Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2025, Vol. 51 ›› Issue (7): 1712-1724.doi: 10.3724/SP.J.1006.2025.42059

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

OsWRI3, identified based on QTL mapping, regulates seed shattering in rice

YANG Hai-Yang**(), WU Lin-Xuan**, LI Bo-Wen, SHI Han-Feng, YUAN Xi-Long, LIU Jin-Zhao, CAI Hai-Rong, CHEN Shi-Yi, GUO Tao(), WANG Hui()   

  1. South China Agricultural University / National Engineering Research Center of Plant Space Breeding, Guangzhou 510642, Guangdong, China
  • Received:2024-12-19 Accepted:2025-03-26 Online:2025-07-12 Published:2025-04-07
  • Contact: *E-mail: wanghui@scau.edu.cn; E-mail: guo.tao@vip.163.com
  • About author:**Contributed equally to this work
  • Supported by:
    China Agriculture Research System of MOF and MARA(CARS-01);Innovative Team Project of Ordinary Colleges and Universities of Guangdong Province(2021KCXTD029)

Abstract:

Rice is a staple food crop worldwide, and seed shattering is a critical trait that directly affects yield. Developing rice varieties with moderate seed shattering that are suitable for mechanized harvesting is essential for improving yield. However, seed shattering is a complex quantitative trait influenced by multiple factors, and existing theories do not fully explain its underlying mechanisms. To identify quantitative trait loci (QTL) associated with seed shattering and refine the gene regulatory network governing this trait, we utilized a population of 192 recombinant inbred lines (RILs) derived from a cross between the male parent YZX, which exhibits high seed shattering, and the female parent 02428, which has low seed shattering. QTL mapping was conducted using seed shattering data collected at 30 days after flowering, assessed through both pulling and bending methods under different environmental conditions. A total of 19 QTL associated with seed shattering were identified across various environments and methods. Notably, a novel co-located QTL, qBSH5.2, was detected using the bending method. Further analysis, including database searches, gene expression profiling, RNA sequencing, and gene sequence analysis, identified OsWRI3 as a candidate gene within the qBSH5.2 locus. Functional validation showed that the OsWRI3 mutant exhibited significantly reduced seed shattering compared to the wild type (WT). Scanning electron microscopy revealed that the fracture surface of the mutant was rougher and contained spring-like burr structures, distinguishing it from the WT. Additionally, OsWRI3 expression in the rice panicle and abscission zone was positively correlated with maturity, and genes involved in ethylene precursor synthesis were downregulated in the abscission zone of the mutant compared to the WT. Haplotype analysis further confirmed the regulatory role of OsWRI3 in seed shattering, and we identified favorable haplotype combinations that confer moderate seed shattering, making them suitable for mechanized harvesting. In conclusion, the discovery of OsWRI3, an AP2 transcription factor, not only enhances our understanding of the genetic regulation of seed shattering but also provides valuable genetic resources for breeding rice varieties optimized for mechanized harvesting.

Key words: rice, seed shattering, QTL mapping, AP2 transcription factor, haplotype analysis

Table S1

Primers used in this study"

