Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2024, Vol. 50 ›› Issue (12): 2925-2939.doi: 10.3724/SP.J.1006.2024.44029

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Identification of the CLE gene family in Gossypium hirsutum and functional analysis of the drought resistance of GhCLE13

RONG Yu-Xuan(), HUI Liu-Yang(), WANG Pei-Qi, SUN Si-Min, ZHANG Xian-Long, YUAN Dao-Jun(), YANG Xi-Yan   

  1. National Key Laboratory of Crop Genetic Improvement / Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, Hubei, China
  • Received:2024-02-21 Accepted:2024-08-15 Online:2024-12-12 Published:2024-09-02
  • Contact: *E-mail: robert@mail.hzau.edu.cn
  • About author:**Contributed equally to this work
  • Supported by:
    Bingtuan Science and Technology Program(2022DB012);Biological Breeding—Major Projects in National Science and Technology(2023ZD04038)

Abstract:

The CLAVATA3/Embryo surrounding region-related (CLE) peptide family is the largest family of small peptide hormones in plants. It is widely present in various plant species and participates in multiple important life activities of plants. In this study, the CLE gene family was identified at the genome-wide level in Gossypium hirsutum, and their gene structures, cis-acting elements in the promoter, protein physicochemical properties, and phylogenetic analysis of GhCLE gene family members were analyzed. The expression profiles of GhCLE gene family members in various tissues were constructed using RNA-seq data. Finally, the drought resistance function of the screened GhCLE genes was validated by virus-induced gene silencing (VIGS) technology. The results showed that a total of 40 GhCLE genes were identified in the whole genome of Gossypium hirsutum. The structures of GhCLE genes were relatively simple, with 32 GhCLE genes having no introns, and their protein sequences all contained a 12 aa CLE domain. The GhCLE gene promoter region contains a variety of cis-acting elements related to light response, stress response, hormone response, and development. The gene expression profile showed that the GhCLE gene was expressed in multiple tissues of Gossypium hirsutum, with GhCLE13-D-2 being specifically expressed in root tissue and induced by drought. The function of the GhCLE13-D-2 gene in improving cotton drought resistance was validated through VIGS technology and the measurement and comparison of MDA content. This study provides a new theoretical basis for the in-depth study of small peptides, such as CLE, in plant drought resistance and cotton germplasm innovation.

Key words: Gossypium hirsutum, small peptide gene family CLE, root specific expression, drought resistance, GhCLE13-D-2

Table S1

Perl scripts used to count amino acid sequence information"

stat_protein_fa.pl
die "perl \$0 <in> <out>" unless(@ARGV==2);
use Bio::SeqIO;
use Bio::Seq;
use Bio::Tools::SeqStats;
use Bio::Tools::pICalculator;
use Data::Dumper;

my \$in = Bio::SeqIO->new(
-file => "\$ARGV[0]",
-format => 'Fasta'
);

open OUT,">\$ARGV[1]" or die "\$!";
print OUT "#ID\tlength\tMW(Da)\tpI\n";
my \$calc = Bio::Tools::pICalculator->new(-places => 2,-pKset => 'EMBOSS');

while ( my \$seq = \$in->next_seq() ) {
#my ( \$id, \$sequence, \$desc ) = ( \$seq->id, \$seq->seq, \$seq->desc );
my \$weight = Bio::Tools::SeqStats ->get_mol_wt(\$seq);
\$calc->seq(\$seq);
my \$iep = \$calc->iep;
print OUT sprintf("%s\t%s\t%s\t%s\n",
\$seq->id,
\$seq->length,
"\$weight->[0]",
\$iep);
}
\$in->close();
close(OUT);

Table S2

Login number for transcriptome data downloaded from NCBI database"

NCBI数据编号
Number in NCBI
棉花组织
Tissue of cotton
SRR1695160
SRR1695175
SRR1695177
SRR1695179
SRR1695173
SRR1695178
SRR1695174
SRR1695176
种子Seed
叶片Leaf
花瓣Petal
雌蕊Pistil
根Root
雄蕊Stamen
茎Stem
花托Torus

