Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2025, Vol. 51 ›› Issue (5): 1189-1197.doi: 10.3724/SP.J.1006.2025.44062

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Correlation between salicylic acid and anthocyanins accumulation in seeds of different varieties in Brassica napus

XIA Qi1(), GUO Ying1, WANG Kun-Mei1, WANG Si-Yi1, JU Jian-Ye2, PENG Ya-Wen2, LIU Zhong-Song2,*(), XIA Shi-Tou1,*()   

  1. 1Hunan Agricultural University / Hunan Provincial Key Laboratory of Phytohormones and Growth Development, Changsha 410128, Hunan, China
    2College of Agronomy, Hunan Agricultural University, Changsha 410128, Hunan, China
  • Received:2024-04-18 Accepted:2024-12-12 Online:2025-05-12 Published:2024-12-18
  • Contact: *E-mail: zsliu48@hunau.net; E-mail: xstone0505@hunau.edu.cn
  • Supported by:
    National Natural Science Foundation of China “Regulatory Mechanism of Yellow Seed Genetic Stability in Brassica napus”(U20A2029);National Natural Science Foundation of China “Studies on Regulatory Mechanism of Canola GYF1 Protein and its Interaction Factors on Resistance to Fungal Diseases”(31971836)

Abstract:

The color difference between yellow- and black-seeded Brassica napus is significant, with proanthocyanidins being one of the main factors influencing this variation. To explore the regulatory role of the plant hormone salicylic acid (SA) in rapeseed seed color, this study conducted in-depth analyses of anthocyanins and SA at different developmental stages in seeds and seed coats of B. napus varieties, including the black-seeded “Zhongshuang11” (ZS11) and the yellow-seeded “Huang’aizao” (HAZ), “Huahuang1” (HH1), and GH06. Observations of seed sections and ultra-high performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS) were employed. The results showed that black-seeded ZS11 exhibited significant pigment accumulation at 25 days after flowering (DAF), whereas yellow-seeded HAZ lacked a pigment-accumulating layer. From 20 DAF, anthocyanins A1 and B2 in the seeds and seed coats of all four varieties gradually increased, peaking at 25 DAF. In ZS11, anthocyanin A1 and B2 levels remained stable and high after 25 DAF, and were significantly higher than those in the three yellow-seeded varieties (HAZ, GH06, and HH1) at the 0.01 significance level. SA content also gradually increased after 15 DAF, peaking between 20 and 25 DAF, and subsequently decreased. Notably, after 20 DAF, SA concentrations in the seeds and seed coats of ZS11 were significantly higher than those in the yellow-seeded varieties. Further analysis revealed a positive correlation between SA concentration and anthocyanin accumulation in B. napus. Moreover, exogenous application of SA (1 mmol L-1) significantly increased pigment accumulation in the seed coats of HAZ and resulted in a higher percentage of dark brown seeds. These findings indicate that elevated SA levels promote anthocyanin accumulation in B. napus seeds and seed coats, contributing to the formation of black seeds, while lower SA levels favor the development of yellow seed traits. This study provides new insights into the role of SA in seed color regulation and offers a theoretical basis for breeding yellow-seeded B. napus varieties.

Key words: Brassica napus, seed color, salicylic acid, proanthocyanins

Fig. 1

Comparison of mature seed colors in Brassica napus. ZS11: Zhongshuang 11; HAZ: Huang’aizao; HH1: Huahuang 1."

Fig. 2

Observation of seed sections during seed development in yellow- and black-seeded Brassica napus The black arrows point to the pigment accumulation layer. Scale bar, 50 μm; ZS11: Zhongshuang 11; HAZ: Huang’aizao."

Table 1

Thickness of seed coat and pigment layer in different rapeseed varieties at different stages after pollination (μm)"

部位
Location
10 d 15 d 20 d 25 d 30 d 35 d 40 d
黄矮早种皮
Seed coat of HAZ
68.8±3.3 87.1±6.7 101.0±7.2 104.9±4.5 117.9±4.3 123.8±5.2 109.3±5.3
中双11种皮
Seed coat of ZS11
67.2±5.0** 86.9±4.0** 96.5±6.0** 109.2±5.5** 148.4±4.1** 152.0±8.0** 117.3±2.9*
黄矮早色素层
Pigment layer of HAZ
0 0 0 0 0 0 0
中双11色素层
Pigment layer of ZS11
0 0 0 0 34.2** 33.9** 36.0**

Fig. 3

Procyanidin contents in seeds and seed coats of four B. napus varieties A: procyanidin A1 contents in seeds of four B. napus varieties; B: procyanidin B2 contents in seeds of four B. napus varieties; C: procyanidin A1 contents in seeds coats of four B. napus varieties; D: procyanidin B2 contents in seed coats of four B. napus varieties. ** indicates significant difference at the 0.01 level (P < 0.01). ZS11: Zhongshuang 11; HAZ: Huang’aizao; HH1: Huahuang 1."

