ZHAO Chao-Nan1,WANG Jin-Feng1,ZHANG Yu1,ZHANG Li1,LI Rui-Qi1,WANG Peng-Fei1,LI Ge-Zi1,ZHANG Hong-Jun2,YU Bo1,*,KANG Guo-Zhang1,*
[1] Ray D K, Mueller N D, West P C, Foley J A. Yield trends are insufficient to double global crop production by 2050. PLoS One, 2013, 8: e66428. [2] Wang H Y, Li Q Z, Du X, Zhao L C, Wang N. Evaluation of potential crop productivity based on remote sensing and agro-ecological zones around the world. Geocarto Int, 2018, 33: 713–722. [3] Good A G, Shrawat A K, Muench D G. Can less yield more? Is reducing nutrient input into the environment compatible with maintaining crop production? Trends Plant Sci, 2004, 9: 597–605. [4] 侯萌瑶, 张丽, 王知文, 杨殿林, 王丽丽, 修伟明, 赵建宁. 中国主要农作物化肥用量估算. 农业资源与环境学报, 2017, 34: 360–367. Hou M Y, Zhang L, Wang Z W, Yang D L, Wang L L, Xiu W M, Zhao J N. Estimation of fertilizer usage from main crops in China. J Agric Resour Environ, 2017, 34: 360–367 (in Chinese with English abstract). [5] Li J, Xu F, Yang J M. Improved economic and environmental outcomes from targeted fertilizer policy. Environ Sci Pollut Res Int, 2022, 29: 10101–10111. [6] 靳义荣, 刘金栋, 刘彩云, 贾德新, 刘鹏, 王雅美. 普通小麦氮素利用效率相关性状全基因组关联分析. 作物学报, 2021, 47: 394–404. Jin Y R, Liu J D, Liu C Y, Jia D X, Liu P, Wang Y M. Genome-wide association study of nitrogen use efficiency related traits in common wheat (Triticum aestivum L.). Acta Agron Sin, 2021, 47: 394–404 (in Chinese with English abstract). [7] Vidican R, Mălinaș A, Rotar I, Kadar R, Deac V, Mălinaș C. Assessing wheat response to N fertilization in a wheat–maize–soybean long-term rotation through NUE measurements. Agronomy, 2020, 10: 941. [8] Frels K, Guttieri M, Joyce B, Leavitt B, Baenziger P S. Evaluating canopy spectral reflectance vegetation indices to estimate nitrogen use traits in hard winter wheat. Field Crops Res, 2018, 217: 82–92. [9] 张鹏霞, 周秀文, 梁雪, 郭营, 赵岩, 李斯深, 孔凡美. 小麦苗期生物量及氮效率相关性状的全基因组关联分析. 中国农业科学, 2021, 54: 4487–4544. Zhang P X, Zhou X W, Liang X, Guo Y, Zhao Y, Li S S, Kong F M. Genome-wide association analysis for yield and nitrogen efficiency related traits of wheat at seedling stage. Sci Agric Sin, 2021, 54: 4487–4544 (in Chinese with English abstract). [10] 廖荣伟, 刘晶淼. 作物根系形态观测方法研究进展讨论. 气象科技, 2008, 36: 429–435. Liao R W, Liu J M. Progresses in methods for observing crop root pattern system. Meteor Sci Technol, 2008, 36: 429–435 (in Chinese with English abstract). [11] An D G, Su J Y, Liu Q Y, Zhu Y G, Tong Y P, Li J M, Jing R L, Li B, Li Z S. Mapping QTLs for nitrogen uptake in relation to the early growth of wheat (Triticum aestivum L.). Plant Soil, 2006, 284: 73–84. [12] Xu Y F, Wang R F, Tong Y P, Zhao H T, Xie Q G, Liu D C, Zhang A M, Li B, Xu H X, An D G. Mapping QTLs for yield and nitrogen-related traits in wheat: influence of nitrogen and phosphorus fertilization on QTL expression. Theor Appl Genet, 2014, 127: 59–72. [13] Sandhu N, Sethi M, Kaur H, Dhillon A, Kumar A, Kaur A, Kaur S, Varinderpal S, Bentley A R, Chhuneja P. Mining natural genetic variations for nitrogen use efficiency utilizing nested synthetic hexaploid wheat introgression libraries. Environ Exp Bot, 2023, 212: 105394. [14] 赵化田, 王瑞芳, 许云峰, 安调过. 小麦苗期耐低氮基因型的筛选与评价. 中国生态农业学报, 2011, 19: 1199–1204. Zhao H T, Wang R F, Xu Y F, An D G. Screening and evaluating low nitrogen tolerant wheat genotype at seedling stage. Chin J Eco-Agric, 2011, 19: 1199–1204 (in Chinese with English abstract). [15] 胡成梅. 