Table S3

Primer sequences used in this study"

基因
Gene
引物序列
Sequence (5°-3°)
引物用途
Primer usage
GhCLE13-D-F ATGCTTCCCCTTCAGGCC 基因克隆
Gene clone
GhCLE13-D-R TCAATGATGCAATGGGTTCG
GhCLE13-D-VIGS-F GCGTGAGCTCGGTACCGCTTGGAAAGTATCCCACATGC 病毒诱导基因沉默(VIGS)载体构建
Construction of viral induced gene
silencing (VIGS) vector
GhCLE13-D-VIGS-R GCCTCCATGGGGATCCCAATGATGCAATGGGTTCGGA
GhCLE13-D-qRT-PCR-F ATGCTTCCCCTTCAGGCC qRT-PCR引物
qRT PCR primers
GhCLE13-D-qRT-PCR-R GCCTTGATCTGGTGCTTGA

Table 1

Information of CLE family genes in Gossypium hirsutum"

基因ID
Gene ID
基因名称
Gene name
肽链长度
Length/amino acid
(aa)
小肽相对分子量
Molecular weight
(kD)
小肽等电点
Isoelectric point
(pI)
拟南芥同源基因Homologous gene in Arabidopsis
Ghir_A10G002770 GhCLE1-A 82 9.1282 8.22 AtCLE1
Ghir_D05G016000 GhCLE1-D-1 84 9.5808 8.22
Ghir_D10G003580 GhCLE1-D-2 82 9.0922 8.74
Ghir_D11G033760 GhCLE1-D-3 306 32.5428 10.91
Ghir_A09G010680 GhCLV3-A 98 10.4149 8.68 AtCLV3
Ghir_D09G010440 GhCLV3-D 98 10.4270 8.68
Ghir_A01G005030 GhCLE5-A 87 9.7073 7.84 AtCLE5
Ghir_D09G000220 GhCLE5-D 82 9.4078 9.32
Ghir_A09G000230 GhCLE6-A 106 12.0738 10.24 AtCLE6
Ghir_D05G015970 GhCLE6-D-1 81 8.7670 10.38
Ghir_D09G000240 GhCLE6-D-2 107 12.1749 10.24
Ghir_A03G011700 GhCLE9-A 98 11.1668 8.93 AtCLE9
Ghir_D02G013210 GhCLE9-D 98 11.1398 9.46
Ghir_A11G000690 GhCLE13-A 108 12.4310 10.23 AtCLE13
Ghir_D11G000720 GhCLE13-D-1 108 12.4120 9.83
Ghir_D13G007160 GhCLE13-D-2 131 15.0093 10.55
Ghir_A03G002330 GhCLE14-A-1 85 9.6739 8.77 AtCLE14
Ghir_A08G018820 GhCLE14-A-2 85 9.8511 9.79
Ghir_D03G016680 GhCLE14-D 85 9.7860 9.16
Ghir_A07G019890 GhCLE19-A-1 76 8.8853 12.68 AtCLE19
Ghir_A11G016310 GhCLE19-A-2 79 8.8802 12.01
Ghir_D11G016380 GhCLE19-D 79 8.8792 12.22
Ghir_D07G020180 GhCLE20-D-1 76 8.8642 12.42 AtCLE20
Ghir_D08G005670 GhCLE20-D-2 76 8.7749 12.02
Ghir_D05G007670 GhCLE22-D-1 97 10.7140 8.28 AtCLE22
Ghir_D08G001490 GhCLE22-D-2 82 9.2473 6.23
Ghir_D13G000120 GhCLE22-D-3 78 8.6591 10.55
Ghir_A07G023300 GhCLE25-A 106 12.0169 11.82 AtCLE25
Ghir_D07G023370 GhCLE25-D-1 106 11.9448 12.02
Ghir_D11G028800 GhCLE25-D-2 74 8.2654 5.03
Ghir_D02G017600 GhCLE27-D 90 10.3039 9.49 AtCLE27
Ghir_A03G016340 GhCLE27-A-1 90 10.4641 9.37
Ghir_A11G028610 GhCLE27-A-2 74 8.1913 5.02
Ghir_A08G008310 GhCLE40-A 84 9.4238 8.56 AtCLE40
Ghir_D08G008390 GhCLE40-D 84 9.4008 8.56
Ghir_D05G031300 GhCLE45-D-1 96 10.7723 10.66 AtCLE45
Ghir_D12G017800 GhCLE45-D-2 84 9.5651 11.99
Ghir_A05G031450 GhCLE45-A 96 10.8465 11.25
Ghir_D08G021160 GhTDIF-D 126 13.9278 7.62 AtTDIF
Ghir_A10G012570 GhTDIF-A 96 10.1514 7.52