引物名称
Primer name
正向引物
Forward primer (5'-3')
反向引物
Reverse primer (5'-3')
用途
Application
4100 GAGGACCTGTTTCAAGGCCA CCGGCAAAAACCTGTGATGG 基因筛选 Gene screening
4400 TTGGGGAGTTTGTACGGTCG TCCTCAGGGTCTATCCTGCC 基因筛选 Gene screening
4500 GTTGATGGCACGAGGACACT CAAATCCACCTCGAACCACG 基因筛选 Gene screening
5100 GATGGTGGTAGCAAGCCAGT GCACACCAGCCTTCCTTAGT 基因筛选 Gene screening
5200 AGCATCTTCGCCTCAGCTAC TTGGAAAGAAGGCACCCCAA 基因筛选 Gene screening
5900 ACTCCAAGCCCTGATTCGTG CACTCCCCGACTGTTGTTGA 基因筛选 Gene screening
6250 CGTCACGAACTTCGACCTCA TCACCACCACCCAGTGATTG 基因筛选 Gene screening
70actin GGCAGGTTCTGCAGTGGTAT TAAGGTCGGTATCGCCAATC 肌动蛋白基因 Actin gene
6250-CX2 TGATGGTGACACCAATGGTG GCTCCAAGATAGACTGATGC 靶点检测 Target detection
OsACS1 GCAGAGAGGGTACAAGGTGG ACCCTGGGTAGTATGGGGTG 功能分析 Functional analysis
OsACS2 GAGGCATCCATTTGCACACC TAAACTGGGCCATCGCCTTT 功能分析 Functional analysis
OsACS4 GATGTTGCGCTGGAGAGGAT TGTTGCACATGCCCTTGGTA 功能分析 Functional analysis
OsACS5 GCTGGTTCAGGGTGTGCTTC GCTTGTTGCTTTGTTCCATTCC 功能分析 Functional analysis
OsACO1 GCAGCATTGTCGTTCCCG CGAGATGCCGTGGTTCAGG 功能分析 Functional analysis
OsACO2 GGAGCAGCTGGATGATGCTT CACACGCTTGTAGTGGTCCT 功能分析 Functional analysis
OsACO4 GGTTTGAGGAGTGGGGGTTC ACTGCGGGGTTGGATTCTTT 功能分析 Functional analysis
OsACO5 CGACAATGGCTGCGAGGAGT CAAGCACACCTTCTTCACCCG 功能分析 Functional analysis
WRI3-1 GTCTCTCCTGGATCAAATCC TGGTACCTCCTTAGAGATGC 序列分析 Sequence analysis
WRI3-2 CAGCAAGGGCTTATGACCTT GGTGAAAGGATTGCTCTGAG 序列分析 Sequence analysis
WRI3-3 CCCATCTGCCATTCTTCCTA GCTTTGTTGTTCGGCACAAG 序列分析 Sequence analysis

Fig. 1

Measurement methods and evaluation of seed shattering A: measurement instruments used in this study; B: sample fixation method used in the measurement process of this study; C: measurement method of the pulling method; D: measurement method of the bending method; E: plant morphology of YZX (Bar: 20 cm); F: plant morphology of 02428 (Bar: 20 cm); G-J: abscission zone structures of YZX and 02428 in the early stage of flowering, YZX exhibits obvious abscission layer, whereas 02428 abscission layer does not exist (Bar: 100 μm); K-N: scanning electron microscopy of the fracture surfaces of YZX and 02428 at 30 days after flowering, the fracture surface of YZX is smooth and complete, while 02428 is rough and incomplete (Bar: 50 μm); O: frequency distribution histogram of the pulling method in 2021; P: frequency distribution histogram of the bending method in 2021; Q: frequency distribution histogram of the pulling method in 2023; R: frequency distribution histogram of the bending method in 2023."

Fig. 2

Seed shattering QTL identified by the pulling and the bending methods in 2021 and 2023 The figure illustrates the co-location of QTL in different years (red), different methods (green), and those that are not co-located (black), black interval indicates QTL that researchers have previously identified on rice chromosome 5. Figure shows the physical distances (100 kb) of QTL on chromosomes."

Table S2

QTL located in this study"

QTL名称
QTL name
物理位置
Physical location (Mb)
标记区间
Marker interval
加性效应
Additive effect
LOD值
LOD value
贡献率
Contribution rate (%)
qBSH1.1 3.95-4.05 mk26-mk27 4.56 2.59 6.25
qBSH1.5 28.50-28.75 mk200-mk201 7.09 4.23 10.20
qBSH1.2 29.05-29.25 mk204-mk205 5.97 3.90 9.26
qPSH1.3 34.90-35.05 mk236-mk237 23.40 7.49 17.22
qBSH1.3 36.85-36.95 mk249-mk250 10.97 17.74 35.72
qPSH1.1 38.25-38.45 mk256-mk257 26.60 18.91 39.16
qPSH1.1 38.25-38.45 mk256-mk257 10.90 16.91 36.08
qPSH1.1 38.25-38.45 mk256-mk257 28.72 12.38 27.12
qPSH1.1 38.25-38.45 mk256-mk257 11.40 15.02 31.54
qBSH1.4 39.95-40.05 mk266-mk267 8.29 10.48 23.05
qPSH1.4 42.55-42.65 mk289-mk290 14.44 3.26 7.74
qPSH1.2 42.75-42.85 mk291-mk292 11.91 3.70 8.94
qPSH1.2 42.75-42.85 mk291-mk292 5.03 3.60 8.57
qBSH2 0.85-0.95 mk304-mk305 -4.75 3.15 7.54
qPSH3.1 1.10-1.25 mk559-mk560 11.11 2.98 7.35
qPSH3.2 2.75-2.95 mk574-mk575 12.87 3.94 9.71
qBSH3 28.40-28.55 mk792-mk793 4.81 2.51 5.99
qPSH4 19.25-19.35 mk1003-mk1004 10.95 3.01 7.49
qPSH4 19.25-19.35 mk1003-mk1004 4.53 2.73 6.83
qBSH4 20.55-20.65 mk1016-mk1017 4.55 2.86 6.87
qBSH5.1 21.80-21.95 mk1268-mk1269 4.44 2.67 6.53
qBSH5.2 26.50-26.65 mk1301-mk1302 4.38 2.55 6.17
qBSH5.2 26.50-26.65 mk1301-mk1302 4.81 2.51 5.95
qBSH7 25.35-25.45 mk1748-mk1749 -4.48 2.87 6.92
qBSH9 13.30-13.55 mk2062-mk2063 5.42 3.95 9.70

