Acta Agronomica Sinica ›› 2025, Vol. 51 ›› Issue (7): 1747-1756.doi: 10.3724/SP.J.1006.2025.44221
• CROP GENETICS & BREEDING · GERMPLASM RESOURCES · MOLECULAR GENETICS • Previous Articles Next Articles
HU Meng,SHA Dan,ZHANG Sheng-Rui,GU Yong-Zhe,ZHANG Shi-Bi,LI Jing,SUN Jun-Ming*,QIU Li-Juan*,LI Bin*
[1] Agyenim-Boateng K G, Zhang S R, Zhang S B, Khattak A N, Shaibu A, Abdelghany A M, Qi J, Azam M, Ma C Y, Feng Y, et al. The nutritional composition of the vegetable soybean (Maodou) and its potential in combatting malnutrition. Front Nutr, 2023, 9: 1034115. [2] Liu K S. Soybeans: Chemistry, Technology, and Utilization. Boston: Springer, 1997. pp 381–383, 401–406, 499–504. [3] Liu S L, Zhang M, Feng F, Tian Z X. Toward a “green revolution” for soybean. Mol Plant, 2020, 13: 688–697. [4] Wang Y, Jiao Y L. Axillary meristem initiation-a way to branch out. Curr Opin Plant Biol, 2018, 41: 61–66. [5] 巩鹏涛, 李迪. 植物分枝发育的遗传控制. 分子植物育种, 2005, 3: 151–162. Gong P T, Li D. Genetic control of plant shoot branching. Mol Plant Breed, 2005, 3: 151–162 (in Chinese with English abstract). [6] Domagalska M A, Leyser O. Signal integration in the control of shoot branching. Nat Rev Mol Cell Biol, 2011, 12: 211–221. [7] Teichmann T, Muhr M. Shaping plant architecture. Front Plant Sci, 2015, 6: 233. [8] Bell E M, Lin W C, Husbands A Y, Yu L F, Jaganatha V, Jablonska B, Mangeon A, Neff M M, Girke T, Springer P S. Arabidopsis lateral organ boundaries negatively regulates brassinosteroid accumulation to limit growth in organ boundaries. Proc Natl Acad Sci USA, 2012, 109: 21146–21151. [9] Finlayson S A. Arabidopsis Teosinte Branched1-like 1 regulates axillary bud outgrowth and is homologous to monocot Teosinte Branched1. Plant Cell Physiol, 2007, 48: 667–677. [10] Wang J, Tian C H, Zhang C, Shi B H, Cao X W, Zhang T Q, Zhao Z, Wang J W, Jiao Y L. Cytokinin signaling activates WUSCHEL expression during axillary meristem initiation. Plant Cell, 2017, 29: 1373–1387. [11] Choi M S, Woo M O, Koh E B, Lee J, Ham T H, Seo H S, Koh H J. Teosinte Branched 1 modulates tillering in rice plants. Plant Cell Rep, 2012, 31: 57–65. [12] Jiao Y Q, Wang Y H, Xue D W, Wang J, Yan M X, Liu G F, Dong G J, Zeng D L, Lu Z F, Zhu X D, et al. Regulation of OsSPL14 by OsmiR156 defines ideal plant architecture in rice. Nat Genet, 2010, 42: 541–544. [13] Li X, Qian Q, Fu Z, Wang Y, Xiong G, Zeng D, Wang X, Liu X, Teng S, Hiroshi F, et al. Control of tillering in rice. Nature, 2003, 422: 618–621. [14] Lu Z F, Shao G N, Xiong J S, Jiao Y Q, Wang J, Liu G F, Meng X B, Liang Y, Xiong G S, Wang Y H, et al. MONOCULM 3, an ortholog of WUSCHEL in rice, is required for tiller bud formation. J Genet Genomics, 2015, 42: 71–78. [15] Miura K, Ikeda M, Matsubara A, Song X J, Ito M, Asano