Fig. 1

Gene structure, protein sequence conserved domain, and cis-acting element analysis of GhCLE gene family A: schematic diagram of gene structure analysis and protein domain analysis of GhCLE gene family members; B: schematic diagram of conserved signal peptide domain of GhCLE gene family; C: schematic diagram of conserved CLE motif of GhCLE gene family."

Fig. 2

Schematic diagram of the distribution of cis-acting elements"

Fig. 3

Phylogenetic analysis and clustering of GhCLE gene family A: phylogenetic tree of the GhCLE gene family; B: schematic diagram of the CLEmotif characteristics of each subfamily of the GhCLE gene family."

Fig. 4

Analysis of GhCLE expression patterns A: expression heatmap of GhCLE gene family members in various tissues of cotton. B: expression levels of root-specific genes GhCLE13-D-2, GhCLE14-A-2, and GhCLE25-A-1 under drought treatment and CK treatment (FPKM value). *, **, *** indicate significant difference at the 0.05, 0.01, and 0.001 probability levels, respectively."

Fig. 5

VIGS experiments verified the drought resistance of GhCLE13 A: the control group and VIGS silent lines under normal treatment; B: leaf phenotypes between control group and VIGS silent lines after 7 days of drought treatment; C: leaf phenotypes of control group and VIGS silent lines after 10 days of drought treatment; D: whitening phenotype of TRV::GhCLA lines; E: relative expression levels of GhCLE13-D-2 gene between VIGS silent lines and control lines; F: MDA content (nmol g-1) of VIGS silent lines and control groups after 10 days of normal treatment and drought. The scale is 3 cm. *, **, *** indicate significant difference at the 0.05, 0.01, and 0.001 probability levels, respectively."