Fig. 3

Candidate gene database analysis and gene expression analysis in the abscission zone A: spatio-temporal gene expression profiles of different tissues/organs in rice; B: gene expression profile during reproductive organ development in rice; C: differences in the expression levels of candidate genes in the abscission zone between YZX and 02428 in the early stage of flowering; D: differences in the expression levels of candidate genes in the abscission zone between YZX and 02428 at 30 days after flowering. ns indicates no significant difference, * indicates a significant difference at P < 0.05, and ** indicates a significant difference at P < 0.01."

Fig. 4

RNA sequencing and gene sequence analysis A: there are 24 genes in qBSH5.2, excluding genes encoding transposons and retrotransposons, for a total of 21 genes. Red fonts indicate genes with differences in RNA sequencing. (+) indicates that the expression level of W517 is upregulated compared with that of DZ129 in the abscission zone, and (-) indicates that the expression level of W517 is downregulated compared with that of DZ129 in the abscission zone. The green curve indicates the LOD value of the bending method, and the red curve indicates the LOD value of the pulling method. B: comparison of the gene sequences of Os05g0536250 in YZX and 02428."

Fig. 5

Functional verification of ZH11-OsWRI3 A: two different knockout homozygous mutant lines of OsWRI3, ZH11-OsWRI3-1 with T insertion and ZH11-OsWRI3-2 with AT deletion, both mutations lead to premature termination of translation; B: comparison of ZH11-OsWRI3-1, ZH11-OsWRI3-2 and ZH11-WT plants (Bar: 20 cm); C: BTS values of ZH11-OsWRI3-1 and ZH11-OsWRI3-2 on 30 days after flowering were significantly higher than ZH11-WT; D: scanning electron micrographs of fracture surfaces of ZH11-WT, ZH11-OsWRI3-1, and ZH11-OsWRI3-2 at 30 days after flowering (Bar: 50 μm); E: expression pattern of OsWRI3 in various plant tissues, including leaves, roots, stems, leaf sheaths, pulvinus, internodes, 1-5 cm panicles, 5-10 cm panicles, the abscission zone in the early stage of flowering (0 d), and the abscission zone on 30 days after flowering of ZH11; F: differences in expression levels of pivotal genes involved in ACC synthesis between the WT and mutants. ## indicates no gene expression, * indicates a significant difference at P < 0.05, and ** indicates a significant difference at P < 0.01. BTS: breaking tensile strength."

Fig. 6

Haplotype analysis of OsWRI3 A: CDS haplotype analysis of OsWRI3; B: promoter haplotype analysis of OsWRI3; C: distribution of OsWRI3 CDS haplotypes and the differences in BTS values between the various haplotypes; D: distribution of OsWRI3 promoter haplotypes and the differences in BTS values between the various haplotypes; E: distribution of different haplotypes among seven major rice groups in MBKbase; F: joint analysis of OsWRI3 and qSH1 functional SNP. * indicates a significant difference at P < 0.05, and ** indicates a significant difference at P < 0.01. Different lowercase letters mean significant difference at P < 0.05. - represents the missing bases, D1 represents the bases AATGTAG. BTS: breaking tensile strength."

