Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica

   

Identification of the CLE gene family in Gossypium hirsutum and functional analysis of the drought resistance of GhCLE13

RONG Yu-Xuan**,HUI Liu-Yang**,WANG Pei-Qi,SUN Si-Min,ZHANG Xian-Long,YUAN Dao-Jun*,YANG Xi-Yan   

  1. National Key Laboratory of Crop Genetic Improvement / Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, Hubei, China 
  • Received:2024-02-21 Revised:2024-08-15 Accepted:2024-08-15 Published:2024-09-02
  • Supported by:
    This study was supported by the Bingtuan Science and Technology Program (2022DB012) and the Biological Breeding—Major Projects in National Science and Technology (2023ZD04038).

Abstract:

The CLAVATA3/Embryo surrounding region-related (CLE) peptide family is the largest family of small peptide hormones in plants. It is widely present in various plant species and participates in multiple important life activities of plants. In this study, the CLE gene family was identified at the genome-wide level in Gossypium hirsutum, and their gene structures, cis-acting elements in the promoter, protein physicochemical properties, and phylogenetic analysis of GhCLE gene family members were analyzed. The expression profiles of GhCLE gene family members in various tissues were constructed using RNA-seq data. Finally, the drought resistance function of the screened GhCLE genes was validated by virus-induced gene silencing (VIGS) technology. The results showed that a total of 40 GhCLE genes were identified in the whole genome of Gossypium hirsutum. The structures of GhCLE genes were relatively simple, with 32 GhCLE genes having no introns, and their protein sequences all contained a 12 aa CLE domain. The GhCLE gene promoter region contains a variety of cis-acting elements related to light response, stress response, hormone response, and development. The gene expression profile showed that the GhCLE gene was expressed in multiple tissues of Gossypium hirsutum, with GhCLE13-D-2 being specifically expressed in root tissue and induced by drought. The function of the GhCLE13-D-2 gene in improving cotton drought resistance was validated through VIGS technology and the measurement and comparison of MDA content. This study provides a new theoretical basis for the in-depth study of small peptides, such as CLE, in plant drought resistance and cotton germplasm innovation.

Key words: Gossypium hirsutum, small peptide gene family CLE, root specific expression, drought resistance, GhCLE13-D-2

[1] Murphy E, Smith S, De Smet I. Small signaling peptides in Arabidopsis development: how cells communicate over a short distance. Plant Cell, 2012, 24: 31983217.

[2] Busch W, Benfey P. Information processing without brains the power of intercellular regulators in plants. Development, 2010, 137: 12151226.

[3] Pearce G, Strydom D, Johnson S, A.ryan C. A polypeptide from tomato leaves induces wound-inducible proteinase inhibitor proteins. Science, 1991, 253: 895–897.

[4] Loivamäki M, Stührwohldt N, Deeken R, Steffens B, Roitsch T, Hedrich R, Saute M. A role for PSK signaling in wounding and microbial interactions in Arabidopsis. Physiol Plant, 2010, 139: 348357.

[5] Amano Y, Tsubouchi H, Shinohara H, Matsubayashi Y. Tyrosine-sulfated glycopeptide involved in cellular proliferation and expansion in Arabidopsis. Proc Natl Acad Sci USA, 2007, 104: 1833318338.

[6] Hu H Y, Wang M J, Ding Y H, Zhu S T, Tu L L, Zhang X L. Transcriptomic repertoires depict the initiation of lint and fuzz fibres in cotton (Gossypium hirsutum L.). Plant Biotechnol J, 2017, 16: 10021012.

[7] An Z C, Liu Y L, Li J, Zhang B W, Sun D Y, Sun Y. Regulation of the stability of RGF1 receptor by the ubiquitin-specific proteases UBP12/UBP13 is critical for root meristem maintenance. Proc Natl Acad Sci USA, 2018, 115: 11231128.

