Acta Agronomica Sinica ›› 2025, Vol. 51 ›› Issue (7): 1712-1724.doi: 10.3724/SP.J.1006.2025.42059
• CROP GENETICS & BREEDING · GERMPLASM RESOURCES · MOLECULAR GENETICS • Previous Articles Next Articles
YANG Hai-Yang**,WU Lin-Xuan**,LI Bo-Wen,SHI Han-Feng,YUAN Xi-Long,LIU Jin-Zhao,CAI Hai-Rong,CHEN Shi-Yi,GUO Tao*, WANG Hui*
[1] Li C B, Zhou A L, Sang T. Rice domestication by reducing shattering. Science, 2006, 311: 1936–1939. [2] Doebley J. Unfallen grains: how ancient farmers turned weeds into crops. Science, 2006, 312: 1318–1319. [3] Fuller D Q, Qin L, Zheng Y F, Zhao Z J, Chen X G, Hosoya L A, Sun G P. The domestication process and domestication rate in rice: spikelet bases from the Lower Yangtze. Science, 2009, 323: 1607–1610. [4] Patterson S E. Cutting loose. abscission and dehiscence in Arabidopsis. Plant Physiol, 2001, 126: 494–500. [5] Jin I D. On the formation and development of abscission layer in rice plants, Oryza sativa L. Jpn J Crop Sci, 1986, 55: 451–457. [6] Estornell L H, Agustí J, Merelo P, Talón M, Tadeo F R. Elucidating mechanisms underlying organ abscission. Plant Sci, 2013, 199/200: 48–60. [7] Balanzà V, Roig-Villanova I, Di Marzo M, Masiero S, Colombo L. Seed abscission and fruit dehiscence required for seed dispersal rely on similar genetic networks. Development, 2016, 143: 3372–3381. [8] Lewis M W, Leslie M E, Liljegren S J. Plant separation: 50 ways to leave your mother. Curr Opin Plant Biol, 2006, 9: 59–65. [9] Thurber C S, Hepler P K, Caicedo A L. Timing is everything: early degradation of abscission layer is associated with increased seed shattering in U.S. weedy rice. BMC Plant Biol, 2011, 11: 14. [10] Lang H, He Y T, Li F C, Ma D R, Sun J. Integrative hormone and transcriptome analysis underline the role of abscisic acid in seed shattering of weedy rice. Plant Growth Regul, 2021, 94: 261–273. [11] Ogawa M, Kay P, Wilson S, Swain S M. ARABIDOPSIS DEHISCENCE ZONE POLYGALACTURONASE1 (ADPG1), ADPG2, and QUARTET2 are Polygalacturonases required for cell separation during reproductive development in Arabidopsis. Plant Cell, 2009, 21: 216–233. [12] Taylor J E, Whitelaw C A. Signals in abscission. New Phytol, 2001, 151: 323–340. [13] Zhao X H, Xie W G, Zhang J C, Zhang Z Y, Wang Y R. Histological characteristics, cell wall hydrolytic enzymes activity and candidate genes expression associated with seed shattering of Elymus sibiricus accessions. Front Plant Sci, 2017, 8: 606. [14] Aneja M, Gianfagna T, Ng E. The roles of abscisic acid and ethylene in the abscission and senescence of cocoa flowers. Plant Growth Regul, 1999, 27: 149–155. [15] 朱子超, 王楚桃, 何永歆, 蒋刚, 欧阳杰, 黄乾龙, 李贤勇. 水稻落粒性的遗传分析和基因定位. 杂交水稻, 2014, 29(1): 62–66. Zhu Z C, Wang C T, He Y X, Jiang G, Ou-Yang J, Huang Q L, Li X Y. Genetic analysis and molecular mapping of seed shattering in rice. Hybrid Rice, 2014, 29(1): 62–66 (in Chinese with English abstract). [16] 李仕贵, 马玉清, 何平, 黎汉云, 陈英, 周开达, 朱立煌. 