[1] Murphy E, Smith S, De Smet I. Small signaling peptides in Arabidopsis development: how cells communicate over a short distance. Plant Cell, 2012, 24: 3198-3217.
[2] Busch W, Benfey P. Information processing without brains the power of intercellular regulators in plants. Development, 2010, 137: 1215-1226.
[3] Pearce G, Strydom D, Johnson S, R yan C A. A polypeptide from tomato leaves induces wound-inducible proteinase inhibitor proteins. Science, 1991, 253: 895-897.
doi: 10.1126/science.253.5022.895 pmid: 17751827
[4] Loivamäki M, Stührwohldt N, Deeken R, Steffens B, Roitsch T, Hedrich R, Saute M. A role for PSK signaling in wounding and microbial interactions in Arabidopsis. Physiol Plant, 2010, 139: 348-357.
doi: 10.1111/j.1399-3054.2010.01371.x pmid: 20403122
[5] Amano Y, Tsubouchi H, Shinohara H, Matsubayashi Y. Tyrosine-sulfated glycopeptide involved in cellular proliferation and expansion in Arabidopsis. Proc Natl Acad Sci USA, 2007, 104: 18333-18338.
[6] Hu H Y, Wang M J, Ding Y H, Zhu S T, Tu L L, Zhang X L. Transcriptomic repertoires depict the initiation of lint and fuzz fibres in cotton (Gossypium hirsutum L.). Plant Biotechnol J, 2017, 16: 1002-1012.
[7] An Z C, Liu Y L, Li J, Zhang B W, Sun D Y, Sun Y. Regulation of the stability of RGF1 receptor by the ubiquitin-specific proteases UBP12/UBP13 is critical for root meristem maintenance. Proc Natl Acad Sci USA, 2018, 115: 1123-1128.
[8] He Y H, Chen S Y, Chen X Y, Xu Y P, Liang Y, Cai X Z. RALF22 promotes plant immunity and amplifies the Pep3 immune signal. J Integr Plant Biol, 2023, 65: 2519-2534.
doi: 10.1111/jipb.13566
[9] Zhong S, Li L, Wang Z J, Ge Z X, Li Q Y, Bleckmann A, Wang J Z, Song Z H, Shi Y H, Liu T X, Li L H, Zhou H B, Wang Y Y, Zhang L, Wu H M, Lai L H, Gu H Y, Dong J, Cheung A Y, Dresselhaus T, Qu L J. RALF peptide signaling controls the polytubey block in Arabidopsis. Science, 2022, 375: 290-296.
[10] Fletcher J C, Brand U, Running M P, Simon R, Meyerowitz E M. Signaling of cell fate decisions by CLAVATA3 in Arabidopsis shoot meristems. Science, 1999, 283: 1911-1914.
doi: 10.1126/science.283.5409.1911 pmid: 10082464
[11] Brand U, Fletcher J C, Hobe M, Meyerowitz E M, Simon R. Dependence of stem cell Fate in Arabidopsis on a feedback loop regulated by CLV3 activity. Science, 2000, 289: 617-619.
doi: 10.1126/science.289.5479.617 pmid: 10915624
[12] Ito Y, Nakanomyo I, Motose H, Iwamoto K, Sawa S, Dohmae N, Fukuda H. Dodeca-CLE Peptides as suppressors of plant stem cell differentiation. Science, 2006, 313: 842-845.
doi: 10.1126/science.1128436 pmid: 16902140
[13] Lei L, Gallagher J, Arevalo E D, Chen R, Skopelitis T, Wu Q Y, Madelaine B, Jackson D. Enhancing grain-yield-related traits by CRISPR-Cas9 promoter editing of maize CLE genes. Nat Plants, 2021, 7: 287-294.
doi: 10.1038/s41477-021-00858-5 pmid: 33619356
[14] Yang Y, Zhu K Y, Li H L, Han S Q, Meng Q W, Khan S U, Fan C C, Xie K B, Zhou Y M. Precise editing of CLAVATA genes in Brassica napus L.regulates multilocular silique development. Plant Biotechnol J, 2017, 16: 1322-1355.