[8] He Y H, Chen S Y, Chen X Y, Xu Y P, Liang Y, Cai X Z. RALF22 promotes plant immunity and amplifies the Pep3 immune signal. J Integr Plant Biol, 2023, 65: 25192534.

[9] Zhong S, Li L, Wang Z J, Ge Z X, Li Q Y, Bleckmann A, Wang J Z, Song Z H, Shi Y H, Liu T X, Li L H, Zhou H B, Wang Y Y, Zhang L, Wu H M, Lai L H, Gu H Y, Dong J, Cheung A Y, Dresselhaus T, Qu L J. RALF peptide signaling controls the polytubey block in Arabidopsis. Science, 2022, 375: 290296.

[10] Fletcher J C, Brand U, Running M P, Simon R, Meyerowitz E M. Signaling of cell fate decisions by CLAVATA3 in Arabidopsis shoot meristems. Science, 1999, 283: 1911–1914.

[11] Brand U, Fletcher J C, Hobe M, Meyerowitz E M, Simon R. Dependence of stem cell Fate in Arabidopsis on a feedback loop regulated by CLV3 activity. Science, 2000, 289: 617–619.

[12] Ito Y, Nakanomyo I, Motose H, Iwamoto K, Sawa S, Dohmae N, Fukuda H. Dodeca-CLE Peptides as suppressors of plant stem cell differentiation. Science, 2006, 313: 842–845.

[13] Lei L, Gallagher J, Arevalo E D, Chen R, Skopelitis T, Wu Q Y, Madelaine B, Jackson D. Enhancing grain-yield-related traits by CRISPR–Cas9 promoter editing of maize CLE genes. Nat Plants, 2021, 7: 287–294.

[14] Yang Y, Zhu K Y, Li H L, Han S Q, Meng Q W, Khan S U, Fan C C, Xie K B, Zhou Y M. Precise editing of CLAVATA genes in Brassica napus L. regulates multilocular silique development. Plant Biotechnol J, 2017, 16: 13221355.

[15] Guo X L, Chronis D, Torre C M D L, Smeda J, Wang X H, Mitchum M G. Enhanced resistance to soybean cyst nematode Heterodera glycines in transgenic soybean by silencing putative CLE receptors. Plant Biotechnol J, 2015, 13: 801810.

[16] Takahashi F, Suzuki T, Osakabe Y, Betsuyaku S, Kondo Y, Dohmae N, Fukuda H, Yamaguchi-Shinozaki K, Shinozaki K. A small peptide modulates stomatal control via abscisic acid in long-distance signalling. Nature, 2018, 556: 235–238.

[17] Lehman A M. Assessing the Impacts of Gene Flow Between Endemic Hawaiian Cotton, Gossypium tomentosum, and Two Commercial Cotton Species. MS Thesis of University of Hawaii at Manoa, Hawaii, USA, 2012.

[18] Passioura J. The drought environment: physical, biological and agricultural perspectives. J Exp Bot, 2007, 58: 113–117.

[19] 袁娜, 李阳, 杨郁文, 张保龙, 杜建厂. 棉花CLE多肽家族的全基因组鉴定与生物信息学分析. 棉花学报, 2019, 31: 263–281.
Yuan N, Li Y, Yang Y W, Zhang B L, Du J C. Genome-wide identification and characterization of CLE family in cotton (Gossypium spp.). Cotton Sci, 2019, 31: 263281 (in Chinese with English abstract).

[20] 高梦涛. 棉属CLE基因家族全基因组鉴定与GhCLE5功能机制初步研究. 南京农业大学硕士学位论文, 江苏南京, 2021.

    Gao M T. Identification and Functional Analysis of Small Peptide CLE and RALF in Cotton. MS Thesis of Nanjing Agricultural University, Nanjing, JiangsuChina, 2021(in Chinese with English abstract).