[1] Li C B, Zhou A L, Sang T. Rice domestication by reducing shattering. Science, 2006, 311: 1936-1939.
doi: 10.1126/science.1123604 pmid: 16527928
[2] Doebley J. Unfallen grains: how ancient farmers turned weeds into crops. Science, 2006, 312: 1318-1319.
doi: 10.1126/science.1128836 pmid: 16741100
[3] Fuller D Q, Qin L, Zheng Y F, Zhao Z J, Chen X G, Hosoya L A, Sun G P. The domestication process and domestication rate in rice: spikelet bases from the Lower Yangtze. Science, 2009, 323: 1607-1610.
doi: 10.1126/science.1166605 pmid: 19299619
[4] Patterson S E. Cutting loose. bscission and dehiscence in Arabidopsis. Plant Physiol, 2001, 126: 494-500.
doi: 10.1104/pp.126.2.494 pmid: 11402180
[5] Jin I D. On the formation and development of abscission layer in rice plants, Oryza sativa L. Jpn J Crop Sci, 1986, 55: 451-457.
[6] Estornell L H, Agustí J, Merelo P, Talón M, Tadeo F R. Elucidating mechanisms underlying organ abscission. Plant Sci, 2013, 199/200: 48-60.
[7] Balanzà V, Roig-Villanova I, Di Marzo M, Masiero S, Colombo L. Seed abscission and fruit dehiscence required for seed dispersal rely on similar genetic networks. Development, 2016, 143: 3372-3381.
doi: 10.1242/dev.135202 pmid: 27510967
[8] Lewis M W, Leslie M E, Liljegren S J. Plant separation: 50 ways to leave your mother. Curr Opin Plant Biol, 2006, 9: 59-65.
doi: 10.1016/j.pbi.2005.11.009 pmid: 16337172
[9] Thurber C S, Hepler P K, Caicedo A L. Timing is everything: early degradation of abscission layer is associated with increased seed shattering in U.S. weedy rice. BMC Plant Biol, 2011, 11: 14.
doi: 10.1186/1471-2229-11-14 pmid: 21235796
[10] Lang H, He Y T, Li F C, Ma D R, Sun J. Integrative hormone and transcriptome analysis underline the role of abscisic acid in seed shattering of weedy rice. Plant Growth Regul, 2021, 94: 261-273.
[11] Ogawa M, Kay P, Wilson S, Swain S M. ARABIDOPSIS DEHISCENCE ZONE POLYGALACTURONASE1 (ADPG1), ADPG2, and QUARTET2 are polygalacturonases required for cell separation during reproductive development in Arabidopsis. Plant Cell, 2009, 21: 216-233.
[12] Taylor J E, Whitelaw C A. Signals in abscission. New Phytol, 2001, 151: 323-340.
[13] Zhao X H, Xie W G, Zhang J C, Zhang Z Y, Wang Y R. Histological characteristics, cell wall hydrolytic enzymes activity and candidate genes expression associated with seed shattering of Elymus sibiricus accessions. Front Plant Sci, 2017, 8: 606.
[14] Aneja M, Gianfagna T, Ng E. The roles of abscisic acid and ethylene in the abscission and senescence of cocoa flowers. Plant Growth Regul, 1999, 27: 149-155.
[15] 朱子超, 王楚桃, 何永歆, 蒋刚, 欧阳杰, 黄乾龙, 李贤勇. 水稻落粒性的遗传分析和基因定位. 杂交水稻, 2014, 29(1): 62-66.
Zhu Z C, Wang C T, He Y X, Jiang G, Ou-Yang J, Huang Q L, Li X Y. Genetic analysis and molecular mapping of seed shattering in rice. Hybrid Rice, 2014, 29(1): 62-66 (in Chinese with English abstract).
[16] 李仕贵, 马玉清, 何平, 黎汉云, 陈英, 周开达, 朱立煌. 水稻籼粳杂交落粒性的遗传分析和基因定位. 西南农业学报, 1999, 12(增刊2): 77-80.
Li S G, Ma Y Q, He P, Li H Y, Chen Y, Zhou K D, Zhu L H. Genetic analysis and mapping the shattering habit in rice (Oryza sativa L.). Southwest China J Agric Sci, 1999, 12(S2): 77-80 (in Chinese with English abstract).
[17] 宋颖娉, 宋立明. 水稻落粒性的分子生物学研究进展. 江苏农业科学, 2015, 43(7): 88-90.
Song Y P, Song L M. Advances in molecular biological research on rice seed shattering. Jiangsu Agric Sci, 2015, 43(7): 88-90 (in Chinese).
