Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2025, Vol. 51 ›› Issue (7): 1725-1735.doi: 10.3724/SP.J.1006.2025.44201

• CROP GENETICS & BREEDING · GERMPLASM RESOURCES · MOLECULAR GENETICS • Previous Articles     Next Articles

QTL mapping of tuber eye depth based on BSA-seq technique

SHAO Shun-Wei1,2,CHEN Zhuo1,LAN Zhen-Dong1,2,CAI Xing-Kui2,ZOU Hua-Fen1,LI Chen-Xi2,TANG Jing-Hua1,ZHU Xi1,ZHANG Yu1,DONG Jian-Ke2,JIN Hui1,*,SONG Bo-Tao2,*   

  1. 1Institute of South Subtropical Crop Research, Chinese Academy of Tropical Agricultural Sciences / Key Laboratory of Tropical Fruit Biology, Ministry of Agriculture and Rural Affairs / Key Laboratory for Post-harvest Physiology and Preservation of Tropical Horticultural Products of Hainan, Zhanjiang 524091, Guangdong, China; 2 National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops / Key Laboratory of Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs / Huazhong Agricultural University, Wuhan 430070, Hubei, China
  • Received:2024-12-03 Revised:2025-04-27 Accepted:2025-04-27 Online:2025-07-12 Published:2025-05-07
  • Supported by:
    This study was supported by the Guangdong Provincial Key Areas Research and Development Program (2022B0202060001), the Special Fund for Basic Scientific Research Operating Expenses of Central-level Public Welfare Research Institutes (1630062024011), the Hainan Provincial Natural Science Foundation Youth Fund (323QN296, 323QN328), and the Regional Fund of the National Natural Science Foundation of China (32360459).

Abstract: Eye depth is an important trait of potato tubers, significantly affecting both their appearance and processing quality. To identify quantitative trait loci (QTLs) associated with eye depth, a cross was made between the tetraploid deep-eyed variety “Hua Shu 12” (female) and the shallow-eyed advanced line “Tian 2002-4-5” (male), generating 255 clonal F1 progeny. Based on field phenotypic data collected over two consecutive years, 20 deep-eyed and 20 shallow-eyed individuals were selected to construct bulks for QTL mapping. The BSA-seq approach was employed to detect QTLs related to eye depth, and combined with traditional QTL mapping methods, a complete interval mapping analysis was conducted to construct a genetic linkage map. Two QTLs associated with eye depth were successfully identified. Phenotypic correlation analysis across both years suggested that tuber eye depth is primarily controlled by genetic factors. The LOD score for locus qEyd10.1 on chromosome 10 was 4.96, with a phenotypic variance explained (PVE) of 14.49%, while qEyd3.1 on chromosome 3 had a LOD score of 3.29 and a PVE of 10.18%. Notably, qEyd3.1 corresponds to a previously reported eye depth locus, whereas qEyd10.1 represents a novel QTL. Both loci exhibited negative additive effects, indicating that the allele responsible for reduced eye depth was inherited from the shallow-eyed parent “Tian 2002-4-5”. Through candidate gene annotation within the mapped intervals and analysis of gene structural variation between deep- and shallow-eyed materials, four candidate genes: Soltu.DM.10G029390.1, Soltu.DM.03G036540.1, Soltu.DM.03G036140.1, and Soltu.DM.03G036580.1 were preliminarily identified as potentially associated with eye depth. This study, by integrating BSA-seq with conventional QTL mapping in autotetraploid potato, provides a preliminary identification of candidate genes regulating tuber eye depth. These findings lay a foundation for future gene cloning and genetic mechanism studies, and offer a valuable reference for breeding new tetraploid potato varieties with shallower eyes.

Key words: potato, eye depth, QTL mapping, bulked segregant analysis sequencing, genetic linkage map

[1] 李结平, 单友蛟. 马铃薯育种技术的优化与新形势下的发展. 中国马铃薯, 2023, 37(3): 265272.

Li J P, Shan Y J. Optimization on potato breeding technology and its development under new situation. Chin Potato J, 2023, 37(3): 265–272 (in Chinese with English abstract).

[2] Fan G Y, Wang Q R, Xu J F, Chen N, Zhu W W, Duan S G, Yang X H, De Jong W S, Guo Y D, Jin L P, et al. Fine mapping and candidate gene prediction of Tuber shape controlling Ro locus based on integrating genetic and transcriptomic analyses in potato. Int J Mol Sci, 2022, 23: 1470.