Fig. 4

Salicylic acid contents in seeds and seeds coats of four B. napus varieties A: salicylic acid contents in seeds of four B. napus varieties; B: salicylic acid contents in seeds coats of four B. napus varieties. ** indicates significant difference at the 0.01 level (P < 0.01). ZS11: Zhongshuang 11; HAZ: Huang’aizao; HH1: Huahuang 1."

Table 2

Pearson analysis of SA and procyanidin A1 and B2 in rapeseed seeds and seed coats"

器官或组织
Organs or tissues
物质
Substance
水杨酸
Salicylic acid
原花色素A1
Procyanidin A1
种子Seed 原花色素A1 Procyanidin A1 0.464** 1.000
原花色素B2 Procyanidin B2 0.741** 0.837**
种皮Seed coat 原花色素A1 Procyanidin A1 0.317** 1.000
原花色素B2 Procyanidin B2 0.538** 0.927**

Fig. 5

Seed color and percentage of brown seeds in yellow-seeded Brassica napus accession HAZ treated with different concentrations of SA A: seed color of HAZ treated with different concentrations of SA; B: percentage of brown HAZ seeds treated with different concentrations of SA. Scale bar, 1 cm. **, significant difference at the 0.01 level."

[1] 叶小利, 李加纳, 唐章林, 梁颖, 谌利. 甘蓝型油菜种皮色泽及相关性状的研究. 作物学报, 2001, 27: 550-556.
Ye X L, Li J N, Tang Z L, Liang Y, Chen L. Study on seedcoat color and related characters of Brassica napus. Acta Agron Sin, 2001, 27: 550-556 (in Chinese with English abstract).
[2] 杨芳杰, 叶沈华, 马晓伟, 陈延平, 易斌, 马朝芝, 沈金雄, 涂金星, 傅廷栋, 文静. 黄籽甘蓝型油菜的合成和不同颜色种皮比较代谢组分析. 分子植物育种, 2024, 22: 3979-3987.
Yang F J, Ye S H, Ma X W, Chen Y P, Yi B, Ma C Z, Shen J X, Tu J X, Fu T D, Wen J. Resynthesis of yellow-seeded Brassica napus and comparative metabonomic analysis of differently colored seed Coats. Mol Plant Breed, 2024, 22: 3979-3987 (in Chinese with English abstract).
[3] Nesi N, Lucas M O, Auger B, Baron C, Lécureuil A, Guerche P, Kronenberger J, Lepiniec L, Debeaujon I, Renard M. The promoter of the Arabidopsis thaliana BAN gene is active in proanthocyanidin-accumulating cells of the Brassica napus seed coat. Plant Cell Rep, 2009, 28: 601-617.
[4] Marles M S, Gruber M Y. Histochemical characterisation of unextractable seed coat pigments and quantification of extractable lignin in the Brassicaceae. J Sci Food Agric, 2004, 84: 251-262.
[5] Akhov L, Ashe P, Tan Y F, Datla R, Selvaraj G. Proanthocyanidin biosynthesis in the seed coat of yellow-seeded, canola quality Brassica napus YN01-429 is constrained at the committed step catalyzed by dihydroflavonol 4-reductase. This paper is one of a selection of papers published in a Special Issue from the National Research Council of Canada-Plant Biotechnology Institute. Botany, 2009, 87: 616-625.
[6] Wang J, Qian J, Yao L Y, Lu Y H. Enhanced production of flavonoids by methyl jasmonate elicitation in cell suspension culture of Hypericum perforatum. Bioresour Bioproc, 2015, 2: 5.
[7] 田文, 郝悦君, 孙浩丁, 安晓丽, 朴炫春, 廉美兰. 水杨酸对东北刺人参黄酮和蒽醌积累的影响. 延边大学农学学报, 2019, 41(2): 15-20.
