal Genet Selektsii, 2020, 24: 465-473.
[37] Karampelias M, Neyt P, De Groeve S, Aesaert S, Coussens G, Rolčík J, Bruno L, De Winne N, Van Minnebruggen A, Van Montagu M, et al. ROTUNDA3 function in plant development by phosphatase 2A-mediated regulation of auxin transporter recycling. Proc Natl Acad Sci USA, 2016, 113: 2768-2773.
doi: 10.1073/pnas.1501343112 pmid: 26888284
[38] Hwang I S, Choi D S, Kim N H, Kim D S, Hwang B K. The pepper cysteine/histidine-rich DC1 domain protein CaDC1 binds both RNA and DNA and is required for plant cell death and defense response. New Phytol, 2014, 201: 518-530.
doi: 10.1111/nph.12521 pmid: 24117868
[39] Saito N, Munemasa S, Nakamura Y, Shimoishi Y, Mori I C, Murata Y. Roles of RCN1, regulatory a subunit of protein phosphatase 2A, in methyl jasmonate signaling and signal crosstalk between methyl jasmonate and abscisic acid. Plant Cell Physiol, 2008, 49: 1396-1401.
doi: 10.1093/pcp/pcn106 pmid: 18650210
[40] Yuan L X, Wang J, Guan Z L, Yue F L, Wang S F, Chen Q M, Fu M R. Optimized preparation of methyl salicylate hydrogel and its inhibition effect on potato tuber sprouting. Horticulturae, 2022, 8: 866.
[41] 王派. 调控AtHARBI1-1基因的MYB转录因子筛选与功能研究. 内蒙古农业大学硕士学位论文, 内蒙古呼和浩特, 2023.
Wang P. Screening and Functional Study of MYB Transcription Factors Regulating AtHARBI1-1 Gene. MS Thesis of Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China, 2023 (in Chinese with English abstract).
[42] Tameshige T, Okamoto S, Lee J S, Aida M, Tasaka M, Torii K U, Uchida N. A secreted peptide and its receptors shape the auxin response pattern and leaf margin morphogenesis. Curr Biol, 2016, 26: 2478-2485.
doi: S0960-9822(16)30765-5 pmid: 27593376
[43] Takata N, Yokota K, Ohki S, Mori M, Taniguchi T, Kurita M. Evolutionary relationship and structural characterization of the EPF/EPFL gene family. PLoS One, 2013, 8: e65183.
[1] YANG Hai-Yang, WU Lin-Xuan, LI Bo-Wen, SHI Han-Feng, YUAN Xi-Long, LIU Jin-Zhao, CAI Hai-Rong, CHEN Shi-Yi, GUO Tao, WANG Hui. OsWRI3, identified based on QTL mapping, regulates seed shattering in rice [J]. Acta Agronomica Sinica, 2025, 51(7): 1712-1724.
[2] LI Qiu-Yun, LI Shi-Gui, FAN Jun-Liang, LIU Hao-Tian, ZHAO Xiao-Bin, LYU Shuo, WANG Yan-Hao, YUE Yun, ZHANG Ning, SI Huai-Jun. Effects of ionic zinc and nano-zinc on physiological characteristics, yield, and quality of potato [J]. Acta Agronomica Sinica, 2025, 51(7): 1838-1849.
[3] YIN Yu-Meng, WANG Yan-Nan, KANG Zhi-He, QIAO Shou-Chen, BIAN Qian-Qian, LI Ya-Wei, CAO Guo-Zheng, ZHAO Guo-Rui, XU Dan-Dan, YANG Yu-Feng. Cloning and functional analysis of glutathione S-transferase gene IbGSTU7 in sweetpotato [J]. Acta Agronomica Sinica, 2025, 51(7): 1736-1746.
[4] HU Meng, SHA Dan, ZHANG Sheng-Rui, GU Yong-Zhe, ZHANG Shi-Bi, LI Jing, SUN Jun-Ming, QIU Li-Juan, LI Bin. QTL mapping and candidate gene screening for branch number in soybean [J]. Acta Agronomica Sinica, 2025, 51(7): 1747-1756.
[5] YANG Shuang, BAI Lei, GUO Hua-Chun, MIAO Ya-Sheng, LI Jun. Morphological characteristics, types, and developmental process of potato leaf trichomes [J]. Acta Agronomica Sinica, 2025, 51(6): 1582-1598.
[6] ZHANG Jin-Ze, ZHOU Qing-Guo, XIAO Li-Jing, JIN Hai-Run, OU-YANG Qing-Jing, LONG Xu, YAN Zhong-Bin, TIAN En-Tang. QTL mapping and candidate gene analysis of glucosinolate content in various tissues of Brassica juncea [J]. Acta Agronomica Sinica, 2025, 51(5): 1166-1177.
[7] XU Jie, XIA Lu-Lu, TANG Zhen-San, LI Wen-Li, ZHAO Tian-Tian, CHENG Li-Xiang, ZHANG Feng. Odor quality analysis of potato tuber after steaming and baking [J]. Acta Agronomica Sinica, 2025, 51(5): 1409-1420.
[8] ZHAO Xi-Juan, ZHANG Fan, LIU Sheng-Xuan, QIN Jun, CHEN Hui-Lan, LIN Yuan, LUO Hong-Bing, LIU Yi, SONG Bo-Tao, HU Xin-Xi, WANG En-Shuang. Optimization of extraction methods for four endogenous hormones in potatoes and analysis of their content during the process of releasing dormancy in tubers [J]. Acta Agronomica Sinica, 2025, 51(4): 1050-1060.