[21] Wang M, Tu L L, Yuan D, Zhu D, Shen C, Li J Y, Liu F Y, Pei L L, Wang P C, Zhao G N, Ye Z X, Huang H, Yan F L, Ma Y Z, Zhang L, Liu M, You J Q, Yang Y C, Liu Z P, Huang F, Li B Q, Qiu P, Zhang Q H, Zhu L F, Jin S X, Yang X Y, Min L, Li G L, Chen L L, Zheng H K, Lindsey K, Lin Z X, Udall J A, Zhang X L. Reference genome sequences of two cultivated allotetraploid cottons, Gossypium hirsutum and Gossypium barbadense.  Nat Genet, 2019, 51: 224–229.

[22] Kinoshita A, Nakamura Y, Sasaki E, Kyozuka J, Fukuda H, Shinichiro, S A. Gain-of-Function phenotypes of chemically synthetic CLAVATA3/ESR-Related (CLE) peptides in Arabidopsis thaliana and Oryza sativaPlant Cell Physiol, 2007, 48: 1821–1825.

[23] Altschul S F, Gish W, Miller W, Myers E W, Lipman D J. Basic local alignment search tool. J Mol Biol, 1990, 215: 403–410.

[24] Timothy L B, James J, Charles E G, William S N. The MEME suite. Nucleic Acids Res, 2015, 43: W39W49.

[25] Almagro A J J, Tsirigos K D, Sønderby C K, Petersen T N, Winther O, Brunak S, Heijne G, Nielsen H. SignalP 5.0 improves signal peptide predictions using deep neural networks. Nat Biotechnol, 2019, 37: 420–423.

[26] 顾家琦, 朱福慧, 谢沛豪, 孟庆营, 郑颖, 张献龙, 袁道军. 棉属光敏色素PHY基因家族的全基因组鉴定与驯化选择分析. 植物学报, 2024, 59: 34–53.
Gu J Q, Zhu F H, Xie P H, Meng Q Y, Zheng Y, Zhang X L, Yuan D J. Genome-wide identification and domestication analysis of the phytochrome PHY gene family in GossypiumChin Bull Bot, 2024, 59: 34–53.

[27] Chen C J, Chen H, Zhang Y, Tomas H R, Frank M H, He Y H, Xia R. TBtools: an integrative toolkit developed for interactive analyses of big biological data. Mol Plant, 2020, 13: 1194–1202.

[28] Min B Q, Schmidt H A, Chernomor O, Schrempf D, Woodhams M D, Haseseler A, Lanfear R. IQ-TREE 2: New models and efficient methods for phylogenetic inference in the genomic era. Mol Biol Evol, 2020, 37: 1530–1534.

[29] Subramanian B, Gao S H, Lercher M J, Hu S N, Chen W H. Evolview v3: a webserver for visualization, annotation, and management of phylogenetic trees. Nucleic Acids Res, 2019, 47: W270–W275.

[30] Kim D, Paggi J M, Park C, Bennett C, Salzberg S L. Graph-based genome alignment and genotyping with HISAT2 and HISAT-genotype. Nat Biotechnol, 2019, 37: 907–915.

[31] Shumate A, Wong G, Pertea G, Pertra M. Improved transcriptome assembly using a hybrid of long and short reads with StringTie. PLoS Comput Biol, 2022, 18: e1009730.

[32] Ito K, Murphy D. Application of ggplot2 to pharmacometric graphics. CPT Pharmacometr Syst Pharmacol, 2013, 2: e79.

[33] 白志英, 李存东, 吴同燕, 孙红春. 干旱胁迫条件下小麦旗叶酶活性和丙二醛含量的染色体定位. 植物遗传资源学报, 2009, 10: 255261.
Bai Z Y, Li C D, Wu T Y, Sun H C. Chromosomal control on flag leaf enzyme activity and MDA content under drought stress in wheat (Triticum aestivum L.). J Plant Genet Resour, 2009, 10: 255261.