[18] Wu H, He Q, Wang Q. Advances in rice seed shattering. Int J Mol Sci, 2023, 24: 8889.
[19] Konishi S, Izawa T, Lin S Y, Ebana K, Fukuta Y, Sasaki T, Yano M. An SNP caused loss of seed shattering during rice domestication. Science, 2006, 312: 1392-1396.
doi: 10.1126/science.1126410 pmid: 16614172
[20] Qin Y, Kim S M, Zhao X H, Jia B Y, Lee H S, Kim K M, Eun M Y, Jin I D, Sohn J K. Identification for quantitative trait loci controlling grain shattering in rice. Genes Genom, 2010, 32: 173-180.
[21] 袁睿智, 黄泽键, 罗亮, 赵能, 陈媛, 梁燕青, 万瑶, 刘芳, 李容柏. 基于广西普通野生稻染色体片段代换系的落粒性QTL鉴定及相关主效QTL定位. 南方农业学报, 2020, 51: 1004-1012.
Yuan R Z, Huang Z J, Luo L, Zhao N, Chen Y, Liang Y Q, Wan Y, Liu F, Li R B. Identification of grain-shattering QTL and preliminary mapping of a related major QTL based on chromosome segment substitution lines (CSSLs) of Guangxi common wild rice (Oryza rufipogon Griff.). J South Agric, 2020, 51: 1004-1012 (in Chinese with English abstract).
[22] Chen Y, Shi H F, Yang G L, Liang X Y, Lin X L, Tan S P, Guo T, Wang H. OsCRLK2, a receptor-like kinase identified by QTL analysis, is involved in the regulation of rice quality. Rice, 2024, 17: 24.
doi: 10.1186/s12284-024-00702-2 pmid: 38587574
[23] Lin Z W, Li X R, Shannon L M, Yeh C T, Wang M L, Bai G H, Peng Z, Li J R, Trick H N, Clemente T E, et al. Parallel domestication of the Shattering1 genes in cereals. Nat Genet, 2012, 44: 720-724.
[24] Lyu S W, Wu W G, Wang M H, Meyer R S, Ndjiondjop M N, Tan L B, Zhou H Y, Zhang J W, Fu Y C, Cai H W, et al. Genetic control of seed shattering during African rice domestication. Nat Plants, 2018, 4: 331-337.
doi: 10.1038/s41477-018-0164-3 pmid: 29872176
[25] Lin Z W, Griffith M E, Li X R, Zhu Z F, Tan L B, Fu Y C, Zhang W X, Wang X K, Xie D X, Sun C Q. Origin of seed shattering in rice (Oryza sativa L.). Planta, 2007, 226: 11-20.
[26] Zhou Y, Lu D F, Li C Y, Luo J H, Zhu B F, Zhu J J, Shangguan Y Y, Wang Z X, Sang T, Zhou B, et al. Genetic control of seed shattering in rice by the APETALA2 transcription factor SHATTERING ABORTION1. Plant Cell, 2012, 24: 1034-1048.
[27] Yoon J, Cho L H, Kim S L, Choi H, Koh H J, An G. The BEL1-type homeobox gene SH5 induces seed shattering by enhancing abscission-zone development and inhibiting lignin biosynthesis. Plant J, 2014, 79: 717-728.
[28] Ji H, Kim S R, Kim Y H, Kim H, Eun M Y, Jin I D, Cha Y S, Yun D W, Ahn B O, Lee M C, et al. Inactivation of the CTD phosphatase-like gene OsCPL1 enhances the development of the abscission layer and seed shattering in rice. Plant J, 2010, 61: 96-106.
[29] Sun P Y, Zhang W H, Wang Y H, He Q, Shu F, Liu H, Wang J, Wang J M, Yuan L P, Deng H F. OsGRF4controls grain shape, panicle length and seed shattering in rice. J Integr Plant Biol, 2016, 58: 836-847.
[30] Cao H S, Zhuo L, Su Y, Sun L X, Wang X M. Non-specific phospholipase C1 affects silicon distribution and mechanical strength in stem nodes of rice. Plant J, 2016, 86: 308-321.
[31] Wu W G, Liu X Y, Wang M H, Meyer R S, Luo X J, Ndjiondjop M N, Tan L B, Zhang J W, Wu J Z, Cai H W, et al. A single-nucleotide polymorphism causes smaller grain size and loss of seed shattering during African rice domestication. Nat Plants, 2017, 3: 17064.
doi: 10.1038/nplants.2017.64 pmid: 28481332