K, Matsuoka M, Kitano H, Ashikari M. OsSPL14 promotes panicle branching and higher grain productivity in rice. Nat Genet, 2010, 42: 545–549. [16] Tanaka W, Ohmori Y, Ushijima T, Matsusaka H, Matsushita T, Kumamaru T, Kawano S, Hirano H Y. Axillary meristem formation in rice requires the WUSCHEL ortholog TILLERS ABSENT1. Plant Cell, 2015, 27: 1173–1184. [17] Zhang L, Yu H, Ma B, Liu G F, Wang J J, Wang J M, Gao R C, Li J J, Liu J Y, Xu J, et al. A natural tandem array alleviates epigenetic repression of IPA1 and leads to superior yielding rice. Nat Commun, 2017, 8: 14789. [18] Dong C H, Zhang L C, Zhang Q, Yang Y X, Li D P, Xie Z C, Cui G Q, Chen Y Y, Wu L F, Li Z, et al. Tiller Number1 encodes an ankyrin repeat protein that controls tillering in bread wheat. Nat Commun, 2023, 14: 836. [19] Zhou F, Lin Q B, Zhu L H, Ren Y L, Zhou K N, Shabek N, Wu F Q, Mao H B, Dong W, Gan L, et al. D14-SCFD3-dependent degradation of D53 regulates strigolactone signalling. Nature, 2013, 504: 406–410. [20] Liu Y T, Wu G X, Zhao Y P, Wang H H, Dai Z Y, Xue W C, Yang J, Wei H B, Shen R X, Wang H Y. DWARF53 interacts with transcription factors UB2/UB3/TSH4 to regulate maize tillering and tassel branching. Plant Physiol, 2021, 187: 947–962. [21] Yao D, Liu Z Z, Zhang J, Liu S Y, Qu J, Guan S Y, Pan L D, Wang D, Liu J W, Wang P W. Analysis of quantitative trait loci for main plant traits in soybean. Genet Mol Res, 2015, 14: 6101–6109. [22] Shim S, Kim M Y, Ha J, Lee Y H, Lee S H. Identification of QTLs for branching in soybean (Glycine max (L.) Merrill). Euphytica, 2017, 213: 225. [23] Bao A L, Chen H F, Chen L M, Chen S L, Hao Q N, Guo W, Qiu D Z, Shan Z H, Yang Z L, Yuan S L, et al. CRISPR/Cas9-mediated targeted mutagenesis of GmSPL9 genes alters plant architecture in soybean. BMC Plant Biol, 2019, 19: 131. [24] Sun Z X, Su C, Yun J X, Jiang Q, Wang L X, Wang Y N, Cao D, Zhao F, Zhao Q S, Zhang M C, et al. Genetic improvement of the shoot architecture and yield in soya bean plants via the manipulation of GmmiR156b. Plant Biotechnol J, 2019, 17: 50–62. [25] Guo W, Chen L M, Chen H F, Yang H L, You Q B, Bao A L, Chen S L, Hao Q N, Huang Y, Qiu D Z, et al. Overexpression of GmWRI1b in soybean stably improves plant architecture and associated yield parameters, and increases total seed oil production under field conditions. Plant Biotechnol J, 2020, 18: 1639–1641. [26] Liang Q J, Chen L Y, Yang X, Yang H, Liu S L, Kou K, Fan L, Zhang Z F, Duan Z B, Yuan Y Q, et al. Natural variation of Dt2 determines branching in soybean. Nat Commun, 2022, 13: 6429. [27] Meng L, Li H H, Zhang L Y, Wang J K. QTL IciMapping: Integrated software for genetic linkage map construction and quantitative trait locus mapping in biparental populations. Crop J, 2015, 3: 269–283.