[34] 李娜. 气候变化对棉花生长和产量的影响. 西北农林科技大学博士学位论文, 陕西西安, 2022.
Li N. Effects of Climate Change on Cotton Growth and Yield. PhD Dissertation of Northwest A&F University, Xian, Shaanxi, China, 2022(in Chinese with English abstract).

[35] Du T S, Kang S Z, Zhang J H, Li F S. Yield and physiological responses of cotton to partial root-zone irrigation in the oasis field of northwest China. Agric Water Manag, 2006, 84: 41–52.

[36] Rahman M T, Rana S M S, Zahed M A, Lee S H, Yoon E S, Park J Y. Metal-organic framework-derived nanoporous carbon incorporated nanofibers for high-performance triboelectric nanogenerators and self-powered sensors. Nano Energy, 2022, 94: 106921.

[37] Chastain D R, Snider J L, Choinski J S, Collins G D, Perry C D, Whitaker J, Timothy L G, Sorensen R B, Iersel M, Byrd S A, Porter W. Leaf ontogeny strongly influences photosynthetic tolerance to drought and high temperature in Gossypium hirsutumJ Plant Physiol, 2016, 199: 1828.

[38] Unlu M, Kanber R, Koc D L, Tekin S, Kapur B. Effects of deficit irrigation on the yield and yield components of drip irrigated cotton in a mediterranean environment. Agric Water Manag, 2011, 98: 597–605.

[39] Ullah A, Sun H, Yang X Y, Zhang X L. Drought coping strategies in cotton: increased crop per drop. Plant Biotechnol J, 2017, 15: 271284.

[40] Bergonci T, Ribeiro B, Ceciliato P H O, Guerrero-Abad J C, Silva-Filho M C, Moura D S. Arabidopsis thaliana RALF1 opposes brassinosteroid effects on root cell elongation and lateral root formation. J Exp Bot, 2014, 65: 22192230.

[41] Suzaki T, Yoshida A, Hirano H Y. Functional diversification of CLAVATA3-Related CLE proteins in meristem maintenance in rice. Plant Cell, 2008, 20: 2049–2058.

[42] Han H B, Zhang G H, Wu M Y, Wang G D. Identification and characterization of the Populus trichocarpa CLE family. BMC Genomics, 2016, 17:  174.

[43] Fletcher J C. Recent advances in Arabidopsis CLE peptide signaling. Trends Plant Sci, 2020, 25: 1005–1016.