Tian W, Hao Y J, Sun H D, An X L, Piao X C, Lian M L. Effect of salicylic acid on accumulation of flavonoids and anthraquinones in Oplopanax elatus Nakai. Agric Sci J Yanbian Univ, 2019, 41(2): 15-20 (in Chinese with English abstract).
[8] 刘丽, 李姿, 马雪莲, 郭巧生, 窦道龙. 外源水杨酸处理对活血丹中次生代谢产物积累的影响. 南京农业大学学报, 2016, 39: 379-385.
Liu L, Li Z, Ma X L, Guo Q S, Dou D L. Effect of salicylic acid on the accumulation of bioactive compounds in Glechoma longituba. J Nanjing Agric Univ, 2016, 39: 379-385 (in Chinese with English abstract).
[9] 杨英, 何峰, 季家兴, 郑辉, 余龙江. 外源水杨酸对悬浮培养甘草细胞中甘草黄酮积累的影响. 植物生理学通讯, 2008, 44: 504-506.
Yang Y, He F, Ji J X, Zheng H, Yu L J. Effects of exogenous salicylic acid on the flavonoid accumulation in cell suspension culture of Glycyrrhiza in flata bat. Plant Physiol Commun, 2008, 44: 504-506 (in Chinese with English abstract).
[10] Liu M, Kang B S, Wu H J, Aranda M A, Peng B, Liu L M, Fei Z J, Hong N, Gu Q S. Transcriptomic and metabolic profiling of watermelon uncovers the role of salicylic acid and flavonoids in the resistance to cucumber green mottle mosaic virus. J Exp Bot, 2023, 74: 5218-5235.
[11] 张子龙, 李加纳. 甘蓝型黄籽油菜粒色遗传及其育种研究进展. 作物杂志, 2001, (6): 37-40.
Zhang Z L, Li J N. Study progress of the inheritance of seed colour and breeding in yellow-seeded Brassica napus L. Crops, 2001, (6): 37-40 (in Chinese with English abstract).
[12] 郭滢, 崔看, 覃磊, 张小波, 童建华, 刘忠松, 夏石头. 芥甘杂交黄籽油菜籽粒中植物激素的变化及其对脂肪酸成分与油脂含量的影响. 激光生物学报, 2019, 28: 548-555.
Guo Y, Cui K, Qin L, Zhang X B, Tong J H, Liu Z S, Xia S T. Dynamic change of phytohormones in seeds of yellow-seeded canola progeny from hybridization between Brassica juncea and Brassica napus and its effects on fatty acid composition and oil content. Acta Laser Biol Sin, 2019, 28: 548-555 (in Chinese with English abstract).
[13] 刘后利, 王纫秋, 高永同. 甘兰型黄籽油菜高含油量育种初报. 华中农学院学报, 1981, (1): 13-20.
Liu H L, Wang R Q, Gao Y T. Preliminary report about the breeding of high oil content on yellow-seded vape of Brassica napus L. J Huazhong Agric Univ, 1981, (1): 13-20 (in Chinese with English abstract).
[14] 李加纳, 涂金星, 张学昆, 傅廷栋, 张洁夫, 柴友荣, 梁颖, 唐章林, 刘列钊, 殷家明. 甘蓝型黄籽油菜遗传机理与新品种选育. 中国科技成果, 2016, 17(4): 33-34.
Li J N, Tu J X, Zhang X K, Fu Y D, Zhang J F, Chai Y R, Liang Y, Tang Z L, Liu L Z, Yin J M. Comparative genomic analyses reveal the genetic basis of the yellow-seed trait in Brassica napus. China Sci Technol Achievem, 2016, 17(4): 33-34 (in Chinese with English abstract).
[15] 鲁坤存, 刘淑艳, 郭家保, 刘忠松. 芥甘杂交选育甘蓝型黄籽油菜的研究. 湖南农业大学学报(自然科学版), 2006, 32(2): 116-119.
Lu K C, Liu S Y, Guo J B, Liu Z S. Development of the novel yellow-seeded Brassica napus germplasm through the interspecific crosses B. juncea × B. napus. J Hunan Agric Univ (Nat Sci), 2006, 32(2): 116-119 (in Chinese with English abstract).
[16] Šimura J, Antoniadi I, Široká J, Tarkowská D, Strnad M, Ljung K, Novák O. Plant hormonomics: multiple phytohormone profiling by targeted metabolomics. Plant Physiol, 2018, 177: 476-489.