[3] 门福义, 刘梦芸. 马铃薯栽培生理. 北京: 中国农业出版社, 1995.

Men F Y, Liu M Y. Potato Cultivation Physiology. Beijing: China Agriculture Press, 1995 (in Chinese).

[4] 刘梦芸, 门福义. 马铃薯块茎生长发育的研究. 内蒙古农牧学院学报, 1987, (2): 104116.

Liu M Y, Men F Y. Research on the growth and development of potato tubers. J Inner Mongolia Coll Agric Animal Husb, 1987, (2): 104116 (in Chinese).

[5] 韦孟, 许慧珍, 张宁, 司怀军, 唐勋. 中国马铃薯加工业现状调查分析及发展对策. 中国马铃薯, 2024, 38(2): 176185.

Wei M, Xu H Z, Zhang N, Si H J, Tang X. Investigation on current situation of potato processing industry and relevant countermeasure in China. Chin Potato J, 2024, 38(2): 176185 (in Chinese with English abstract).

[6] Zemtcova M A, Timofeeva I I. Technological assessment of potato varieties for suitability for conversion to crisps and French fries. Zaschita Kartofelya Potato Prot, 2011, 1: 1720. 

[7] 吕建春. 薄皮甜瓜(Cucumis melo L. var. chinensis pangalo)果皮花斑的遗传分析及基因定位. 中国农业科学院硕士学位论文, 北京, 2018.

Lyu J C. Inheritance and Gene Mapping of Spotted Trait in Melon (Cucumis melo L. var .chinensis Pangalo). MS Thesis of Chinese Academy of Agricultural Sciences, Beijing, China, 2018 (in Chinese with English abstract).

[8] Michelmore R W, Paran I, Kesseli R V. Identification of markers linked to disease-resistance genes by bulked segregant analysis: a rapid method to detect markers in specific genomic regions by using segregating populations. Proc Natl Acad Sci USA, 1991, 88: 9828–9832.

[9] 周强. 玉米穗粒性状QTL的初步定位及两个百粒重QTL的验证, 河南农业大学硕士学位论文, 河南郑州, 2012.

Zhou Q. QTL Detection for Ear-Kernel Traits and Verification for Two 100-grain Weight QTLs in Maize. MS Thesis of Henan Agricultural University, Zhengzhou, Henan, China, 2012 (in Chinese with English abstract). 

[10] 赵海燕. 基于BSA技术的水稻(Oryza sativa L.)粒长基因初步定位及候选基因分析. 华南农业大学硕士学位论文, 广东广州, 2017.

Zhao H Y. Primary Mapping of Genes for Grain Length Using the Bulked Segregant Analysis Method and Analysis of Candidate Genes in Rice (Oryza sativa L.). MS Thesis of South China Agricultural University, Guangzhou, Guangdong, China, 2017 (in Chinese with English abstract).

[11] 吴建辉. 基于BSR-Seq和芯片技术的抗条锈基因Yr26候选基因分析及普通小麦成株期抗条锈QTL定位. 西北农林科技大学硕士学位论文, 陕西杨凌, 2017.

Wu J H. QTL Mapping for Adulp-Plant Resistance to Stripe Rust in Common Wheat and Candidate Gene Analysis of Yr26 Based on BSR-seq and Snp Array. MS Thesis of Northwest A&F University, Yangling, Shaanxi, China, 2017 (in Chinese with English abstract).

[12] 金兴红. 基于BSA法开发马铃薯淀粉含量相关SSR标记及候选基因的初步筛选. 内蒙古农业大学博士学位论文, 内蒙古呼和浩特, 2022.

Jin X H. Development of Potato SSR Molecular Markers Associated with Starch Content Based on BSA Method and Preliminary Screening of Candidate Genes. PhD Dissertation of Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China, 2022 (in Chinese with English abstract).

[13] 严昕, 项超, 刘荣, 李冠, 李孟伟, 李正丽, 宗绪晓, 杨涛. 基于BSA-seq技术对豌豆花色基因的精细定位. 作物学报, 2023, 49: 10061015.

Yan X, Xiang C, Liu R, Li G, Li M W, Li Z L, Zong X X, Yang T. Fine mapping of flower colour gene in pea (Pisum sativum L.) based on BSA-seq technique. Acta Agron Sin2023, 49: 10061015 (in Chinese with English abstract).

[14] 朱文文. 马铃薯块茎形状基因的遗传定位与分子标记开发. 中国农业科学院硕士学位论文, 北京, 2015.