[28] 刘亭萱, 谷勇哲, 张之昊, 王俊, 孙君明, 邱丽娟. 基于高密度遗传图谱定位大豆蛋白质含量相关的QTL. 作物学报, 2023, 49: 1532–1541. [29] van Ooijen J W. JoinMap® 4, Software for the Calculation of Genetic Linkage Maps in Experimental Populations. Wageningen, Netherlands: Kyazma, 2006. [30] Li S S, Wang J K, Zhang L Y. Inclusive composite interval mapping of QTL by environment interactions in biparental populations. PLoS One, 2015, 10: e0132414. [31] Li H H, Ye G Y, Wang J K. A modified algorithm for the improvement of composite interval mapping. Genetics, 2007, 175: 361–374. [32] Cingolani P, Platts A, Wang L L, Coon M, Nguyen T, Wang L, Land S J, Lu X Y, Ruden D M. A program for annotating and predicting the effects of single nucleotide polymorphisms, SnpEff: SNPs in the genome of Drosophila melanogaster strain w1118; Iso-2; Iso-3. Fly, 2012, 6: 80–92. [33] Sayama T, Hwang T, Yamazaki H, Yamaguchi N, Komatsu K, Takahashi M, Suzuki C, Miyoshi T, Tanaka Y, Xia Z J, et al. Mapping and comparison of quantitative trait loci for soybean branching phenotype in two locations. Breed Sci, 2010, 60: 380–389. [34] Bernard R L. Two genes affecting stem termination in Soybeans. Crop Sci, 1972, 12: 235–239. [35] Tian Z X, Wang X B, Lee R A, Li Y H, Specht J E, Nelson R L, McClean P E, Qiu L J, Ma J X. Artificial selection for determinate growth habit in soybean. Proc Natl Acad Sci USA, 2010, 107: 8563–8568. [36] Ping J Q, Liu Y F, Sun L J, Zhao M X, Li Y H, She M Y, Sui Y, Lin F, Liu X D, Tang Z X, et al. Dt2 is a gain-of-function MADS-domain factor gene that specifies semideterminacy in soybean. Plant Cell, 2014, 26: 2831–2842. [37] Zhang D J, Wang X T, Li S, Wang C F, Gosney M J, Mickelbart M V, Ma J X. A post-domestication mutation, Dt2, triggers systemic modification of divergent and convergent pathways modulating multiple agronomic traits in soybean. Mol Plant, 2019, 12: 1366–1382. |
[1] | YANG Hai-Yang, WU Lin-Xuan, LI Bo-Wen, SHI Han-Feng, YUAN Xi-Long, LIU Jin-Zhao, CAI Hai-Rong, CHEN Shi-Yi, GUO Tao, WANG Hui. OsWRI3, identified based on QTL mapping, regulates seed shattering in rice [J]. Acta Agronomica Sinica, 2025, 51(7): 1712-1724. |
[2] | ZHAO Chao-Nan, WANG Jin-Feng, ZHANG Yu, ZHANG Li, LI Rui-Qi, WANG Peng-Fei, LI Ge-Zi, ZHANG Hong-Jun, YU Bo, KANG Guo-Zhang. Genome-wide association study for the identification and characterization of nitrogen efficiency-related genes in wheat [J]. Acta Agronomica Sinica, 2025, 51(7): 1801-1813. |
[3] | SHAO Shun-Wei, CHEN Zhuo, LAN Zhen-Dong, CAI Xing-Kui, ZOU Hua-Fen, LI Chen-Xi, TANG Jing-Hua, ZHU Xi, ZHANG Yu, DONG Jian-Ke, JIN Hui, SONG Bo-Tao. QTL mapping of tuber eye depth based on BSA-seq technique [J]. Acta Agronomica Sinica, 2025, 51(7): 1725-1735. |
[4] | ZHANG Jin-Ze, ZHOU Qing-Guo, XIAO Li-Jing, JIN Hai-Run, OU-YANG Qing-Jing, LONG Xu, YAN Zhong-Bin, TIAN En-Tang. QTL mapping and candidate gene analysis of glucosinolate content in various tissues of Brassica juncea [J]. Acta Agronomica Sinica, 2025, 51(5): 1166-1177. |