[9] YANG Xin-Yue, XIAO Ren-Hao, ZHANG Lin-Xi, TANG Ming-Jun, SUN Guang-Yan, DU Kang, LYU Chang-Wen, TANG Dao-Bin, WANG Ji-Chun. Effects of waterlogging at different growth stages on the stress-resistance physiological characteristics and yield formation of sweet potato [J]. Acta Agronomica Sinica, 2025, 51(3): 744-754.
[10] SU Ming, WU Jia-Rui, HONG Zi-Qiang, LI Fan-Guo, ZHOU Tian, WU Hong-Liang, KANG Jian-Hong. Response of potato tuber starch formation and yield to phosphorus fertilizer reduction in the semi-arid region of Northwest China [J]. Acta Agronomica Sinica, 2025, 51(3): 713-727.
[11] HUO Ru-Xue, GE Xiang-Han, SHI Jia, LI Xue-Rui, DAI Sheng-Jie, LIU Zhen-Ning, LI Zong-Yun. Functional analysis of the sweetpotato histidine kinase protein IbHK5 in response to drought and salt stresses [J]. Acta Agronomica Sinica, 2025, 51(3): 650-666.
[12] WANG Yu-Xin, CHEN Tian-Yu, ZHAI Hong, ZHANG Huan, GAO Shao-Pei, HE Shao-Zhen, ZHAO Ning, LIU Qing-Chang. Cloning and characterization of drought tolerance function of kinase gene IbHT1 in sweetpotato [J]. Acta Agronomica Sinica, 2025, 51(2): 301-311.
[13] YONG Rui, HU Wen-Jing, WU Di, WANG Zun-Jie, LI Dong-Sheng, ZHAO Die, YOU Jun-Chao, XIAO Yong-Gui, WANG Chun-Ping. Identification and validation of quantitative trait loci for grain number per spike showing pleiotropic effect on thousand grain weight in bread wheat (Triticum aestivum L.) [J]. Acta Agronomica Sinica, 2025, 51(2): 312-323.
[14] GUO Shu-Hui, PAN Zhuan-Xia, ZHAO Zhan-Sheng, YANG Liu-Liu, HUANG-FU Zhang-Long, GUO Bao-Sheng, HU Xiao-Li, LU Ya-Dan, DING Xiao, WU Cui-Cui, LAN Gang, LYU Bei-Bei, TAN Feng-Ping, LI Peng-Bo. Genetic analysis of a major fiber length locus on chromosome D11 of upland cotton [J]. Acta Agronomica Sinica, 2025, 51(2): 383-394.
[15] SONG Qian-Na, SONG Hui-Yang, LI Jing-Hao, DUAN Yong-Hong, MEI Chao, FENG Rui-Yun. Response of transcription factor StFBH3 under abiotic stress in potato [J]. Acta Agronomica Sinica, 2025, 51(1): 247-259.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Li Shaoqing, Li Yangsheng, Wu Fushun, Liao Jianglin, Li Damo. Optimum Fertilization and Its Corresponding Mechanism under Complete Submergence at Booting Stage in Rice[J]. Acta Agronomica Sinica, 2002, 28(01): 115 -120 .
[2] Wang Lanzhen;Mi Guohua;Chen Fanjun;Zhang Fusuo. Response to Phosphorus Deficiency of Two Winter Wheat Cultivars with Different Yield Components[J]. Acta Agron Sin, 2003, 29(06): 867 -870 .
[3] YANG Jian-Chang;ZHANG Jian-Hua;WANG Zhi-Qin;ZH0U Qing-Sen. Changes in Contents of Polyamines in the Flag Leaf and Their Relationship with Drought-resistance of Rice Cultivars under Water Deficiency Stress[J]. Acta Agron Sin, 2004, 30(11): 1069 -1075 .
[4] Yan Mei;Yang Guangsheng;Fu Tingdong;Yan Hongyan. Studies on the Ecotypical Male Sterile-fertile Line of Brassica napus L.Ⅲ. Sensitivity to Temperature of 8-8112AB and Its Inheritance[J]. Acta Agron Sin, 2003, 29(03): 330 -335 .
[5] Wang Yongsheng;Wang Jing;Duan Jingya;Wang Jinfa;Liu Liangshi. Isolation and Genetic Research of a Dwarf Tiilering Mutant Rice[J]. Acta Agron Sin, 2002, 28(02): 235 -239 .
[6] WANG Li-Yan;ZHAO Ke-Fu. Some Physiological Response of Zea mays under Salt-stress[J]. Acta Agron Sin, 2005, 31(02): 264 -268 .
[7] TIAN Meng-Liang;HUNAG Yu-Bi;TAN Gong-Xie;LIU Yong-Jian;RONG Ting-Zhao. Sequence Polymorphism of waxy Genes in Landraces of Waxy Maize from Southwest China[J]. Acta Agron Sin, 2008, 34(05): 729 -736 .
[8] HU Xi-Yuan;LI Jian-Ping;SONG Xi-Fang. Efficiency of Spatial Statistical Analysis in Superior Genotype Selection of Plant Breeding[J]. Acta Agron Sin, 2008, 34(03): 412 -417 .
[9] WANG Yan;QIU Li-Ming;XIE Wen-Juan;HUANG Wei;YE Feng;ZHANG Fu-Chun;MA Ji. Cold Tolerance of Transgenic Tobacco Carrying Gene Encoding Insect Antifreeze Protein[J]. Acta Agron Sin, 2008, 34(03): 397 -402 .
[10] XING Guang-Nan, ZHOU Bin, ZHAO Tuan-Jie, YU De-Yue, XING Han, HEN Shou-Yi, GAI Jun-Yi. Mapping QTLs of Resistance to Megacota cribraria (Fabricius) in Soybean[J]. Acta Agronomica Sinica, 2008, 34(03): 361 -368 .