Acta Agronomica Sinica ›› 2024, Vol. 50 ›› Issue (12): 2998-3012.doi: 10.3724/SP.J.1006.2024.42023
• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles Next Articles
WANG Ying-Heng1,2(), CUI Li-Li1,2, CAI Qiu-Hua1,2, LIN Qiang1,2, WU Fang-Xi1,2, CHEN Fei-He1,2, XIE Hong-Guang1,2, ZHU Yong-Sheng1,2, CHEN Li-Ping1,2, XIE Hua-An1,2, ZHANG Jian-Fu1,2,*(
)
[1] |
Gupta A, Rico-Medina A, Caño-Delgado A I. The physiology of plant responses to drought. Science, 2020, 368: 266-269.
doi: 10.1126/science.aaz7614 pmid: 32299946 |
[2] | Zhang C M, Shi S L, Liu Z, Yang F, Yin G L. Drought tolerance in alfalfa (Medicago sativa L.) varieties is associated with enhanced antioxidative protection and declined lipid peroxidation. J Plant Physiol, 2019, 232: 226-240. |
[3] |
McAdam S A M, Brodribb T J. Mesophyll cells are the main site of abscisic acid biosynthesis in water-stressed leaves. Plant Physiol, 2018, 177: 911-917.
doi: 10.1104/pp.17.01829 pmid: 29735726 |
[4] |
Kuromori T, Seo M, Shinozaki K. ABA transport and plant water stress responses. Trends Plant Sci, 2018, 23: 513-522.
doi: S1360-1385(18)30085-2 pmid: 29731225 |
[5] | Takahashi F, Suzuki T, Osakabe Y, Betsuyaku S, Kondo Y, Dohmae N, Fukuda H, Yamaguchi-Shinozaki K, Shinozaki K. A small peptide modulates stomatal control via abscisic acid in long-distance signalling. Nature, 2018, 556: 235-238. |
[6] |
Mega R, Abe F, Kim J S, Tsuboi Y, Tanaka K, Kobayashi H, Sakata Y, Hanada K, Tsujimoto H, Kikuchi J, Cutler S R, Okamoto M. Tuning water-use efficiency and drought tolerance in wheat using abscisic acid receptors. Nat Plants, 2019, 5: 153-159.
doi: 10.1038/s41477-019-0361-8 pmid: 30737511 |
[7] |
Okamoto M, Peterson F C, Defries A, Park S Y, Endo A, Nambara E, Volkman B F, Cutler S R. Activation of dimeric ABA receptors elicits guard cell closure, ABA-regulated gene expression, and drought tolerance. Proc Natl Acad Sci USA, 2013, 110: 12132-12137.
doi: 10.1073/pnas.1305919110 pmid: 23818638 |
[8] | Park S Y, Peterson F C, Mosquna A, Yao J, Volkman B F, Cutler S R. Agrochemical control of plant water use using engineered abscisic acid receptors. Nature, 2015, 520: 545-548. |
[9] | Chen J N, Yin Y H. WRKY transcription factors are involved in brassinosteroid signaling and mediate the crosstalk between plant growth and drought tolerance. Plant Signal Behav, 2017, 12: e1365212. |
[10] | Xie Z L, Nolan T, Jiang H, Tang B Y, Zhang M C, Li Z H, Yin Y. The AP2/ERF transcription factor TINY modulates brassinosteroid-regulated plant growth and drought responses in Arabidopsis. Plant Cell, 2019, 31: 1788-1806. |
[11] |
Luo L J. Breeding for water-saving and drought-resistance rice (WDR) in China. J Exp Bot, 2010, 61: 3509-3517.
doi: 10.1093/jxb/erq185 pmid: 20603281 |
[12] | Sun X, Xiong H, Jiang C, Zhang D, Yang Z, Huang Y, Zhu W, Ma S, Duan J, Wang X, Liu W, Guo H, Li G, Qi J, Liang C, Zhang Z, Li J, Zhang H, Han L, Zhou Y, Peng Y, Li Z. Natural variation of DROT1 confers drought adaptation in upland rice. Nat Commun, 2022, 13: 4265-4281. |
[13] |
Zhang Q F. Strategies for developing Green Super Rice. Proc Natl Acad Sci USA, 2007, 104: 16402-16409.