[15] Guo X L, Chronis D, Torre C M D L, Smeda J, Wang X H, Mitchum M G. Enhanced resistance to soybean cyst nematode Heterodera glycines in transgenic soybean by silencing putative CLE receptors. Plant Biotechnol J, 2015, 13: 801-810.
[16] Takahashi F, Suzuki T, Osakabe Y, Betsuyaku S, Kondo Y, Dohmae N, Fukuda H, Yamaguchi-Shinozaki K, Shinozaki K. A small peptide modulates stomatal control via abscisic acid in long-distance signalling. Nature, 2018, 556: 235-238.
[17] Lehman A M. Assessing the Impacts of Gene Flow Between Endemic Hawaiian Cotton, Gossypium tomentosum, and Two Commercial Cotton Species. MS Thesis of University of Hawaii at Manoa, Hawaii, USA, 2012.
[18] Passioura J. The drought environment: physical, biological and agricultural perspectives. J Exp Bot, 2007, 58: 113-117.
pmid: 17122406
[19] 袁娜, 李阳, 杨郁文, 张保龙, 杜建厂. 棉花CLE多肽家族的全基因组鉴定与生物信息学分析. 棉花学报, 2019, 31: 263-281.
doi: 10.11963/1002-7807.yndjc.20190614
Yuan N, Li Y, Yang Y W, Zhang B L, Du J C. Genome-wide identification and characterization of CLE family in cotton (Gossypium spp.). Cotton Sci, 2019, 31: 263-281 (in Chinese with English abstract).
doi: 10.11963/1002-7807.yndjc.20190614
[20] 高梦涛. 棉属CLE基因家族全基因组鉴定与GhCLE5功能机制初步研究. 南京农业大学硕士学位论文,江苏南京, 2021.
Gao M T. Identification and Functional Analysis of Small Peptide CLE and RALF in Cotton. MS Thesis of Nanjing Agricultural University, Nanjing, Jiangsu, China, 2021 (in Chinese with English abstract).
[21] Wang M, Tu L L, Yuan D, Zhu D, Shen C, Li J Y, Liu F Y, Pei L L, Wang P C, Zhao G N, Ye Z X, Huang H, Yan F L, Ma Y Z, Zhang L, Liu M, You J Q, Yang Y C, Liu Z P, Huang F, Li B Q, Qiu P, Zhang Q H, Zhu L F, Jin S X, Yang X Y, Min L, Li G L, Chen L L, Zheng H K, Lindsey K, Lin Z X, Udall J A, Zhang X L. Reference genome sequences of two cultivated allotetraploid cottons, Gossypium hirsutum and Gossypium barbadense. Nat Genet, 2019, 51: 224-229.
[22] Kinoshita A, Nakamura Y, Sasaki E, Kyozuka J, Fukuda H, Shinichiro S A. Gain-of-Function phenotypes of chemically synthetic CLAVATA3/ESR-Related (CLE) peptides in Arabidopsis thaliana and Oryza sativa. Plant Cell Physiol, 2007, 48: 1821-1825.
doi: 10.1093/pcp/pcm154 pmid: 17991631
[23] Altschul S F, Gish W, Miller W, Myers E W, Lipman D J. Basic local alignment search tool. J Mol Biol, 1990, 215: 403-410.
doi: 10.1016/S0022-2836(05)80360-2 pmid: 2231712
[24] Timothy L B, James J, Charles E G, William S N. The MEME suite. Nucleic Acids Res, 2015, 43: W39-W49.
[25] Almagro A J J, Tsirigos K D, Sønderby C K, Petersen T N, Winther O, Brunak S, Heijne G, Nielsen H. SignalP 5.0 improves signal peptide predictions using deep neural networks. Nat Biotechnol, 2019, 37: 420-423.
doi: 10.1038/s41587-019-0036-z pmid: 30778233
[26] 顾家琦, 朱福慧, 谢沛豪, 孟庆营, 郑颖, 张献龙, 袁道军. 棉属光敏色素PHY基因家族的全基因组鉴定与驯化选择分析. 植物学报, 2024, 59: 34-53.
doi: 10.11983/CBB23004
Gu J Q, Zhu F H, Xie P H, Meng Q Y, Zheng Y, Zhang X L, Yuan D J. Genome-wide identification and domestication analysis of the phytochrome PHY gene family in Gossypium. Chin Bull Bot, 2024, 59: 34-53.
[27] Chen C J, Chen H, Zhang Y, Tomas H R, Frank M H, He Y H, Xia R. TBtools: an integrative toolkit developed for interactive analyses of big biological data. Mol Plant, 2020, 13: 1194-1202.