小麦苗期耐低氮胁迫相关性状的全基因组关联分析. 山西农业大学硕士学位论文, 山西太谷, 2020. Hu C M. Genome-wide Association Analysis of Low Nitrogen Stress Tolerance Related Traits in Wheat Seedling Stage. MS Thesis of Shanxi Agricultural University, Taigu, Shanxi, China, 2020 (in Chinese with English abstract). [16] Hoagland D R, Arnon D I. The Water Culture Method for Growing Plants without Soil. California Agricultural Experiment Station Circular, 1950. [17] Lynch J M, Barbano D M. Kjeldahl nitrogen analysis as a reference method for protein determination in dairy products. J AOAC Int, 1999, 82: 1389–1398. [18] Siddiqi M Y, Glass A D M. Utilization index: a modified approach to the estimation and comparison of nutrient utilization efficiency in plants. J Plant Nutr, 1981, 4: 289–302. [19] 杜保见, 郜红建, 常江, 章力干. 小麦苗期氮素吸收利用效率差异及聚类分析. 植物营养与肥料学报, 2014, 20: 1349–1357. Du B J, Gao H J, Chang J, Zhang L G. Screening and cluster analysis of nitrogen use efficiency of different wheat cultivars at the seedling stage. J Plant Nutr Fert, 2014, 20: 1349–1357 (in Chinese with English abstract). [20] Hu C C, Li J H, Liu J J, Zhang D Z, Jin L Q, Yang N, Bai B P, Wang Z H, Feng S W, Ru Z G, et al. Genome-wide association study on seedling phenotypic traits of wheat under different nitrogen conditions. Plants, 2023, 12: 4050. [21] Shi H W, Wang W C, Gao L F, Wu J R, Hu C M, Yan H S, Shi Y G, Li N, Ma Y Z, Zhou Y B, et al. Genome-wide association study of seedling nitrogen-use efficiency-associated traits in common wheat (Triticum aestivum L.). Crop J, 2024, 12: 222–231. [22] Shi H W, Chen M, Gao L F, Wang Y X, Bai Y M, Yan H S, Xu C J, Zhou Y B, Xu Z S, Chen J, et al. Genome-wide association study of agronomic traits related to nitrogen use efficiency in wheat. Theor Appl Genet, 2022, 135: 4289–4302. [23] 吕阳, 刘聪聪, 杨龙波, 曹兴岚, 王月影, 童毅, Mohamed Hazman, 钱前, 商连光, 郭龙彪. 全基因组关联分析(GWAS)鉴定水稻氮素利用效率候选基因. 中国水稻科学, 2024, 38: 516–524. Lyu Y, Liu C C, Yang L B, Cao X L, Wang Y Y, Tong Y, Hazman M, Qian Q, Shang L G, Guo L B. Identification of candidate genes for rice nitrogen use efficiency by genome-wide association analysis. Chin J Rice Sci, 2024, 38: 516–524 (in Chinese with English abstract). [24] 栾海业, 孟炜, 张英虎, 李钰, 朱琳洁, 王裕, 刘雨倩, 徐肖, 刘方方, 沈会权. 大麦耐盐相关性状的全基因组关联分析. 麦类作物学报, 2024, 44: 729–734. Luan H Y, Meng W, Zhang Y H, Li Y, Zhu L J, Wang Y, Liu Y Q, Xu X, Liu F F, Shen H Q. Genome-wide association analysis of traits related to salt tolerance in barley. J Triticeae Crops, 2024, 44: 729–734 (in Chinese with English abstract). [25] Saghai-Maroof M A, Soliman K M, Jorgensen R A, Allard R W L. Ribosomal DNA spacer-length polymorphisms in barley: mendelian inheritance, chromosomal location, and population dynamics. Proc Natl Acad Sci USA, 1984, 81: 8014–8018. [26] Evanno G, Regnaut S, Goudet J. Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol, 2005, 14: 2611–2620. [27] Zhang C, Dong S S, Xu J Y, He W M, Yang T L. PopLDdecay: a fast and effective tool for linkage disequilibrium decay analysis based on variant call format files. Bioinformatics, 2019, 35: 1786–1788. [28] Yu S Z, Wu J H, Wang M, Shi W M, Xia G M, Jia J Z, Kang Z S, Han D J. Haplotype variations in QTL for salt tolerance in Chinese wheat accessions identified by marker-based and pedigree-based kinship analyses. Crop J, 2020, 8: 1011–1024. [29] 禹海龙, 吴文雪, 裴星旭, 刘晓宇, 邓跟望, 李西臣, 甄士聪, 望俊森, 赵永涛, 许海霞, 等. 