doi: 10.1073/pnas.0708013104 pmid: 17923667 |
[14] | 吴方喜, 罗翠琴, 王颖姮, 谢云杰, 罗曦, 朱永生, 谢鸿光, 蒋家焕, 蔡秋华, 谢华安, 张建福. 优质、抗病、耐储藏香稻新品种福香占的选育与应用. 福建农业学报, 2022, 37: 683-690. |
Wu F X, Luo C Q, Wang Y H, Xie Y J, Luo X, Zhu Y S, Xie H G, Jiang J H, Cai Q H, Xie H A, Zhang J F. Breeding and application of high-quality, blast-resistant, long-shelf-life fragrant Fuxiangzhan rice. Fujian J Agric Sci, 2022, 37: 683-690 (in Chinese with English abstract). | |
[15] |
丁红, 张智猛, 徐扬, 张冠初, 郭庆, 秦斐斐, 戴良香. 氮素缓解花生干旱胁迫的生理和转录调控机制. 作物学报, 2023, 49: 225-238.
doi: 10.3724/SP.J.1006.2023.24020 |
Ding H, Zhang Z M, Xu Y, Zhang G C, Guo Q, Qin F F, Dai L X. Physiological and transcriptional regulation mechanisms of nitrogen alleviating drought stress in peanut. Acta Agron Sin, 2023, 49: 225-238 (in Chinese with English abstract).
doi: 10.3724/SP.J.1006.2023.24020 |
|
[16] | 陈力, 王靖, 邱晓, 孙海莲, 张文浩, 王天佐. 不同耐旱性紫花苜蓿干旱胁迫下生理响应和转录调控的差异研究. 作物学报, 2022, 49: 2122-2132. |
Chen L, Wang J, Qiu X, Sun H L, Zhang W H, Wang T Z. Differences of physiological responses and transcriptional regulation of alfalfa with different drought tolerances under drought stresses. Acta Agron Sin, 2022, 49: 2122-2132 (in Chinese with English abstract). | |
[17] | Liu H H, Ma Y, Chen N, Guo S Y, Liu H L, Guo X Y, Chong K, Xu Y Y. Overexpression of stress-inducible OsBURP16, the β subunit of polygalacturonase 1, decreases pectin content and cell adhesion and increases abiotic stress sensitivity in rice. Plant Cell Environ, 2014, 37: 1144-1158. |
[18] |
Šimura J, Antoniadi I, Široká J, Tarkowská D, Strnad M, Ljung K, Novák O. Plant hormonomics: multiple phytohormone profiling by targeted metabolomics. Plant Physiol, 2018, 177: 476-489.
doi: 10.1104/pp.18.00293 pmid: 29703867 |
[19] | Kim D, Paggi J M, Park C, Bennett C, Salzberg S L. Graph-based genome alignment and genotyping with HISAT2 and HISAT- genotype. Nat Biotechnol, 2019, 37: 907-915. |
[20] | Love M I, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol, 2014, 15: 550. |
[21] | Wu T, Hu E, Xu S, Chen M, Guo P, Dai Z, Feng T, Zhou L, Tang W, Zhan L, Fu X, Liu S, Bo X, Yu G. clusterProfiler 4.0: A universal enrichment tool for interpreting omics data. Innovation (Camb), 2021, 2: 100141. |
[22] | Xie C, Mao X Z, Huang J J, Ding Y, Wu J M, Dong S, Kong L, Gao G, Li C Y, Wei L P. KOBAS 2.0: a web server for annotation and identification of enriched pathways and diseases. Nucleic Acids Res, 2011, 39: W316-W322. |
[23] |
Dinneny J R. Developmental responses to water and salinity in root systems. Annu Rev Cell Dev Biol, 2019, 35: 239-257.
doi: 10.1146/annurev-cellbio-100617-062949 pmid: 31382759 |
[24] | Lu Y, Yang W, Qi Z, Gao R, Tong J, Gao T, Zhang Y, Sun A, Zhang S, Ge J. Gut microbe-derived metabolite indole-3-carboxaldehyde alleviates atherosclerosis. Signal Transduct Target Ther, 2023, 8: 378. |
[25] | Cao X, Yang H L, Shang C Q, Ma S, Liu L, Cheng J L. The roles of auxin biosynthesis YUCCA gene family in plants. Int J Mol Sci, 2019, 20: 6343. |
[26] | Domingo C, Andrés F, Tharreau D, Iglesias D J, Talón M. Constitutive expression of OsGH3.1 reduces auxin content and enhances defense response and resistance to a fungal pathogen in rice. Mol Plant Microbe Interact, 2009, 22: 201-210. |
[27] |
Tschaplinski T J, Tuskan G A, Gebre G M, Todd D E. Drought resistance of two hybrid Populus clones grown in a large-scale plantation. Tree Physiol, 1998, 18: 653-658.
pmid: 12651414 |
[28] |
Chen K, Li G J, Bressan R A, Song C P, Zhu J K, Zhao Y. Abscisic acid dynamics, signaling, and functions in plants. J Integr Plant Biol, 2020, 62: 25-54.