[1] HU Hai-Yan,LIU Di-Qiu,LI Yun-Jing,LI Yang,TU Li-Li*. Identification of Promoter GhFLA1 Preferentially Expressed during Cotton fiber Elongation [J]. Acta Agron Sin, 2017, 43(06): 849-854.
[2] ZHU Shou-Hong,ZHAO Lan-Jie,LIU Yong-Chang*,LI Yan-Jun,ZHANG Xin-Yu,SUN Jie. Identification and Expression Analysis of Microtubule Binding Protein CLASP Family Genes in Gossypium hirsutum L. [J]. Acta Agron Sin, 2017, 43(03): 389-398.
[3] XU Nai-Yin,LI Jian. Identification of Ideal Test Environments for Multiple Traits Selection in Cotton Regional Trials [J]. Acta Agron Sin, 2014, 40(11): 1936-1945.
[4] YANG Chang-Qin,LIU Rui-Xian,ZHANG Guo-Wei,YANG Fu-Qiang,ZHOU Zhi-Guo. Sugar Metabolism and its Relationship with Fiber Strength Affected by Waterlogging during Flowering and Bolling Stage in Cotton [J]. Acta Agron Sin, 2014, 40(09): 1612-1618.
[5] WANG Ning,TIAN Xiao-Li,DUAN Liu-Sheng,YAN Gen-Tu,HUANG Qun,LI Zhao-Hu. Metabolism of Reactive Oxygen Species Involved in Increasing Root Vigour of Cotton Seedlings by Soaking Seeds with Mepiquat Chloride [J]. Acta Agron Sin, 2014, 40(07): 1220-1226.
[6] XU Nai-Yin,LI Jian. Ecological Regionalization of Cotton Fiber Quality Based on GGE Biplot in Yangtze River Valley [J]. Acta Agron Sin, 2014, 40(05): 891-898.
[7] LIU Jing-Ran,LIU Jia-Jie,MENG Ya-Li,WANG You-Hua,CHEN Bing-Lin,ZHANG Guo-Wei,ZHOU Zhi-Guo. Effect of 6-BA and ABA Applications on Yield, Quality and Photosynthate Contents in Subtending Leaf of Cotton with Different Planting Dates [J]. Acta Agron Sin, 2013, 39(06): 1078-1088.
[8] LI Wei,SHANG Hai-Hong,WANG Shao-Gan,FAN Sen-Miao,LI Jun-Wen,LIU Ai-Ying,SHI Yu-Zhen,GONG Ju-Wu,GONG Wan-Kui,WANG Tao,BAI Zhi-Chuan,YUAN You-Lu. Cloning and Expression Analysis of Three Aquaporin Genes in Upland Cotton (Gossypium hirsutum L.) [J]. Acta Agron Sin, 2013, 39(02): 222-229.
[9] XU Nai-Yin,ZHANG Guo-Wei,LI Jian,ZHOU Zhi-Guo. Evaluation of Cotton Regional Trial Environments Based on HA-GGE Biplot in the Yangtze River Valley [J]. Acta Agron Sin, 2012, 38(12): 2229-2236.
[10] GENG Wei-Dong,LI Yan-Jun,ZHANG Xin-Yu,ZHU Hua-Guo,SUN Jie. Molecular Cloning and Expression Analysis of GhSAMDC at Low Temperature Stress in Cotton (Gossypium hirsutum L.) [J]. Acta Agron Sin, 2012, 38(09): 1649-1656.
[11] LI Li,WANG Shun-Feng,LIU Fang,TANG Shi-Yi,TAN Zhao-Yun,ZHANG Jian,TENG Zhong-Hua,LIU Da-Jun,ZHANG Zheng-Sheng. Chromosomal Localization of Transcription Factors in Gossypium hirsutum [J]. Acta Agron Sin, 2012, 38(08): 1361-1368.
[12] LI Zong-Tai, CHEN Er-Ying, ZHANG Mei-Ling, ZHAO Qiang-Long, XU Xiao-Long, JI Hong, SONG Xian-Liang, SUN Xue-Zhen. Effect of Potassium Application Methods on Antioxidant Enzyme Activities, Yield and Potassium Use Efficiency of Cotton [J]. Acta Agron Sin, 2012, 38(03): 487-494.
[13] ZHANG Rui, LV Fen-Ni, WANG Hai-Hai, GUO Wang-Zhen. Identification and Characterization of a Novel Fiber Mutant from Transgenic Progeny in Gossypium hirsutum L. [J]. Acta Agron Sin, 2012, 38(01): 36-42.
[14] XU Sha, WANG You-Hua, ZHOU Chi-Guo, LV Feng-Juan, LIU Jing-Ran, MA Yi-Na, CHEN Ji. Effect of Shade on Nitrogen Metabolism and Its Mechanism in Cotton Plant at Flowering and Boll-forming Stage [J]. Acta Agron Sin, 2011, 37(10): 1879-1887.
[15] ZHOU Kai, YE Wu-Wei, WANG Ju-Juan, WANG De-Long, FAN Bao-Xiang, WANG Shuai. Cloning and Salt-tolerance Analysis of Gene Plastid Transcriptionally Active (GhPTAC) from Gossypium hirsutum L. [J]. Acta Agron Sin, 2011, 37(09): 1551-1558.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!