Zhu W W. Genetic Mapping and Molecular Markers Development of Tuber Shape Gene in Potato. MS Thesis of Chinese Academy of Agricultural Sciences, Beijing, China, 2015 (in Chinese with English abstract). 

[15] 金兴红, 于卓, 张霞, 于肖夏, 李佳奇, 李景伟. 基于BSA法开发马铃薯高淀粉相关SSR标记及候选基因筛选. 分子植物育种, 网络首发[2022-06-29], https://link.cnki.net/urlid/46.1068.S.20220629.1035.010.

Jin X H, Yu Z, Zhang X, Yu X X, Li J Q, Li J W. Development of potato SSR markers associated with high starch based on BSA method and screening of candidate genes. Mol Plant Breed, Published online [2022-06-29], https://link.cnki.net/urlid/46.1068.S.20220629.1035.010 (in Chinese with English abstract).

[16] 张霞, 于卓, 张海龙, 于肖夏, 杨馨月, 尹明达. 基于BSA技术的彩色马铃薯花青素含量相关SSR标记的开发与验证. 分子植物育种, 网络首发[2023-04-20], https://link.cnki.net/urlid/46.1068.S.20230420.1105.004.

Zhang X, Yu Z, Zhang H L, Yu X X, Yang X Y, Yin M D. Development of potato SSR markers associated with high starch based on BSA method and screening of candidate genes. Mol Plant Breed, Published online [2023-04-20], https://link.cnki.net/urlid/46.1068.S.20230420.1105.004 (in Chinese with English abstract).

[17] Li X Q, Jong H D, De Jong D M, De Jong W S. Inheritance and genetic mapping of Tuber eye depth in cultivated diploid potatoes. Theor Appl Genet, 2005, 110: 1068–1073.

[18] 盛万民. 马铃薯野生种Solanum demissum与栽培品种杂交后代的遗传分析. 东北农业大学博士学位论文, 黑龙江哈尔滨, 2009.

Sheng W M. Genetic Analysis on Hibird Populations Derived from Solanum Demissum Crossed Cultivated Varieties. PhD Dissertation of Northeast Agricultural University, Harbin, Heilongjiang, China, 2009 (in Chinese with English abstract). 

[19] ŚLiwka J, Wasilewicz-Flis I, Jakuczun H, Gebhardt C. Tagging quantitative trait loci for dormancy, Tuber shape, regularity of Tuber shape, eye depth and flesh colour in diploid potato originated from six Solanum species. Plant Breed, 2008, 127: 49–55.

[20] Prashar A, Hornyik C, Young V, McLean K, Sharma S K, Dale M F, Bryan G J. Construction of a dense SNP map of a highly heterozygous diploid potato population and QTL analysis of Tuber shape and eye depth. Theor Appl Genet, 2014, 127: 2159–2171.

[21] Rosyara U R, De Jong W S, Douches D S, Endelman J B. Software for genome-wide association studies in autopolyploids and its application to potato. Plant Genome, 2016, 9: 110.

[22] Sharma S K, MacKenzie K, McLean K, Dale F, Daniels S, Bryan G J. Linkage disequilibrium and evaluation of genome-wide association mapping models in tetraploid potato. G3, 2018, 8: 3185–3202.

[23] Pandey J, Scheuring D C, Koym J W, Isabel Vales M. Genomic regions associated with Tuber traits in tetraploid potatoes and identification of superior clones for breeding purposes. Front Plant Sci, 2022, 13: 952263.

[24] 韩志刚. 马铃薯种质主要农艺性状及淀粉含量的全基因组关联分析. 内蒙古农业大学博士学位论文, 内蒙古呼和浩特, 2021.

Han Z G. Genome-wide Association Analysis of Main Agronomic Traits and Starch Content of Potato Germplasm. PhD Dissertation of Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China, 2021 (in Chinese with English abstract).

[25] 王舰. 马铃薯种质资源遗传多样性研究及块茎性状的全基因组关联分析. 中国农业大学博士学位论文, 北京, 2017.

Wang J. Genetic Diversity Assessment of Accessions and Genome-wide Association Analysis of Tuber Characters in Potato. PhD Dissertation of China Agricultural University, Beijing, China, 2017 (in Chinese with English abstract).

[26] 史可昕, 石瑛, 张朝澍. 基于BSA-seq技术的马铃薯块茎蛋白含量基因定位与分子标记开发. 西南农业学报, 2023, 36: 505–514.