水稻籼粳杂交落粒性的遗传分析和基因定位. 西南农业学报, 1999, 12(增刊2): 77–80. Li S G, Ma Y Q, He P, Li H Y, Chen Y, Zhou K D, Zhu L H. Genetic analysis and mapping the shattering habit in rice (Oryza Sativa L.). Southwest China J Agric Sci, 1999, 12(S2): 77–80 (in Chinese with English abstract). [17] 宋颖娉, 宋立明. 水稻落粒性的分子生物学研究进展. 江苏农业科学, 2015, 43(7): 88–90. Song Y P, Song L M. Advances in molecular biological research on rice seed shattering. Jiangsu Agric Sci, 2015, 43(7): 88–90 (in Chinese). [18] Wu H, He Q, Wang Q. Advances in rice seed shattering. Int J Mol Sci, 2023, 24: 8889. [19] Konishi S, Izawa T, Lin S Y, Ebana K, Fukuta Y, Sasaki T, Yano M. An SNP caused loss of seed shattering during rice domestication. Science, 2006, 312: 1392–1396. [20] Qin Y, Kim S M, Zhao X H, Jia B Y, Lee H S, Kim K M, Eun M Y, Jin I D, Sohn J K. Identification for quantitative trait loci controlling grain shattering in rice. Genes Genom, 2010, 32: 173–180. [21] 袁睿智, 黄泽键, 罗亮, 赵能, 陈媛, 梁燕青, 万瑶, 刘芳, 李容柏. 基于广西普通野生稻染色体片段代换系的落粒性QTL鉴定及相关主效QTL定位. 南方农业学报, 2020, 51: 1004–1012. Yuan R Z, Huang Z J, Luo L, Zhao N, Chen Y, Liang Y Q, Wan Y, Liu F, Li R B. Identification of grain-shattering QTL and preliminary mapping of a related major QTL based on chromosome segment substitution lines (CSSLs) of Guangxi common wild rice (Oryza rufipogon Griff.). J South Agric, 2020, 51: 1004–1012 (in Chinese with English abstract). [22] Chen Y, Shi H F, Yang G L, Liang X Y, Lin X L, Tan S P, Guo T, Wang H. OsCRLK2, a receptor-like kinase identified by QTL analysis, is involved in the regulation of rice quality. Rice, 2024, 17: 24. [23] Lin Z W, Li X R, Shannon L M, Yeh C T, Wang M L, Bai G H, Peng Z, Li J R, Trick H N, Clemente T E, et al. Parallel domestication of the Shattering1 genes in cereals. Nat Genet, 2012, 44: 720–724. [24] Lyu S W, Wu W G, Wang M H, Meyer R S, Ndjiondjop M N, Tan L B, Zhou H Y, Zhang J W, Fu Y C, Cai H W, et al. Genetic control of seed shattering during African rice domestication. Nat Plants, 2018, 4: 331–337. [25] Lin Z W, Griffith M E, Li X R, Zhu Z F, Tan L B, Fu Y C, Zhang W X, Wang X K, Xie D X, Sun C Q. Origin of seed shattering in rice (Oryza sativa L.). Planta, 2007, 226: 11–20. [26] Zhou Y, Lu D F, Li C Y, Luo J H, Zhu B F, Zhu J J, Shangguan Y Y, Wang Z X, Sang T, Zhou B, et al. Genetic control of seed shattering in rice by the APETALA2 transcription factor shattering abortion1. Plant Cell, 2012, 24: 1034–1048. [27] Yoon J, Cho L H, Kim S L, Choi H, Koh H J, An G. The BEL1-type homeobox gene SH5 induces seed shattering by enhancing abscission‐zone development and inhibiting lignin biosynthesis. Plant J, 2014, 79: 717–728. [28] Ji H, Kim S R, Kim Y H, Kim H, Eun M Y, Jin I D, Cha Y S, Yun D W, Ahn B O, Lee M C, et al. Inactivation of the CTD phosphatase-like gene OsCPL1 enhances