小麦茎秆性状的转录组测序及全基因组关联分析. 作物学报, 2024, 50: 2187–2206. Yu H L, Wu W X, Pei X X, Liu X Y, Deng G W, Li X C, Zhen S C, Wang J S, Zhao Y T, Xu H X, et al. Transcriptome sequencing and genome-wide association study of wheat stem traits. Acta Agron Sin, 2024, 50: 2187–2206 (in Chinese with English abstract). [30] 张力岚, 杨军, 王让剑. 茶树橙花叔醇和芳樟醇樱草糖苷含量全基因组关联分析及候选基因预测. 作物学报, 2024, 50: 871–886. Zhang L L, Yang J, Wang R J. Genome-wide association study and candidate gene prediction of nerolidol and linalool primeveroside content in tea plants. Acta Agron Sin, 2024, 50: 871–886 (in Chinese with English abstract). [31] Pan Y H, Zhu J, Hong Y, Zhang M N, Lyu C, Guo B J, Shen H Q, Xu X, Xu R G. Screening of stable resistant accessions and identification of resistance loci to Barley yellow mosaic virus disease. Peer J, 2022, 10: e13128. [32] Kang H M, Sul J H, Service S K, Zaitlen N A, Kong S Y, Freimer N B, Sabatti C, Eskin E. Variance component model to account for sample structure in genome-wide association studies. Nat Genet, 2010, 42: 348–354. [33] Chen C J, Chen H, Zhang Y, Thomas H R, Frank M H, He Y H, Xia R. TBtools: an integrative toolkit developed for interactive analyses of big biological data. Mol Plant, 2020, 13: 1194–1202. [34] Liu J D, He Z H, Rasheed A, Wen W E, Yan J, Zhang P Z, Wan Y X, Zhang Y, Xie C J, Xia X C. Genome-wide association mapping of black point reaction in common wheat (Triticum aestivum L.). BMC Plant Biol, 2017, 17: 220. [35] Hao C Y, Wang Y Q, Chao S, Li T, Liu H X, Wang L F, Zhang X Y. The iSelect 9 K SNP analysis revealed polyploidization induced revolutionary changes and intense human selection causing strong haplotype blocks in wheat. Sci Rep, 2017, 7: 41247. [36] 张锡洲, 吴沂珀, 李廷轩. 不同施氮水平下不同氮利用效率小黑麦植株氮素积累分配特性. 中国生态农业学报, 2014, 22: 151–158. Zhang X Z, Wu Y P, Li T X. Accumulation and distribution of nitrogen in Triticale varieties with different nitrogen utilization efficiencies under different nitrogen application levels. Chin J Eco-Agric, 2014, 22: 151–158 (in Chinese with English abstract). [37] Cui F, Zhao C H, Ding A M, Li J, Wang L, Li X F, Bao Y G, Li J M, Wang H G. Construction of an integrative linkage map and QTL mapping of grain yield-related traits using three related wheat RIL populations. Theor Appl Genet, 2014, 127: 659–675. [38] Guo Y, Kong F M, Xu Y F, Zhao Y, Liang X, Wang Y Y, An D G, Li S S. QTL mapping for seedling traits in wheat grown under varying concentrations of N, P and K nutrients. Theor Appl Genet, 2012, 124: 851–865. [39] Habash D Z, Bernard S, Schondelmaier J, Weyen J, Quarrie S A. The genetics of nitrogen use in hexaploid wheat: N utilisation, development and yield. Theor Appl Genet, 2007, 114: 403–419. [40] 翟俊鹏, 李海霞, 毕惠惠, 周思远, 罗肖艳, 陈树林, 程西永, 许海霞. 普通小麦主要农艺性状的全基因组关联分析. 作物学报, 2019, 45: 1488–1502. Zhai J P, Li H X, Bi H H, Zhou S Y, Luo X Y, Chen S L, Cheng X Y, Xu H X. Genome-wide association study for main agronomic traits in common wheat. Acta Agron Sin, 2019, 45: 1488–1502 (in Chinese with English abstract). [41] 王脉, 董清峰, 高珅奥, 刘德政, 卢山, 乔朋放, 陈亮, 胡银岗. 小麦苗期根系性状的全基因组关联分析与优异位点挖掘. 