[32] Ishii T, Numaguchi K, Miura K, Yoshida K, Thanh P T, Htun T M, Yamasaki M, Komeda N, Matsumoto T, Terauchi R, et al. OsLG1 regulates a closed panicle trait in domesticated rice. Nat Genet, 2013, 45: 462-465.
[33] Jiang L Y, Ma X, Zhao S S, Tang Y Y, Liu F X, Gu P, Fu Y C, Zhu Z F, Cai H W, Sun C Q, et al. The APETALA2-like transcription factor SUPERNUMERARY BRACT controls rice seed shattering and seed size. Plant Cell, 2019, 31: 17-36.
[34] 王穆穆, 何艳芳, 郑永胜, 王晖, 王丽媛, 王东建, 张晗, 李汝玉. 水稻落粒基因SH8的精细定位与克隆. 作物学报, 2022, 48: 1948-1956.
doi: 10.3724/SP.J.1006.2022.12049
Wang M M, He Y F, Zheng Y S, Wang H, Wang L Y, Wang D J, Zhang H, Li R Y. Fine mapping and cloning of a seed shattering gene SH8 in rice (Oryza sativa L.). Acta Agron Sin, 2022, 48: 1948-1956 (in Chinese with English abstract).
[35] Ning J, He W, Wu L H, Chang L Q, Hu M, Fu Y C, Liu F X, Sun H Y, Gu P, Ndjiondjop M N, et al. The MYB transcription factor Seed Shattering 11 controls seed shattering by repressing lignin synthesis in African rice. Plant Biotechnol J, 2023, 21: 931-942.
[36] Wu H, He Q, He B, He S Y, Zeng L J, Yang L B, Zhang H, Wei Z R, Hu X M, Hu J, et al. Gibberellin signaling regulates lignin biosynthesis to modulate rice seed shattering. Plant Cell, 2023, 35: 4383-4404.
[37] Lee G H, Kang I K, Kim K M. Mapping of novel QTL regulating grain shattering using doubled haploid population in rice (Oryza sativa L.). Int J Genomics, 2016, 2016: 2128010.
[38] Chen L K, Gao W W, Chen S P, Wang L P, Zou J Y, Liu Y Z, Wang H, Chen Z Q, Guo T. High-resolution QTL mapping for grain appearance traits and co-localization of chalkiness- associated differentially expressed candidate genes in rice. Rice, 2016, 9: 48.
[39] Meng L, Li H H, Zhang L Y, Wang J K. QTL IciMapping: integrated software for genetic linkage map construction and quantitative trait locus mapping in biparental populations. Crop J, 2015, 3: 269-283.
doi: 10.1016/j.cj.2015.01.001
[40] Wu L X, Yue J C, Wang J F, Lu W Y, Huang M, Guo T, Wang H. RNA-seq and genome-wide association studies reveal potential genes for rice seed shattering. Int J Mol Sci, 2022, 23: 14633.
[41] Ji H S, Chu S H, Jiang W Z, Cho Y I, Hahn J H, Eun M Y, McCouch S R, Koh H J. Characterization and mapping of a shattering mutant in rice that corresponds to a block of domestication genes. Genetics, 2006, 173: 995-1005.
[42] Ali M R, Hasan M K, Saha C K, Alam M M, Hossain M M, Kalita P K, Hansen A C. Role of mechanical rice harvesting in socio-economic development of Bangladesh. In: Mani S, eds. 2018 ASABE Annual International Meeting. St. Joseph: American Society of Agricultural and Biological Engineers, 2018. pp 1-8.
[43] Hasan K, Tanaka T S T, Alam M, Ali R, Kumer Saha C. Impact of modern rice harvesting practices over traditional ones. Rev Agric Sci, 2020, 8: 89-108.
[44] Fu J W, Ji C, Liu H P, Wang W K, Zhang G Z, Gao Y, Zhou Y, Abdeen M A. Research progress and prospect of mechanized harvesting technology in the first season of ratoon rice. Agriculture, 2022, 12: 620.
[45] Mano F, Aoyanagi T, Kozaki A. Atypical splicing accompanied by skipping conserved micro-exons produces unique WRINKLED1, an AP2 domain transcription factor in rice plants. Plants, 2019, 8: 207.
[46] Sargent J A, Osborne D J, Dunford S M. Cell separation and its hormonal control during fruit abscission in the Gramineae. J Exp Bot, 1984, 35: 1663-1674.