doi: S1674-2052(20)30187-8 pmid: 32585190
[28] Min B Q, Schmidt H A, Chernomor O, Schrempf D, Woodhams M D, Haseseler A, Lanfear R. IQ-TREE 2: new models and efficient methods for phylogenetic inference in the genomic era. Mol Biol Evol, 2020, 37: 1530-1534.
doi: 10.1093/molbev/msaa015 pmid: 32011700
[29] Subramanian B, Gao S H, Lercher M J, Hu S N, Chen W H. Evolview v3: a webserver for visualization, annotation, and management of phylogenetic trees. Nucleic Acids Res, 2019, 47: W270-W275.
[30] Kim D, Paggi J M, Park C, Bennett C, Salzberg S L. Graph-based genome alignment and genotyping with HISAT2 and HISAT-genotype. Nat Biotechnol, 2019, 37: 907-915.
doi: 10.1038/s41587-019-0201-4 pmid: 31375807
[31] Shumate A, Wong G, Pertea G, Pertra M. Improved transcriptome assembly using a hybrid of long and short reads with StringTie. PLoS Comput Biol, 2022, 18: e1009730.
[32] Ito K, Murphy D. Application of ggplot2 to pharmacometric graphics. CPT Pharmacometr Syst Pharmacol, 2013, 2: e79.
[33] 白志英, 李存东, 吴同燕, 孙红春. 干旱胁迫条件下小麦旗叶酶活性和丙二醛含量的染色体定位. 植物遗传资源学报, 2009, 10: 255-261.
Bai Z Y, Li C D, Wu T Y, Sun H C. Chromosomal control on flag leaf enzyme activity and MDA content under drought stress in wheat (Triticum aestivum L.). J Plant Genet Resour, 2009, 10: 255-261.
[34] 李娜. 气候变化对棉花生长和产量的影响. 西北农林科技大学博士学位论文, 陕西西安, 2022.
Li N. Effects of Climate Change on Cotton Growth and Yield. PhD Dissertation of Northwest A&F University, Xi’an, Shaanxi, China, 2022 (in Chinese with English abstract).
[35] Du T S, Kang S Z, Zhang J H, Li F S. Yield and physiological responses of cotton to partial root-zone irrigation in the oasis field of northwest China. Agric Water Manag, 2006, 84: 41-52.
[36] Rahman M T, Rana S M S, Zahed M A, Lee S H, Yoon E S, Park J Y. Metal-organic framework-derived nanoporous carbon incorporated nanofibers for high-performance triboelectric nanogenerators and self-powered sensors. Nano Energy, 2022, 94: 106921.
[37] Chastain D R, Snider J L, Choinski J S, Collins G D, Perry C D, Whitaker J, Timothy L G, Sorensen R B, Iersel M, Byrd S A, Porter W. Leaf ontogeny strongly influences photosynthetic tolerance to drought and high temperature in Gossypium hirsutum. J Plant Physiol, 2016, 199: 18-28.
[38] Unlu M, Kanber R, Koc D L, Tekin S, Kapur B. Effects of deficit irrigation on the yield and yield components of drip irrigated cotton in a mediterranean environment. Agric Water Manag, 2011, 98: 597-605.
[39] Ullah A, Sun H, Yang X Y, Zhang X L. Drought coping strategies in cotton: increased crop per drop. Plant Biotechnol J, 2017, 15: 271-284.
doi: 10.1111/pbi.12688 pmid: 28055133
[40] Bergonci T, Ribeiro B, Ceciliato P H O, Guerrero-Abad J C, Silva-Filho M C, Moura D S. Arabidopsis thaliana RALF1 opposes brassinosteroid effects on root cell elongation and lateral root formation. J Exp Bot, 2014, 65: 2219-2230.
doi: 10.1093/jxb/eru099 pmid: 24620000
[41] Suzaki T, Yoshida A, Hirano H Y. Functional diversification of CLAVATA3-Related CLE proteins in meristem maintenance in rice. Plant Cell, 2008, 20: 2049-2058.
doi: 10.1105/tpc.107.057257 pmid: 18676878