[5] | LIN Wei-Jin, GUO Ze-Jia, LIU Hao, LI Hai-Fen, WANG Run-Feng, HUANG Lu, YU Qian-Xia, CHEN Xiao-Ping, HONG Yan-Bin, LI Shao-Xiong, LU Qing. QTL mapping and candidate gene analysis of peanut pod yield-related traits [J]. Acta Agronomica Sinica, 2025, 51(4): 969-981. |
[6] | XU Jian-Xia, DING Yan-Qing, CAO Ning, CHENG Bin, GAO Xu, LI Wen-Zhen, ZHANG Li-Yi. Genome-wide association analysis and prediction of candidate genes for plant height and internode number in Chinese sorghum [J]. Acta Agronomica Sinica, 2025, 51(3): 568-585. |
[7] | YONG Rui, HU Wen-Jing, WU Di, WANG Zun-Jie, LI Dong-Sheng, ZHAO Die, YOU Jun-Chao, XIAO Yong-Gui, WANG Chun-Ping. Identification and validation of quantitative trait loci for grain number per spike showing pleiotropic effect on thousand grain weight in bread wheat (Triticum aestivum L.) [J]. Acta Agronomica Sinica, 2025, 51(2): 312-323. |
[8] | GUO Shu-Hui, PAN Zhuan-Xia, ZHAO Zhan-Sheng, YANG Liu-Liu, HUANG-FU Zhang-Long, GUO Bao-Sheng, HU Xiao-Li, LU Ya-Dan, DING Xiao, WU Cui-Cui, LAN Gang, LYU Bei-Bei, TAN Feng-Ping, LI Peng-Bo. Genetic analysis of a major fiber length locus on chromosome D11 of upland cotton [J]. Acta Agronomica Sinica, 2025, 51(2): 383-394. |
[9] | YANG Jing-Fa, YU Xin-Lian, YAO You-Hua, YAO Xiao-Hua, WANG Lei, WU Kun-Lun, LI Xin. QTL mapping of tiller angle in qingke (Hordeum vulgare L.) [J]. Acta Agronomica Sinica, 2025, 51(1): 260-272. |
[10] | YE Liang, ZHU Ye-Lin, PEI Lin-Jing, ZHANG Si-Ying, ZUO Xue-Qian, LI Zheng-Zhen, LIU Fang, TAN Jing. Screening candidate resistance genes to ear rot caused by Fusarium verticillioides in maize by combined GWAS and transcriptome analysis [J]. Acta Agronomica Sinica, 2024, 50(9): 2279-2296. |
[11] | HAN Li, TANG Sheng-Sheng, LI Jia, HU Hai-Bin, LIU Long-Long, WU Bin. Construction of SNP high-density genetic map and localization of QTL for β-glucan content in oats [J]. Acta Agronomica Sinica, 2024, 50(7): 1710-1718. |
[12] | BI Jun-Ge, ZENG Zhan-Kui, LI Qiong, HONG Zhuang-Zhuang, YAN Qun-Xiang, ZHAO Yue, WANG Chun-Ping. QTL mapping and KASP marker development of grain quality-relating traits in two wheat RIL populations [J]. Acta Agronomica Sinica, 2024, 50(7): 1669-1683. |
[13] | QIN Na, YE Zhen-Yan, ZHU Can-Can, FU Sen-Jie, DAI Shu-Tao, SONG Ying-Hui, JING Ya, WANG Chun-Yi, LI Jun-Xia. QTL mapping for flavonoid content and seed color in foxtail millet [J]. Acta Agronomica Sinica, 2024, 50(7): 1719-1727. |
[14] | ZHENG Xue-Qing, WANG Xing-Rong, ZHANG Yan-Jun, GONG Dian-Ming, QIU Fa-Zhan. Mapping of QTL for ear-related traits and prediction of key candidate genes in maize [J]. Acta Agronomica Sinica, 2024, 50(6): 1435-1450. |
[15] | MIAO Long, SHU Kuo, LI Juan, HUANG Ru, WANG Ye-Xing, Soltani Muhammad YOUSOF, XU Jing-Hao, WU Chuan-Lei, LI Jia-Jia, WANG Xiao-Bo, QIU Li-Juan. Identification and gene mapping of soybean mutant Mrstz in root-stem transition zone [J]. Acta Agronomica Sinica, 2024, 50(5): 1091-1103. |
|