doi: 10.1111/jipb.12899 |
[29] | Joo J, Lee Y H, Song S I. Overexpression of the rice basic leucine zipper transcription factor OsbZIP12 confers drought tolerance to rice and makes seedlings hypersensitive to ABA. Plant Biotechnol Rep, 2014, 8: 431-441. |
[30] | Zhang C, Li C, Liu J, Lv Y, Yu C, Li H, Zhao T, Liu B. The OsABF1 transcription factor improves drought tolerance by activating the transcription of COR413-TM1 in rice. J Exp Bot, 2017, 68: 4695-4707. |
[31] | Hossain M A, Cho J I, Han M, Ahn C H, Jeon J S, An G, Park P B. The ABRE-binding bZIP transcription factor OsABF2 is a positive regulator of abiotic stress and ABA signaling in rice. J Plant Physiol, 2010, 167: 1512-1520. |
[32] | Mathan J, Singh A, Ranjan A. Sucrose transport in response to drought and salt stress involves ABA-mediated induction of OsSWEET13 and OsSWEET15 in rice. Physiol Plant, 2021, 171: 620-637. |
[33] | Tang N, Zhang H, Li X, Xiao J, Xiong L. Constitutive activation of transcription factor OsbZIP46 improves drought tolerance in rice. Plant Physiol, 2012, 158: 1755-1768. |
[34] |
Xiang Y, Tang N, Du H, Ye H Y, Xiong L Z. Characterization of OsbZIP23 as a key player of the basic leucine zipper transcription factor family for conferring abscisic acid sensitivity and salinity and drought tolerance in rice. Plant Physiol, 2008, 148: 1938-1952.
doi: 10.1104/pp.108.128199 pmid: 18931143 |
[35] |
Yuan X, Wang H, Cai J, Bi Y, Li D, Song F. Rice NAC transcription factor ONAC066 functions as a positive regulator of drought and oxidative stress response. BMC Plant Biol, 2019, 19: 278.
doi: 10.1186/s12870-019-1883-y pmid: 31238869 |
[36] | Lee D K, Chung P J, Jeong J S, Jang G, Bang S W, Jung H, Kim Y S, Ha S H, Choi Y D, Kim J K. The rice OsNAC6 transcription factor orchestrates multiple molecular mechanisms involving root structural adaptions and nicotianamine biosynthesis for drought tolerance. Plant Biotechnol J, 2017, 15: 754-764. |
[37] | Shen H, Liu C, Zhang Y, Meng X, Zhou X, Chu C, Wang X. OsWRKY30 is activated by MAP kinases to confer drought tolerance in rice. Plant Mol Biol, 2012, 80: 241-253. |
[38] | Jung H, Chung P J, Park S H, Redillas M C F R, Kim Y S, Suh J W, Kim J K. Overexpression of OsERF48 causes regulation of OsCML16, a calmodulin-like protein gene that enhances root growth and drought tolerance. Plant Biotechnol J, 2017, 15: 1295-1308. |
[39] | Tang Y, Bao X, Zhi Y, Wu Q, Guo Y, Yin X, Zeng L, Li J, Zhang J, He W, Liu W, Wang Q, Jia C, Li Z, Liu K. Overexpression of a MYB family gene, OsMYB6, increases drought and salinity stress tolerance in transgenic rice. Front Plant Sci, 2019, 10: 168. |
[40] |
Ahmad I, Devonshire J, Mohamed R, Schultze M, Maathuis F J M. Overexpression of the potassium channel TPKb in small vacuoles confers osmotic and drought tolerance to rice. New Phytol, 2016, 209: 1040-1048.