中国农业科学, 2023, 56: 801–820. Wang M, Dong Q F, Gao S A, Liu D Z, Lu S, Qiao P F, Chen L, Hu Y G. Genome-wide association studies and mining for favorable loci of root traits at seedling stage in wheat. Sci Agric Sin, 2023, 56: 801–820 (in Chinese with English abstract). [42] Hong M J, Ko C S, Kim D Y. Genome-wide association study to identify marker-trait associations for seed color in colored wheat (Triticum aestivum L.). Int J Mol Sci, 2024, 25: 3600. [43] Wang W, Hu B, Li A F, Chu C C. NRT1.1s in plants: functions beyond nitrate transport. J Exp Bot, 2020, 71: 4373–4379. [44] Maghiaoui A, Bouguyon E, Cuesta C, Perrine-Walker F, Alcon C, Krouk G, Benková E, Nacry P, Gojon A, Bach L. The Arabidopsis NRT1.1 transceptor coordinately controls auxin biosynthesis and transport to regulate root branching in response to nitrate. J Exp Bot, 2020, 71: 4480–4494. [45] Holtan H E, Bandong S, Marion C M, Adam L, Tiwari S, Shen Y, Maloof J N, Maszle D R, Ohto M A, Preuss S, et al. BBX32 an Arabidopsis B-Box protein, functions in light signaling by suppressing HY5-regulated gene expression and interacting with STH2/BBX21. Plant Physiol, 2011, 156: 2109–2123. [46] Gaudinier A, Rodriguez-Medina J, Zhang L F, Olson A, Liseron-Monfils C, Bågman A M, Foret J, Abbitt S, Tang M, Li B H, et al. Transcriptional regulation of nitrogen-associated metabolism and growth. Nature, 2018, 563: 259–264. [47] 王娟, 兰海燕. GATA转录因子对植物发育和胁迫响应调控的研究进展. 植物生理学报, 2016, 52: 1785–1794. Wang J, Lan H Y. Advances in regulation of GATA transcription factor to plant development and stress responses. Plant Physiol J, 2016, 52: 1785–1794 (in Chinese with English abstract). [48] Wang P F, Li G Z, Li G W, Yuan S S, Wang C Y, Xie Y X, Guo T C, Kang G Z, Wang D W. TaPHT1;9-4B and its transcriptional regulator TaMYB4-7D contribute to phosphate uptake and plant growth in bread wheat. New Phytol, 2021, 231: 1968–1983. [49] Chen Z D, Wang J F, Dong D Q, Lou C, Zhang Y, Wang Y X, Yu B, Wang P F, Kang G Z. Comparative analysis of TaPHT1; 9 function using CRISPR-edited mutants, ectopic transgenic plants and their wild types under soil conditions. Plant Soil, 2025, 509: 249–260. [50] Wang J F, Chen Z D, Shi H T, Lou C, Fu K X, Wang Y X, Yu B, Guo T C, Wang Y H, Wang P F, et al. Pi-efficient wheat cultivars screened by using both functional marker CAPS-799 and field experiment. Field Crops Res, 2025, 321: 109688. [51] Wang H F, Yang B B, Zhao X Y, Chen H L, Liu F, Ru Y T, Wei X R, Fu X F, Guo W W, Li X M, et al. Identification of novel QTL for seedling root architectural traits in the D genome of natural and resynthetic allohexaploid wheat. Agronomy, 2024, 14: 608. |
[1] | ZHANG Jin-Ze, ZHOU Qing-Guo, XIAO Li-Jing, JIN Hai-Run, OU-YANG Qing-Jing, LONG Xu, YAN Zhong-Bin, TIAN En-Tang. QTL mapping and candidate gene analysis of glucosinolate content in various tissues of Brassica juncea [J]. Acta Agronomica Sinica, 2025, 51(5): 1166-1177. |
[2] | LIN Wei-Jin, GUO Ze-Jia, LIU Hao, LI Hai-Fen, WANG Run-Feng, HUANG Lu, YU Qian-Xia, CHEN Xiao-Ping, HONG Yan-Bin, LI Shao-Xiong, LU Qing. QTL mapping and candidate gene analysis of peanut pod yield-related traits [J]. Acta Agronomica Sinica, 2025, 51(4): 969-981. |
[3] | XU Jian-Xia, DING Yan-Qing, CAO Ning, CHENG Bin, GAO Xu, LI Wen-Zhen, ZHANG Li-Yi. Genome-wide association analysis and prediction of candidate genes for plant height and internode number in Chinese sorghum [J]. Acta Agronomica Sinica, 2025, 51(3): 568-585. |