doi: 10.1104/pp.18.00293 pmid: 29703867
[17] Fraga C G, Clowers B H, Moore R J, Zink E M. Signature-discovery approach for sample matching of a nerve-agent precursor using liquid chromatography-mass spectrometry, XCMS, and chemometrics. Anal Chem, 2010, 82: 4165-4173.
doi: 10.1021/ac1003568 pmid: 20405949
[18] 刘穆. 种子植物形态解剖学导论. 4版. 北京: 科学出版社, 2008. pp 117-128.
Liu M. Introduction to Morphological Anatomy of Seed Plants, 4th edn. Beijing: Science Press, 2008. pp 117-128 (in Chinese).
[19] 胡可, 韩科厅, 戴思兰. 环境因子调控植物花青素苷合成及呈色的机理. 植物学报, 2010, 45: 307-317.
doi: 10.3969/j.issn.1674-3466.2010.03.002
Hu K, Han K T, Dai S L. Regulation of plant anthocyanin synthesis and pigmentation by environmental factors. Chin Bull Bot, 2010, 45: 307-317 (in Chinese with English abstract).
[20] 庞红霞, 祝长青, 覃建兵. 植物花青素生物合成相关基因研究进展. 种子, 2010, 29(3): 60-64.
Pang H X, Zhu C Q, Qin J B. Advancement of plant genes related with anthocyanins synthetic biology. Seed, 2010, 29(3): 60-64 (in Chinese with English abstract).
[21] 曾盔, 刘忠松, 严明理, 曾笑. 芥菜型油菜黄黑种皮色泽特征的分析化学研究. 中国油料作物学报, 2006, 28: 480-483.
Zeng K, Liu Z S, Yan M L, Zeng X. Analytical chemistry study on pigmentation characters of yellow and black seed Coats in B. juncea. Chin J Oil Crop Sci, 2006, 28: 480-483 (in Chinese with English abstract).
[22] 曾盔, 刘忠松, 龙桑, 严明理. 芥菜型油菜黄黑种皮多酚差异的紫外-可见光谱研究. 作物学报, 2007, 33: 476-481.
Zeng K, Liu Z S, Long S, Yan M L. UV-vis spectrum differences of polyphenols between yellow and black seed coats of Brassica juncea. Acta Agron Sin, 2007, 33: 476-481 (in Chinese with English abstract).
[23] Hu R, Zhu M C, Chen S, Li C X, Zhang Q W, Gao L, Liu X Q, Shen S L, Fu F Y, Xu X F, et al. BnbHLH92a negatively regulates anthocyanin and proanthocyanidin biosynthesis in Brassica napus. Crop J, 2023, 11: 374-385.
[24] 王华, 李茂福, 杨媛, 金万梅. 果实花青素生物合成分子机制研究进展. 植物生理学报, 2015, 51: 29-43.
Wang H, Li M F, Yang Y, Jin W M. Recent advances on the molecular mechanisms of anthocyanin synthesis in fruits. Plant Physiol J, 2015, 51: 29-43 (in Chinese with English abstract).
[25] Li C X, Zhang B, Chen B, Ji L H, Yu H. Site-specific phosphorylation of TRANSPARENT TESTA GLABRA1 mediates carbon partitioning in Arabidopsis seeds. Nat Commun, 2018, 9: 571.
[26] Xuan L J, Zhang C C, Yan T, Wu D Z, Hussain N, Li Z L, Chen M X, Pan J W, Jiang L X. TRANSPARENT TESTA 4-mediated flavonoids negatively affect embryonic fatty acid biosynthesis in Arabidopsis. Plant Cell Environ, 2018, 41: 2773-2790.
[1] MENG Fan-Qi, FANG Meng-Ying, LUO Yi, LU Lin, DONG Xue-Rui, WANG Ya-Fei, GUO Li-Na, YAN Peng, DONG Zhi-Qiang, ZHANG Feng-Lu. Effect of ethephon betaine salicylic acid mixture on heat resistance and yield of summer maize [J]. Acta Agronomica Sinica, 2025, 51(5): 1299-1311.
[2] ZHANG Qin, DAI Cheng, MA Chao-Zhi. Auxin response reporter gene transformation of Brassica napus and dynamic signal analysis of GUS in different tissues [J]. Acta Agronomica Sinica, 2025, 51(3): 667-675.