Shi K X, Shi Y, Zhang C S. Gene mapping and molecular marker development of potato Tuber protein content based on BSA-seq technology. Southwest China J Agric Sci, 2023, 36: 505–514 (in Chinese with English abstract).

[27] Fan G Y, Duan S G, Yang Y T, Duan Y F, Jian Y Q, Hu J, Liu Z Y, Guo Y D, Jin L P, Xu J F, et al. Fine-mapping and candidate gene analysis of Tuber eye depth in potato. Hortic Plant J, 2024, 3: 269–283.

[28] Li H, Durbin R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics, 2009, 25: 1754–1760.

[29] Xu X, Pan S K, Cheng S F, Zhang B, Mu D S, Ni P X, Zhang G Y, Yang S, Li R Q, Wang J, et al. Genome sequence and analysis of the tuber crop potato. Nature, 2011, 475: 189–195.

[30] Hill J T, Demarest B L, Bisgrove B W, Gorsi B, Su Y C, Joseph Yost H. MMAPPR: mutation mapping analysis pipeline for pooled RNA–seq. Genome Res, 2013, 23: 687–697. 

[31] Li Z, Chen X X, Shi S Q, Zhang H W, Wang X, Chen H, Li W F, Li L. DeepBSA: a deep-learning algorithm improves bulked segregant analysis for dissecting complex traits. Mol Plant, 2022, 15: 1418–1427.

[32] Meng L, Li H H, Zhang L Y, Wang J K. QTL IciMapping: Integrated software for genetic linkage map construction and quantitative trait locus mapping in biparental populations. Crop J, 2015, 3: 269–283.

[33] Zhang F, Qu L, Gu Y C, Xu Z H, Xue H W. Resequencing and genome-wide association studies of autotetraploid potato. Mol Hortic, 2022, 2: 6.

[34] Zhao L, Zou M L, Deng K, Xia C C, Jiang S R, Zhang C J, Ma Y Z, Dong X R, He M H, Na T C, et al. Insights into the genetic determination of Tuber shape and eye depth in potato natural population based on autotetraploid potato genome. Front Plant Sci, 2023, 14: 1080666.

[35] Hara-Skrzypiec A, Śliwka J, Jakuczun H, Zimnoch-Guzowska E. QTL for Tuber morphology traits in diploid potato. J Appl Genet, 2018, 59: 123–132.

[36] Totsky I V, Rozanova I V, Safonova A D, Batov A S, Gureeva Y A, Kochetov A V, Khlestkina E K. Genomic regions of Solanum tuberosum L. associated with the Tuber eye depth. Vavilovskii Zhurnal Genet Selektsii, 2020, 24: 465–473.

[37] Karampelias M, Neyt P, De Groeve S, Aesaert S, Coussens G, Rolčík J, Bruno L, De Winne N, Van Minnebruggen A, Van Montagu M, et al. ROTUNDA3 function in plant development by phosphatase 2A-mediated regulation of auxin transporter recycling. Proc Natl Acad Sci USA, 2016, 113: 2768–2773. 

[38] Hwang I S, Choi D S, Kim N H, Kim D S, Hwang B K. The pepper cysteine/histidine-rich DC1 domain protein CaDC1 binds both RNA and DNA and is required for plant cell death and defense response. New Phytol, 2014, 201: 518–530.

[39] Saito N, Munemasa S, Nakamura Y, Shimoishi Y, Mori I C, Murata Y. Roles of RCN1, regulatory A subunit of protein phosphatase 2A, in methyl jasmonate signaling and signal crosstalk between methyl jasmonate and abscisic acid. Plant Cell Physiol, 2008, 49: 1396–1401.

[40] Yuan L X, Wang J, Guan Z L, Yue F L, Wang S F, Chen Q M, Fu M R. Optimized preparation of methyl salicylate hydrogel and its inhibition effect on potato Tuber sprouting. Horticulturae, 2022, 8: 866.

[41] 王派. 调控AtHARBI1-1基因的MYB转录因子筛选与功能研究. 内蒙古农业大学硕士学位论文, 内蒙古呼和浩特, 2023.

Wang P. Screening and Functional Study of MYB Transcription Factors Regulating AtHARBI1-1 Gene. MS Thesis of Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China, 2023 (in Chinese with English abstract).

[42] Tameshige T, Okamoto S, Lee J S, Aida M, Tasaka M, Torii K U, Uchida N. A secreted peptide and its receptors shape the auxin response pattern and leaf margin morphogenesis. Curr Biol, 2016, 26: 2478–2485.