[42] Han H B, Zhang G H, Wu M Y, Wang G D. Identification and characterization of the Populus trichocarpa CLE family. BMC Genomics, 2016, 17: 174.
[43] Fletcher J C. Recent advances in Arabidopsis CLE peptide signaling. Trends Plant Sci, 2020, 25: 1005-1016.
[1] WANG Ying-Heng, CUI Li-Li, CAI Qiu-Hua, LIN Qiang, WU Fang-Xi, CHEN Fei-He, XIE Hong-Guang, ZHU Yong-Sheng, CHEN Li-Ping, XIE Hua-An, ZHANG Jian-Fu. Metabolome and transcriptome analysis reveal molecular response to drought stress in indica rice Fuxiangzhan [J]. Acta Agronomica Sinica, 2024, 50(12): 2998-3012.
[2] ZUO Chun-Yang, LI Ya-Wei, LI Yan-Long, JIN Shuang-Xia, ZHU Long-Fu, ZHANG Xian-Long, MIN Ling. Relative expression patterns of laccase gene family members in upland Gossypium hirsutum L. [J]. Acta Agronomica Sinica, 2023, 49(9): 2344-2361.
[3] MA Chun-Min, LI Wei-Xi, LI Fang-Jun, TIAN Xiao-Li, LI Zhao-Hu. Identification and expression analysis of nitrate transporter NRT gene family in upland cotton (Gossypium hirsutum L.) [J]. Acta Agronomica Sinica, 2023, 49(6): 1496-1517.
[4] ZHU Xu-Dong, YANG Lan-Feng, CHEN Yuan-Yuan, HOU Ze-Hao, LUO Yi-Rou, XIONG Ze-Hao, FANG Zheng-Wu. Biological functional analysis of common buckwheat (Fagopyrum esculentum) FeSGT1 gene in enhancing drought stress resistance [J]. Acta Agronomica Sinica, 2023, 49(6): 1573-1583.
[5] XU Nai-Yin, WANG Yang, WANG Dan-Tao, NING He-Jia, YANG Xiao-Ni, QIAO Yin-Tao. Construction of cotton fiber quality index and weighted genotype by trait (WGT) biplot analysis [J]. Acta Agronomica Sinica, 2023, 49(5): 1262-1271.
[6] MENG Yu, TIAN Wen-Zhong, WEN Peng-Fei, DING Zhi-Qiang, ZHANG Xue-Pin, HE Li, DUAN Jian-Zhao, LIU Wan-Dai, GUO Tian-Cai, FENG Wei. Comprehensive evaluation of drought resistance of wheat varieties based on synergy of different developmental stages [J]. Acta Agronomica Sinica, 2023, 49(2): 570-582.
[7] ZHOU Wen-Qi, QIANG Xiao-Xia, LI Si-Yu, WANG Sen, WEI Wan-Rong. Identification of a rolling leaf allelic mutant e202 and fine mapping of E202 gene in rice [J]. Acta Agronomica Sinica, 2023, 49(11): 3029-3041.
[8] WANG Yun-Qi, GAO Fu-Li, LI Ao, GUO Tong-Ji, QI Liu-Ran, ZENG Huan-Yu, ZHAO Jian-Yun, WANG Xiao-Ge, GAO Guo-Ying, YANG Jia-Peng, BAI Jin-Ze, MA Ya-Huan, LIANG Yue-Xin, ZHANG Rui. Variation of ear temperature after anthesis and its relationship with yield in wheat [J]. Acta Agronomica Sinica, 2022, 48(9): 2400-2408.
[9] LI Pei-Ting, ZHAO Zhen-Li, HUANG Chao-Hua, HUANG Guo-Qiang, XU Liang-Nian, DENG Zu-Hu, ZHANG Yu, ZHAO Xin-Wang. Analysis of drought responsive regulatory network in sugarcane based on transcriptome and WGCNA [J]. Acta Agronomica Sinica, 2022, 48(7): 1583-1600.
[10] WANG Xing-Rong, LI Yue, ZHANG Yan-Jun, LI Yong-Sheng, WANG Jun-Cheng, XU Yin-Ping, QI Xu-Sheng. Drought resistance identification and drought resistance indexes screening of Tibetan hulless barley resources at adult stage [J]. Acta Agronomica Sinica, 2022, 48(5): 1279-1287.
[11] ZHAO Wen-Qing, XU Wen-Zheng, YANG Liu-Yan, LIU Yu, ZHOU Zhi-Guo, WANG You-Hua. Different response of cotton leaves to heat stress is closely related to the night starch degradation [J]. Acta Agronomica Sinica, 2021, 47(9): 1680-1689.