doi: 10.1111/nph.13708 pmid: 26474307 |
[1] | RONG Yu-Xuan, HUI Liu-Yang, WANG Pei-Qi, SUN Si-Min, ZHANG Xian-Long, YUAN Dao-Jun, YANG Xi-Yan. Identification of the CLE gene family in Gossypium hirsutum and functional analysis of the drought resistance of GhCLE13 [J]. Acta Agronomica Sinica, 2024, 50(12): 2925-2939. |
[2] | ZHU Xu-Dong, YANG Lan-Feng, CHEN Yuan-Yuan, HOU Ze-Hao, LUO Yi-Rou, XIONG Ze-Hao, FANG Zheng-Wu. Biological functional analysis of common buckwheat (Fagopyrum esculentum) FeSGT1 gene in enhancing drought stress resistance [J]. Acta Agronomica Sinica, 2023, 49(6): 1573-1583. |
[3] | MENG Yu, TIAN Wen-Zhong, WEN Peng-Fei, DING Zhi-Qiang, ZHANG Xue-Pin, HE Li, DUAN Jian-Zhao, LIU Wan-Dai, GUO Tian-Cai, FENG Wei. Comprehensive evaluation of drought resistance of wheat varieties based on synergy of different developmental stages [J]. Acta Agronomica Sinica, 2023, 49(2): 570-582. |
[4] | ZHOU Wen-Qi, QIANG Xiao-Xia, LI Si-Yu, WANG Sen, WEI Wan-Rong. Identification of a rolling leaf allelic mutant e202 and fine mapping of E202 gene in rice [J]. Acta Agronomica Sinica, 2023, 49(11): 3029-3041. |
[5] | WANG Yun-Qi, GAO Fu-Li, LI Ao, GUO Tong-Ji, QI Liu-Ran, ZENG Huan-Yu, ZHAO Jian-Yun, WANG Xiao-Ge, GAO Guo-Ying, YANG Jia-Peng, BAI Jin-Ze, MA Ya-Huan, LIANG Yue-Xin, ZHANG Rui. Variation of ear temperature after anthesis and its relationship with yield in wheat [J]. Acta Agronomica Sinica, 2022, 48(9): 2400-2408. |
[6] | LI Pei-Ting, ZHAO Zhen-Li, HUANG Chao-Hua, HUANG Guo-Qiang, XU Liang-Nian, DENG Zu-Hu, ZHANG Yu, ZHAO Xin-Wang. Analysis of drought responsive regulatory network in sugarcane based on transcriptome and WGCNA [J]. Acta Agronomica Sinica, 2022, 48(7): 1583-1600. |
[7] | JIAN Hong-Ju, ZHANG Mei-Hua, SHANG Li-Na, WANG Ji-Chun, HU Bai-Geng, Vadim Khassanov, LYU Dian-Qiu. Screening candidate genes involved in potato tuber development using WGCNA [J]. Acta Agronomica Sinica, 2022, 48(7): 1658-1668. |
[8] | WANG Xing-Rong, LI Yue, ZHANG Yan-Jun, LI Yong-Sheng, WANG Jun-Cheng, XU Yin-Ping, QI Xu-Sheng. Drought resistance identification and drought resistance indexes screening of Tibetan hulless barley resources at adult stage [J]. Acta Agronomica Sinica, 2022, 48(5): 1279-1287. |
[9] | ZHAO Jia-Jia, QIAO Ling, WU Bang-Bang, GE Chuan, QIAO Lin-Yi, ZHANG Shu-Wei, YAN Su-Xian, ZHENG Xing-Wei, ZHENG Jun. Seedling root characteristics and drought resistance of wheat in Shanxi province [J]. Acta Agronomica Sinica, 2021, 47(4): 714-727. |
[10] | HAN Bei, WANG Xu-Wen, LI Bao-Qi, YU Yu, TIAN Qin, YANG Xi-Yan. Association analysis of drought tolerance traits of upland cotton accessions (Gossypium hirsutum L.) [J]. Acta Agronomica Sinica, 2021, 47(3): 438-450. |
[11] | Yin-Ping XU, Yong-Dong PAN, Qiang-De LIU, Yuan-Hu YAO, Yan-Chun JIA, Cheng REN, Ke-Cang HUO, Wen-Qing CHEN, Feng ZHAO, Qi-Jun BAO, Hua-Yu ZHANG. Drought resistance identification and drought resistance indexes screening of barley resources at mature period [J]. Acta Agronomica Sinica, 2020, 46(3): 448-461. |
[12] | ZHANG Xiao-Xiao,PAN Ying-Hong,REN Fu-Li,PU Wei-Jun,WANG Dao-Ping,LI Yu-Bin,LU Ping,LI Gui-Ying,ZHU Li. Establishment of an accurate evaluation method for drought resistance based on multilevel phenotype analysis in sorghum [J]. Acta Agronomica Sinica, 2019, 45(11): 1735-1745. |
[13] | WANG Can,ZHOU Ling-Bo,ZHANG Guo-Bing,ZHANG Li-Yi,XU Yan,GAO Xu,JIANG Ne,SHAO Ming-Bo. Identification and Indices Screening of Drought Resistance at Adult Plant Stage in Job’s Tears Germplasm Resources [J]. Acta Agron Sin, 2017, 43(09): 1381-1394. |
[14] | DO Thanh-Trung, LI Jian, ZHANG Feng-Juan, YANG Li-Tao, LI Yang-Rui,XING Yong-Xiu. Analysis of Differential Proteome in Relation to Drought Resistance in Sugarcane [J]. Acta Agron Sin, 2017, 43(09): 1337-1346. |
[15] | XU Wen,SHEN Hao,GUO Jun,YU Xiao-Cong,LI Xiang,YANG Yan-Hui,MA Xiao,ZHAO Shi-Jie,SONG Jian-Min. Drought Resistance of Wheat NILs with Different Cuticular Wax Contents in Flag Leaf [J]. Acta Agron Sin, 2016, 42(11): 1700-1707. |
|