the development of the abscission layer and seed shattering in rice. Plant J, 2010, 61: 96–106. [29] Sun P Y, Zhang W H, Wang Y H, He Q, Shu F, Liu H, Wang J, Wang J M, Yuan L P, Deng H F. OsGRF4 controls grain shape, panicle length and seed shattering in rice. J Integr Plant Biol, 2016, 58: 836–847. [30] Cao H S, Zhuo L, Su Y, Sun L X, Wang X M. Non-specific phospholipase C1 affects silicon distribution and mechanical strength in stem nodes of rice. Plant J, 2016, 86: 308–321. [31] Wu W G, Liu X Y, Wang M H, Meyer R S, Luo X J, Ndjiondjop M N, Tan L B, Zhang J W, Wu J Z, Cai H W, et al. A single-nucleotide polymorphism causes smaller grain size and loss of seed shattering during African rice domestication. Nat Plants, 2017, 3: 17064. [32] Ishii T, Numaguchi K, Miura K, Yoshida K, Thanh P T, Htun T M, Yamasaki M, Komeda N, Matsumoto T, Terauchi R, et al. OsLG1 regulates a closed panicle trait in domesticated rice. Nat Genet, 2013, 45: 462–465. [33] Jiang L Y, Ma X, Zhao S S, Tang Y Y, Liu F X, Gu P, Fu Y C, Zhu Z F, Cai H W, Sun C Q, et al. The APETALA2-like transcription factor SUPERNUMERARY BRACT controls rice seed shattering and seed size. Plant Cell, 2019, 31: 17–36. [34] 王穆穆, 何艳芳, 郑永胜, 王晖, 王丽媛, 王东建, 张晗, 李汝玉. 水稻落粒基因SH8的精细定位与克隆. 作物学报, 2022, 48: 1948–1956. Wang M M, He Y F, Zheng Y S, Wang H, Wang L Y, Wang D J, Zhang H, Li R Y. Fine mapping and cloning of a seed shattering gene SH8 in rice (Oryza sativa L.). Acta Agron Sin, 2022, 48: 1948–1956 (in Chinese with English abstract). [35] Ning J, He W, Wu L H, Chang L Q, Hu M, Fu Y C, Liu F X, Sun H Y, Gu P, Ndjiondjop M N, et al. The MYB transcription factor Seed Shattering 11 controls seed shattering by repressing lignin synthesis in African rice. Plant Biotechnol J, 2023, 21: 931–942. [36] Wu H, He Q, He B, He S Y, Zeng L J, Yang L B, Zhang H, Wei Z R, Hu X M, Hu J, et al. Gibberellin signaling regulates lignin biosynthesis to modulate rice seed shattering. Plant Cell, 2023, 35: 4383–4404. [37] Lee G H, Kang I K, Kim K M. Mapping of novel QTL regulating grain shattering using doubled haploid population in rice (Oryza sativa L.). Int J Genomics, 2016, 2016: 2128010. [38] Chen L K, Gao W W, Chen S P, Wang L P, Zou J Y, Liu Y Z, Wang H, Chen Z Q, Guo T. High-resolution QTL mapping for grain appearance traits and co-localization of chalkiness-associated differentially expressed candidate genes in rice. Rice, 2016, 9: 48. [39] Meng L, Li H H, Zhang L Y, Wang J K. QTL IciMapping: integrated software for genetic linkage map construction and quantitative trait locus mapping in biparental populations. Crop J, 2015, 3: 269–283. [40] Wu L X, Yue J C, Wang J F, Lu W Y, Huang M, Guo T, Wang H. RNA-seq and genome-wide association studies reveal potential genes for rice seed shattering. Int J Mol Sci, 2022, 23: 14633. [41] Ji H S, Chu S H, Jiang W Z, Cho Y I, Hahn J H, Eun