[47] 王权帅, 赵丹莹, 申琳, 生吉萍. 脱落调节物质对植物器官脱落的调控. 西北植物学报, 2009, 29: 2352-2359.
Wang Q S, Zhao D Y, Shen L, Sheng J P. Regulation of plant organs abscission by abscission regulating substances. Acta Bot Boreali-Occident Sin, 2009, 29: 2352-2359 (in Chinese with English abstract).
[48] Jackson M B, Hartley C B, Osborne D J. Timing abscission in PHASEOLUS VULGARIS L. by controlling ethylene production and sensitivity to ethylene. New Phytol, 1973, 72: 1251-1260.
[1] CHEN Hui-Ying, HE Jia-Xin, ZHU Bin, HUANG Shi-Xuan, ZHOU Xing-You, WU Jun-Quan, YANG Mei-Yan. Whole genome analysis and biological characterization of phage vB_XaS_HDB2 infected with Xanthomonas oryzae pv. oryzae [J]. Acta Agronomica Sinica, 2025, 51(8): 2087-2099.
[2] WANG Fen, WU Dong-Li, ZHANG Quan-Jun. Response of phenological phase stages of single-cropping rice to climate change in Hubei province, China [J]. Acta Agronomica Sinica, 2025, 51(7): 1934-1948.
[3] HU Meng, SHA Dan, ZHANG Sheng-Rui, GU Yong-Zhe, ZHANG Shi-Bi, LI Jing, SUN Jun-Ming, QIU Li-Juan, LI Bin. QTL mapping and candidate gene screening for branch number in soybean [J]. Acta Agronomica Sinica, 2025, 51(7): 1747-1756.
[4] SHAO Shun-Wei, CHEN Zhuo, LAN Zhen-Dong, CAI Xing-Kui, ZOU Hua-Fen, LI Chen-Xi, TANG Jing-Hua, ZHU Xi, ZHANG Yu, DONG Jian-Ke, JIN Hui, SONG Bo-Tao. QTL mapping of tuber eye depth based on BSA-seq technique [J]. Acta Agronomica Sinica, 2025, 51(7): 1725-1735.
[5] LEI Song-Han, FAN Jun-Yang, CHE Yan-Yi, DAI Yong-Dong, ZHENG Yu-Meng, TIAN Wei-Jiang, SANG Xian-Chun, WANG Xiao-Wen. Identification of an adaxially-curled-leaf mutant acl3 and function analysis of the regulated gene in rice (Oryza sativa L.) [J]. Acta Agronomica Sinica, 2025, 51(6): 1467-1479.
[6] LI Fu-Yuan, YANG Yi, MA Ji-Qiong, XU Ming-Hui, LIN Liang-Bin, SUN Yi-Ding. Cloning, hormone-induced expression analysis, and interaction protein screening of OsPUB4 in rice [J]. Acta Agronomica Sinica, 2025, 51(6): 1690-1700.
[7] LI Zi-Xiang, HUANG Rong, WANG Zhi-Chao, LI Hong-Yan, TAN Jun-Xing, CHENG Yu, DU Xue-Zhu, SHENG Feng. Effects of poly-γ-glutamate acid on lodging resistance of direct seeding rice [J]. Acta Agronomica Sinica, 2025, 51(6): 1654-1664.
[8] ZHANG Jin-Ze, ZHOU Qing-Guo, XIAO Li-Jing, JIN Hai-Run, OU-YANG Qing-Jing, LONG Xu, YAN Zhong-Bin, TIAN En-Tang. QTL mapping and candidate gene analysis of glucosinolate content in various tissues of Brassica juncea [J]. Acta Agronomica Sinica, 2025, 51(5): 1166-1177.
[9] WANG Meng-Ning, XIE Ke-Ran, GAO Ti, WANG Fei, REN Xiao-Jian, XIONG Dong-Liang, HUANG Jian-Liang, PENG Shao-Bing, CUI Ke-Hui. Effect of high temperature during the panicle initiation and heading stages on grain shape and filling and its relationship with grain weight in rice [J]. Acta Agronomica Sinica, 2025, 51(5): 1347-1362.
[10] SHENG Qian-Nan, FANG Ya-Ting, ZHAO Jian, DU Si-Yao, HU Xing-Zhen, YU Qiu-hua, ZHU Jun, REN Tao, LU Jian-Wei. Effects of different nutrient management practices on oilseed rape yield and their response to freezing stress between upland and paddy-upland rotations [J]. Acta Agronomica Sinica, 2025, 51(5): 1286-1298.
[11] WENG Wen-An, XING Zhi-Peng, HU Qun, WEI Hai-Yan, LIAO Ping, ZHU Hai-Bin, QU Ji-Wei, LI Xiu-Li, LIU Gui-Yun, GAO Hui, ZHANG Hong-Cheng. Study on yield formation characteristics, energy and economic benefits of unmanned dry direct-seeding rice [J]. Acta Agronomica Sinica, 2025, 51(5): 1363-1377.