[12] MA Yan-Bin, WANG Xia, LI Huan-Li, WANG Pin, ZHANG Jian-Cheng, WEN Jin, WANG Xin-Sheng, SONG Mei-Fang, WU Xia, YANG Jian-Ping. Transformation and molecular identification of maize phytochrome A1 gene (ZmPHYA1) in cotton [J]. Acta Agronomica Sinica, 2021, 47(6): 1197-1202.
[13] XU Nai-Yin, ZHAO Su-Qin, ZHANG Fang, FU Xiao-Qiong, YANG Xiao-Ni, QIAO Yin-Tao, SUN Shi-Xian. Retrospective evaluation of cotton varieties nationally registered for the Northwest Inland cotton growing regions based on GYT biplot analysis [J]. Acta Agronomica Sinica, 2021, 47(4): 660-671.
[14] ZHAO Jia-Jia, QIAO Ling, WU Bang-Bang, GE Chuan, QIAO Lin-Yi, ZHANG Shu-Wei, YAN Su-Xian, ZHENG Xing-Wei, ZHENG Jun. Seedling root characteristics and drought resistance of wheat in Shanxi province [J]. Acta Agronomica Sinica, 2021, 47(4): 714-727.
[15] HAN Bei, WANG Xu-Wen, LI Bao-Qi, YU Yu, TIAN Qin, YANG Xi-Yan. Association analysis of drought tolerance traits of upland cotton accessions (Gossypium hirsutum L.) [J]. Acta Agronomica Sinica, 2021, 47(3): 438-450.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Li Shaoqing, Li Yangsheng, Wu Fushun, Liao Jianglin, Li Damo. Optimum Fertilization and Its Corresponding Mechanism under Complete Submergence at Booting Stage in Rice[J]. Acta Agronomica Sinica, 2002, 28(01): 115 -120 .
[2] Wang Lanzhen;Mi Guohua;Chen Fanjun;Zhang Fusuo. Response to Phosphorus Deficiency of Two Winter Wheat Cultivars with Different Yield Components[J]. Acta Agron Sin, 2003, 29(06): 867 -870 .
[3] WANG Yan;QIU Li-Ming;XIE Wen-Juan;HUANG Wei;YE Feng;ZHANG Fu-Chun;MA Ji. Cold Tolerance of Transgenic Tobacco Carrying Gene Encoding Insect Antifreeze Protein[J]. Acta Agron Sin, 2008, 34(03): 397 -402 .
[4] ZHENG Xi;WU Jian-Guo;LOU Xiang-Yang;XU Hai-Ming;SHI Chun-Hai. Mapping and Analysis of QTLs on Maternal and Endosperm Genomes for Histidine and Arginine in Rice (Oryza sativa L.) across Environments[J]. Acta Agron Sin, 2008, 34(03): 369 -375 .
[5] XING Guang-Nan, ZHOU Bin, ZHAO Tuan-Jie, YU De-Yue, XING Han, HEN Shou-Yi, GAI Jun-Yi. Mapping QTLs of Resistance to Megacota cribraria (Fabricius) in Soybean[J]. Acta Agronomica Sinica, 2008, 34(03): 361 -368 .
[6] ZHENG Yong-Mei;DING Yan-Feng;WANG Qiang-Sheng;LI Gang-Hua;WANG Hui-Zhi;WANG Shao-Hua. Effect of Nitrogen Applied before Transplanting on Tillering and Nitrogen Utilization in Rice[J]. Acta Agron Sin, 2008, 34(03): 513 -519 .
[7] QIN En-Hua;YANG Lan-Fang;. Selenium Content in Seedling and Selenium Forms in Rhizospheric Soil of Nicotiana tabacum L.[J]. Acta Agron Sin, 2008, 34(03): 506 -512 .
[8] LÜ Li-Hua;TAO Hong-Bin;XIA Lai-Kun; HANG Ya-Jie;ZHAO Ming;ZHAO Jiu-Ran;WANG Pu;. Canopy Structure and Photosynthesis Traits of Summer Maize under Different Planting Densities[J]. Acta Agron Sin, 2008, 34(03): 447 -455 .
[9] Zhang Shubiao;Yang Rencui. Some Biological Character of eui-hybrid Rice[J]. Acta Agron Sin, 2003, 29(06): 919 -924 .
[10] SHAO Rui-Xin;SHANG-GUAN Zhou-Ping. Effects of Exogenous Nitric Oxide Donor Sodium Nitroprusside on Photosynthetic Pigment Content and Light Use Capability of PS II in Wheat under Water Stress[J]. Acta Agron Sin, 2008, 34(05): 818 -822 .