[4] | MA Min-Hu, CHANG Hua-Yu, CHEN Zhao-Yan, REN Zeng, LIU Ting-Hui, XING Guo-Fang, GUO Gang-Gang. Identification and genome-wide association study of specialized seedling grass barley cultivars [J]. Acta Agronomica Sinica, 2025, 51(1): 91-102. |
[5] | YE Liang, ZHU Ye-Lin, PEI Lin-Jing, ZHANG Si-Ying, ZUO Xue-Qian, LI Zheng-Zhen, LIU Fang, TAN Jing. Screening candidate resistance genes to ear rot caused by Fusarium verticillioides in maize by combined GWAS and transcriptome analysis [J]. Acta Agronomica Sinica, 2024, 50(9): 2279-2296. |
[6] | YU Hai-Long, WU Wen-Xue, PEI Xing-Xu, LIU Xiao-Yu, DENG Gen-Wang, LI Xi-Chen, ZHEN Shi-Cong, WANG Jun-Sen, ZHAO Yong-Tao, XU Hai-Xia, CHENG Xi-Yong, ZHAN Ke-Hui. Transcriptome sequencing and genome-wide association study of wheat stem traits [J]. Acta Agronomica Sinica, 2024, 50(9): 2187-2206. |
[7] | SONG Zhi-Wen, ZHAO Lei, BI Jun-Guo, TANG Qing-Yun, WANG Guo-Dong, LI Yu-Xiang. Effects of nitrogen fertilization levels on matter accumulation and nutrient uptake in rice cultivar with different nitrogen efficiency under drip irrigation [J]. Acta Agronomica Sinica, 2024, 50(8): 2025-2038. |
[8] | PENG Xiao-Ai, LU Mao-Ang, ZHANG Ling, LIU Tong, CAO Lei, SONG You-Hong, ZHENG Wen-Yin, HE Xian-Fang, ZHU Yu-Lei. Genome-wide association study of major grain quality traits in wheat based on 55K SNP arrays [J]. Acta Agronomica Sinica, 2024, 50(8): 1948-1960. |
[9] | QIN Na, YE Zhen-Yan, ZHU Can-Can, FU Sen-Jie, DAI Shu-Tao, SONG Ying-Hui, JING Ya, WANG Chun-Yi, LI Jun-Xia. QTL mapping for flavonoid content and seed color in foxtail millet [J]. Acta Agronomica Sinica, 2024, 50(7): 1719-1727. |
[10] | MIAO Long, SHU Kuo, LI Juan, HUANG Ru, WANG Ye-Xing, Soltani Muhammad YOUSOF, XU Jing-Hao, WU Chuan-Lei, LI Jia-Jia, WANG Xiao-Bo, QIU Li-Juan. Identification and gene mapping of soybean mutant Mrstz in root-stem transition zone [J]. Acta Agronomica Sinica, 2024, 50(5): 1091-1103. |
[11] | LOU Fei, ZUO Yi-Ping, LI Meng, DAI Xin-Meng, WANG Jian, HAN Jin-Ling, WU Shu, LI Xiang-Ling, DUAN Hui-Jun. Effects of organic fertilizer substituting chemical fertilizer nitrogen on yield, quality, and nitrogen efficiency of waxy maize [J]. Acta Agronomica Sinica, 2024, 50(4): 1053-1064. |
[12] | ZHANG Li-Lan, YANG Jun, WANG Rang-Jian. Genome-wide association study and candidate gene prediction of nerolidol and linalool primeveroside content in tea plants [J]. Acta Agronomica Sinica, 2024, 50(4): 871-886. |
[13] | LI Yang-Yang, WU Dan, XU Jun-Hong, CHEN Zhuo-Yong, XU Xin-Yuan, XU Jin-Pan, TANG Zhong-Lin, ZHANG Ya-Ru, ZHU Li, YAN Zhuo-Li, ZHOU Qing-Yuan, LI Jia-Na, LIU Lie-Zhao, TANG Zhang-Lin. Identification of candidate genes associated with drought tolerance based on QTL and transcriptome sequencing in Brassica napus L. [J]. Acta Agronomica Sinica, 2024, 50(4): 820-835. |
[14] | MA Juan, CAO Yan-Yong. Genome-wide association study of yield traits and special combining ability in maize hybrid population [J]. Acta Agronomica Sinica, 2024, 50(2): 363-372. |
[15] | YANG Shi-Jie, WANG Hua-Zhi, PAN Yi-Min, HUANG Rui, HOU Sen, QIN Hui-Bin, MU Zhi-Xin, WANG Hai-Gang. Genome-wide association analysis for plant height in foxtail millet (Setaria italica L.) germplasm resources in Shanxi, China [J]. Acta Agronomica Sinica, 2024, 50(12): 2984-2997. |
|