[12] ZHU Jian-Ping, LI Wen-Qi, XU Yang, WANG Fang-Quan, LI Xia, JIANG Yan-Jie, FAN Fang-Jun, TAO Ya-Jun, CHEN Zhi-Hui, WU Ying-Ying, YANG Jie. Phenotypic analysis and gene mapping of a floury endosperm mutant we2 in rice [J]. Acta Agronomica Sinica, 2025, 51(4): 1110-1117.
[13] XIAO Zheng-Wu, ZHANG Ke-Qian, CAO Fang-Bo, CHEN Jia-Na, ZHENG Hua-Bin, WANG Wei-Qin, HUANG Min. Relationships between cooking and eating quality of brown rice noodles and starch component contents and pasting properties of brown rice grains [J]. Acta Agronomica Sinica, 2025, 51(4): 1102-1109.
[14] PAN Ju-Zhong, WEI Ping, ZHU De-Ping, SHAO Sheng-Xue, CHEN Shan-Shan, WEI Ya-Qian, GAO Wei-Wei. Cloning and functional analysis of OsERF104 transcription factor in rice [J]. Acta Agronomica Sinica, 2025, 51(4): 900-913.
[15] HOU Tian-Yu, DU Xiao-Jing, ZHAO Zhi-Qiang, REYIM Anwar, YIDAYETULA Abula, BUHALIQIEMU Abulizi, YUAN Jie, ZHANG Yan-Hong, WANG Feng-Bin. Evaluation of cold tolerance of japonica rice varieties at germination stage and construction of identification system [J]. Acta Agronomica Sinica, 2025, 51(3): 812-822.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Li Shaoqing, Li Yangsheng, Wu Fushun, Liao Jianglin, Li Damo. Optimum Fertilization and Its Corresponding Mechanism under Complete Submergence at Booting Stage in Rice[J]. Acta Agronomica Sinica, 2002, 28(01): 115 -120 .
[2] Wang Lanzhen;Mi Guohua;Chen Fanjun;Zhang Fusuo. Response to Phosphorus Deficiency of Two Winter Wheat Cultivars with Different Yield Components[J]. Acta Agron Sin, 2003, 29(06): 867 -870 .
[3] YANG Jian-Chang;ZHANG Jian-Hua;WANG Zhi-Qin;ZH0U Qing-Sen. Changes in Contents of Polyamines in the Flag Leaf and Their Relationship with Drought-resistance of Rice Cultivars under Water Deficiency Stress[J]. Acta Agron Sin, 2004, 30(11): 1069 -1075 .
[4] Yan Mei;Yang Guangsheng;Fu Tingdong;Yan Hongyan. Studies on the Ecotypical Male Sterile-fertile Line of Brassica napus L.Ⅲ. Sensitivity to Temperature of 8-8112AB and Its Inheritance[J]. Acta Agron Sin, 2003, 29(03): 330 -335 .
[5] Wang Yongsheng;Wang Jing;Duan Jingya;Wang Jinfa;Liu Liangshi. Isolation and Genetic Research of a Dwarf Tiilering Mutant Rice[J]. Acta Agron Sin, 2002, 28(02): 235 -239 .
[6] WANG Li-Yan;ZHAO Ke-Fu. Some Physiological Response of Zea mays under Salt-stress[J]. Acta Agron Sin, 2005, 31(02): 264 -268 .
[7] TIAN Meng-Liang;HUNAG Yu-Bi;TAN Gong-Xie;LIU Yong-Jian;RONG Ting-Zhao. Sequence Polymorphism of waxy Genes in Landraces of Waxy Maize from Southwest China[J]. Acta Agron Sin, 2008, 34(05): 729 -736 .
[8] HU Xi-Yuan;LI Jian-Ping;SONG Xi-Fang. Efficiency of Spatial Statistical Analysis in Superior Genotype Selection of Plant Breeding[J]. Acta Agron Sin, 2008, 34(03): 412 -417 .
[9] WANG Yan;QIU Li-Ming;XIE Wen-Juan;HUANG Wei;YE Feng;ZHANG Fu-Chun;MA Ji. Cold Tolerance of Transgenic Tobacco Carrying Gene Encoding Insect Antifreeze Protein[J]. Acta Agron Sin, 2008, 34(03): 397 -402 .
[10] ZHENG Xi;WU Jian-Guo;LOU Xiang-Yang;XU Hai-Ming;SHI Chun-Hai. Mapping and Analysis of QTLs on Maternal and Endosperm Genomes for Histidine and Arginine in Rice (Oryza sativa L.) across Environments[J]. Acta Agron Sin, 2008, 34(03): 369 -375 .