M Y, McCouch S R, Koh H J. Characterization and mapping of a shattering mutant in rice that corresponds to a block of domestication genes. Genetics, 2006, 173: 995–1005. [42] Ali M R, Hasan M K, Saha C K, Alam M M, Hossain M M, Kalita P K, Hansen A C. Role of mechanical rice harvesting in socio-economic development of Bangladesh. In: Mani S, eds. 2018 ASABE Annual International Meeting. St. Joseph: American Society of Agricultural and Biological Engineers, 2018. pp 1–8. [43] Hasan K, Tanaka T S T, Alam M, Ali R, Kumer Saha C. Impact of modern rice harvesting practices over traditional ones. Rev Agric Sci, 2020, 8: 89–108. [44] Fu J W, Ji C, Liu H P, Wang W K, Zhang G Z, Gao Y, Zhou Y, Abdeen M A. Research progress and prospect of mechanized harvesting technology in the first season of ratoon rice. Agriculture, 2022, 12: 620. [45] Mano F, Aoyanagi T, Kozaki A. Atypical splicing accompanied by skipping conserved micro-exons produces unique WRINKLED1, an AP2 domain transcription factor in rice plants. Plants, 2019, 8: 207. [46] Sargent J A, Osborne D J, Dunford S M. Cell separation and its hormonal control during fruit abscission in the Gramineae. J Exp Bot, 1984, 35: 1663–1674. [47] 王权帅, 赵丹莹, 申琳, 生吉萍. 脱落调节物质对植物器官脱落的调控. 西北植物学报, 2009, 29: 2352–2359. Wang Q S, Zhao D Y, Shen L, Sheng J P. Regulation of plant organs abscission by abscission regulating substances. Acta Bot Boreali-Occident Sin, 2009, 29: 2352–2359 (in Chinese with English abstract). [48] Jackson M B, Hartley C B, Osborne D J. Timing abscission in PHASEOLUS VULGARIS L. by controlling ethylene production and sensitivity to ethylene. New Phytol, 1973, 72: 1251–1260.
|
[1] | WANG Fen, WU Dong-Li , ZHANG Quan-Jun. Response of phenological phase stages of single-cropping rice to climate change in Hubei province [J]. Acta Agronomica Sinica, 2025, 51(7): 1934-1948. |
[2] | HU Meng, SHA Dan, ZHANG Sheng-Rui, GU Yong-Zhe, ZHANG Shi-Bi, LI Jing, SUN Jun-Ming, QIU Li-Juan, LI Bin. QTL mapping and candidate gene screening for branch number in soybean [J]. Acta Agronomica Sinica, 2025, 51(7): 1747-1756. |
[3] | SHAO Shun-Wei, CHEN Zhuo, LAN Zhen-Dong, CAI Xing-Kui, ZOU Hua-Fen, LI Chen-Xi, TANG Jing-Hua, ZHU Xi, ZHANG Yu, DONG Jian-Ke, JIN Hui, SONG Bo-Tao. QTL mapping of tuber eye depth based on BSA-seq technique [J]. Acta Agronomica Sinica, 2025, 51(7): 1725-1735. |
[4] | LEI Song-Han, FAN Jun-Yang, CHE Yan-Yi, DAI Yong-Dong, ZHENG Yu-Meng, TIAN Wei-Jiang, SANG Xian-Chun, WANG Xiao-Wen. Identification of an adaxially-curled-leaf mutant acl3 and function analysis of the regulated gene in rice (Oryza sativa L.) [J]. Acta Agronomica Sinica, 2025, 51(6): 1467-1479. |
[5] | LI Fu-Yuan, YANG Yi, MA Ji-Qiong, XU Ming-Hui, LIN Liang-Bin, SUN Yi-Ding. Cloning, hormone-induced expression analysis, and interaction protein screening of OsPUB4 in rice [J]. Acta Agronomica Sinica, 2025, 51(6): 1690-1700. |