[43] Takata N, Yokota K, Ohki S, Mori M, Taniguchi T, Kurita M. Evolutionary relationship and structural characterization of the EPF/EPFL gene family. PLoS One, 2013, 8: e65183.


[1] YANG Hai-Yang, WU Lin-Xuan, LI Bo-Wen, SHI Han-Feng, YUAN Xi-Long, LIU Jin-Zhao, CAI Hai-Rong, CHEN Shi-Yi, GUO Tao, WANG Hui. OsWRI3, identified based on QTL mapping, regulates seed shattering in rice [J]. Acta Agronomica Sinica, 2025, 51(7): 1712-1724.
[2] HU Meng, SHA Dan, ZHANG Sheng-Rui, GU Yong-Zhe, ZHANG Shi-Bi, LI Jing, SUN Jun-Ming, QIU Li-Juan, LI Bin. QTL mapping and candidate gene screening for branch number in soybean [J]. Acta Agronomica Sinica, 2025, 51(7): 1747-1756.
[3] ZHANG Jin-Ze, ZHOU Qing-Guo, XIAO Li-Jing, JIN Hai-Run, OU-YANG Qing-Jing, LONG Xu, YAN Zhong-Bin, TIAN En-Tang. QTL mapping and candidate gene analysis of glucosinolate content in various tissues of Brassica juncea [J]. Acta Agronomica Sinica, 2025, 51(5): 1166-1177.
[4] YONG Rui, HU Wen-Jing, WU Di, WANG Zun-Jie, LI Dong-Sheng, ZHAO Die, YOU Jun-Chao, XIAO Yong-Gui, WANG Chun-Ping. Identification and validation of quantitative trait loci for grain number per spike showing pleiotropic effect on thousand grain weight in bread wheat (Triticum aestivum L.) [J]. Acta Agronomica Sinica, 2025, 51(2): 312-323.
[5] GUO Shu-Hui, PAN Zhuan-Xia, ZHAO Zhan-Sheng, YANG Liu-Liu, HUANG-FU Zhang-Long, GUO Bao-Sheng, HU Xiao-Li, LU Ya-Dan, DING Xiao, WU Cui-Cui, LAN Gang, LYU Bei-Bei, TAN Feng-Ping, LI Peng-Bo. Genetic analysis of a major fiber length locus on chromosome D11 of upland cotton [J]. Acta Agronomica Sinica, 2025, 51(2): 383-394.
[6] YANG Jing-Fa, YU Xin-Lian, YAO You-Hua, YAO Xiao-Hua, WANG Lei, WU Kun-Lun, LI Xin. QTL mapping of tiller angle in qingke (Hordeum vulgare L.) [J]. Acta Agronomica Sinica, 2025, 51(1): 260-272.
[7] HAN Li, TANG Sheng-Sheng, LI Jia, HU Hai-Bin, LIU Long-Long, WU Bin. Construction of SNP high-density genetic map and localization of QTL for β-glucan content in oats [J]. Acta Agronomica Sinica, 2024, 50(7): 1710-1718.
[8] BI Jun-Ge, ZENG Zhan-Kui, LI Qiong, HONG Zhuang-Zhuang, YAN Qun-Xiang, ZHAO Yue, WANG Chun-Ping. QTL mapping and KASP marker development of grain quality-relating traits in two wheat RIL populations [J]. Acta Agronomica Sinica, 2024, 50(7): 1669-1683.
[9] QIN Na, YE Zhen-Yan, ZHU Can-Can, FU Sen-Jie, DAI Shu-Tao, SONG Ying-Hui, JING Ya, WANG Chun-Yi, LI Jun-Xia. QTL mapping for flavonoid content and seed color in foxtail millet [J]. Acta Agronomica Sinica, 2024, 50(7): 1719-1727.
[10] ZHENG Xue-Qing, WANG Xing-Rong, ZHANG Yan-Jun, GONG Dian-Ming, QIU Fa-Zhan. Mapping of QTL for ear-related traits and prediction of key candidate genes in maize [J]. Acta Agronomica Sinica, 2024, 50(6): 1435-1450.
[11] ZHANG Yue, WANG Zhi-Hui, HUAI Dong-Xin, LIU Nian, JIANG Hui-Fang, LIAO Bo-Shou, LEI Yong. Research progress on genetic basis and QTL mapping of oil content in peanut seed [J]. Acta Agronomica Sinica, 2024, 50(3): 529-542.