[6] | LI Zi-Xiang, HUANG Rong, WANG Zhi-Chao, LI Hong-Yan, TAN Jun-Xing, CHENG Yu, DU Xue-Zhu, SHENG Feng. Effects of poly-γ-glutamate acid on lodging resistance of direct seeding rice [J]. Acta Agronomica Sinica, 2025, 51(6): 1654-1664. |
[7] | ZHANG Jin-Ze, ZHOU Qing-Guo, XIAO Li-Jing, JIN Hai-Run, OU-YANG Qing-Jing, LONG Xu, YAN Zhong-Bin, TIAN En-Tang. QTL mapping and candidate gene analysis of glucosinolate content in various tissues of Brassica juncea [J]. Acta Agronomica Sinica, 2025, 51(5): 1166-1177. |
[8] | WANG Meng-Ning, XIE Ke-Ran, GAO Ti, WANG Fei, REN Xiao-Jian, XIONG Dong-Liang, HUANG Jian-Liang, PENG Shao-Bing, CUI Ke-Hui. Effect of high temperature during the panicle initiation and heading stages on grain shape and filling and its relationship with grain weight in rice [J]. Acta Agronomica Sinica, 2025, 51(5): 1347-1362. |
[9] | SHENG Qian-Nan, FANG Ya-Ting, ZHAO Jian, DU Si-Yao, HU Xing-Zhen, YU Qiu-hua, ZHU Jun, REN Tao, LU Jian-Wei. Effects of different nutrient management practices on oilseed rape yield and their response to freezing stress between upland and paddy-upland rotations [J]. Acta Agronomica Sinica, 2025, 51(5): 1286-1298. |
[10] | WENG Wen-An, XING Zhi-Peng, HU Qun, WEI Hai-Yan, LIAO Ping, ZHU Hai-Bin, QU Ji-Wei, LI Xiu-Li, LIU Gui-Yun, GAO Hui, ZHANG Hong-Cheng. Study on yield formation characteristics, energy and economic benefits of unmanned dry direct-seeding rice [J]. Acta Agronomica Sinica, 2025, 51(5): 1363-1377. |
[11] | ZHU Jian-Ping, LI Wen-Qi, XU Yang, WANG Fang-Quan, LI Xia, JIANG Yan-Jie, FAN Fang-Jun, TAO Ya-Jun, CHEN Zhi-Hui, WU Ying-Ying, YANG Jie. Phenotypic analysis and gene mapping of a floury endosperm mutant we2 in rice [J]. Acta Agronomica Sinica, 2025, 51(4): 1110-1117. |
[12] | XIAO Zheng-Wu, ZHANG Ke-Qian, CAO Fang-Bo, CHEN Jia-Na, ZHENG Hua-Bin, WANG Wei-Qin, HUANG Min. Relationships between cooking and eating quality of brown rice noodles and starch component contents and pasting properties of brown rice grains [J]. Acta Agronomica Sinica, 2025, 51(4): 1102-1109. |
[13] | PAN Ju-Zhong, WEI Ping, ZHU De-Ping, SHAO Sheng-Xue, CHEN Shan-Shan, WEI Ya-Qian, GAO Wei-Wei. Cloning and functional analysis of OsERF104 transcription factor in rice [J]. Acta Agronomica Sinica, 2025, 51(4): 900-913. |
[14] | HOU Tian-Yu, DU Xiao-Jing, ZHAO Zhi-Qiang, REYIM Anwar, YIDAYETULA Abula, BUHALIQIEMU Abulizi, YUAN Jie, ZHANG Yan-Hong, WANG Feng-Bin. Evaluation of cold tolerance of japonica rice varieties at germination stage and construction of identification system [J]. Acta Agronomica Sinica, 2025, 51(3): 812-822. |
[15] | YANG Cui-Hua, LI Shi-Hao, YI Xu-Xu, ZHENG Fei-Xiong, DU Xue-Zhu, SHENG Feng. Effects of poly-γ-glutamic acid on rice yield, quality, and nutrient uptake [J]. Acta Agronomica Sinica, 2025, 51(3): 785-796. |
|