[12] HAO Qian-Lin, YANG Ting-Zhi, LYU Xin-Ru, QIN Hui-Min, WANG Ya-Lin, JIA Chen-Fei, XIA Xian-Chun, MA Wu-Jun, XU Deng-An. QTL mapping and GWAS analysis of coleoptile length in bread wheat [J]. Acta Agronomica Sinica, 2024, 50(3): 590-602.
[13] LIU Ting-Xuan, GU Yong-Zhe, ZHANG Zhi-Hao, WANG Jun, SUN Jun-Ming, QIU Li-Juan. Mapping soybean protein QTLs based on high-density genetic map [J]. Acta Agronomica Sinica, 2023, 49(6): 1532-1541.
[14] YANG Jun-Fang, WANG Zhou, QIAO Lin-Yi, WANG Ya, ZHAO Yi-Ting, ZHANG Hong-Bin, SHEN DengGao, WANG HongWei, CAO Yue. QTL mapping of seed size traits based on a high-density genetic map in castor [J]. Acta Agronomica Sinica, 2023, 49(3): 719-730.
[15] YANG Bin, QIAO Ling, ZHAO Jia-Jia, WU Bang-Bang, WEN Hong-Wei, ZHANG Shu-Wei, ZHENG Xing-Wei, ZHENG Jun. QTL mapping and validation of chlorophyll content of flag leaves in wheat (Triticum aestivum L.) [J]. Acta Agronomica Sinica, 2023, 49(3): 744-754.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Li Shaoqing, Li Yangsheng, Wu Fushun, Liao Jianglin, Li Damo. Optimum Fertilization and Its Corresponding Mechanism under Complete Submergence at Booting Stage in Rice[J]. Acta Agronomica Sinica, 2002, 28(01): 115 -120 .
[2] Wang Lanzhen;Mi Guohua;Chen Fanjun;Zhang Fusuo. Response to Phosphorus Deficiency of Two Winter Wheat Cultivars with Different Yield Components[J]. Acta Agron Sin, 2003, 29(06): 867 -870 .
[3] YANG Jian-Chang;ZHANG Jian-Hua;WANG Zhi-Qin;ZH0U Qing-Sen. Changes in Contents of Polyamines in the Flag Leaf and Their Relationship with Drought-resistance of Rice Cultivars under Water Deficiency Stress[J]. Acta Agron Sin, 2004, 30(11): 1069 -1075 .
[4] Yan Mei;Yang Guangsheng;Fu Tingdong;Yan Hongyan. Studies on the Ecotypical Male Sterile-fertile Line of Brassica napus L.Ⅲ. Sensitivity to Temperature of 8-8112AB and Its Inheritance[J]. Acta Agron Sin, 2003, 29(03): 330 -335 .
[5] Wang Yongsheng;Wang Jing;Duan Jingya;Wang Jinfa;Liu Liangshi. Isolation and Genetic Research of a Dwarf Tiilering Mutant Rice[J]. Acta Agron Sin, 2002, 28(02): 235 -239 .
[6] WANG Li-Yan;ZHAO Ke-Fu. Some Physiological Response of Zea mays under Salt-stress[J]. Acta Agron Sin, 2005, 31(02): 264 -268 .
[7] TIAN Meng-Liang;HUNAG Yu-Bi;TAN Gong-Xie;LIU Yong-Jian;RONG Ting-Zhao. Sequence Polymorphism of waxy Genes in Landraces of Waxy Maize from Southwest China[J]. Acta Agron Sin, 2008, 34(05): 729 -736 .
[8] HU Xi-Yuan;LI Jian-Ping;SONG Xi-Fang. Efficiency of Spatial Statistical Analysis in Superior Genotype Selection of Plant Breeding[J]. Acta Agron Sin, 2008, 34(03): 412 -417 .
[9] WANG Yan;QIU Li-Ming;XIE Wen-Juan;HUANG Wei;YE Feng;ZHANG Fu-Chun;MA Ji. Cold Tolerance of Transgenic Tobacco Carrying Gene Encoding Insect Antifreeze Protein[J]. Acta Agron Sin, 2008, 34(03): 397 -402 .
[10] XING Guang-Nan, ZHOU Bin, ZHAO Tuan-Jie, YU De-Yue, XING Han, HEN Shou-Yi, GAI Jun-Yi. Mapping QTLs of Resistance to Megacota cribraria (Fabricius) in Soybean[J]. Acta Agronomica Sinica, 2008, 34(03): 361 -368 .