[3] SUN Cheng-Ming, ZHOU Xiao-Ying, CHEN Feng, ZHANG Wei, WANG Xiao-Dong, PENG Qi, GUO Yue, GAO Jian-Qin, HU Mao-Long, FU San-Xiong, ZHANG Jie-Fu. Functional analysis and prediction of long non-coding RNA (lncRNA) in the regulation of branch angle in Brassica napus L. [J]. Acta Agronomica Sinica, 2025, 51(3): 559-567.
[4] XU Lin-Shan, GAO Geng-Dong, WANG Yu, WANG Jia-Xing, YANG Ji-Zhao, WU Ya-Rui, ZHANG Xiao-Han, CHANG Ying, LI Zhen, XIE Xiong-Ze, GONG De-Ping, WANG Jing, GE Xian-Hong. Analysis of expression patterns of laccase gene family members in Brassica napus and their association with stem fracture resistance [J]. Acta Agronomica Sinica, 2025, 51(1): 134-148.
[5] ZHONG Yuan, ZHU Tian-Yu, DAI Cheng, MA Chao-Zhi. Developing and resistance assessing of phosphite-tolerant herbicide transgenic Brassica napus L. [J]. Acta Agronomica Sinica, 2024, 50(5): 1158-1171.
[6] CAO Song, YAO Min, REN Rui, JIA Yuan, XIANG Xing-Ru, LI Wen, HE Xin, LIU Zhong-Song, GUAN Chun-Yun, QIAN Lun-Wen, XIONG Xing-Hua. A combination of genome-wide association and transcriptome analysis reveal candidate genes affecting seed oil accumulation in Brassica napus [J]. Acta Agronomica Sinica, 2024, 50(5): 1136-1146.
[7] QI Xue-Li, LI Ying, LI Chun-Ying, HAN Liu-Peng, ZHAO Ming-Zhong, ZHANG Jian-Zhou. Alleviative effect of salicylic acid on wheat seedlings with stripe rust based on transcriptome and differentially expressed genes [J]. Acta Agronomica Sinica, 2024, 50(4): 1080-1090.
[8] ZHOU Xiang-Yu, XU Jin-Song, XIE Ling-Li, XU Ben-Bo, ZHANG Xue-Kun. Physiological mechanisms in response to waterlogging during seedling stage of Brassica napus L. [J]. Acta Agronomica Sinica, 2024, 50(4): 1015-1029.
[9] LI Yang-Yang, WU Dan, XU Jun-Hong, CHEN Zhuo-Yong, XU Xin-Yuan, XU Jin-Pan, TANG Zhong-Lin, ZHANG Ya-Ru, ZHU Li, YAN Zhuo-Li, ZHOU Qing-Yuan, LI Jia-Na, LIU Lie-Zhao, TANG Zhang-Lin. Identification of candidate genes associated with drought tolerance based on QTL and transcriptome sequencing in Brassica napus L. [J]. Acta Agronomica Sinica, 2024, 50(4): 820-835.
[10] WANG Zi-Ran, LU Yi-Wei, YANG Jing-Yi, WANG Cheng-Long, SONG Ya-Ping, MA Jin-Hu. Effects of exogenous SA on physiological characteristics and stress-resistant gene expression of soybean under Cd stress [J]. Acta Agronomica Sinica, 2024, 50(11): 2883-2895.
[11] XIAO Sheng-Hua, DONG Xian-Man, PENG Xin, LI An-Zi, BI Zhao-Fu, LIAO Ming-Jing, HUANG Li-Hao, GUAN Qian-Qian, HU Qin, ZHU Long-Fu. Transcription factor GhWRKY41 enhances cotton resistance to Verticillium dahliae by promoting SA synthesis [J]. Acta Agronomica Sinica, 2024, 50(10): 2447-2457.
[12] YANG Chuang, WANG Ling, QUAN Cheng-Tao, YU Liang-Qian, DAI Cheng, GUO Liang, FU Ting-Dong, MA Chao-Zhi. Relative expression profiles of genes response to salt stress and constructions of gene co-expression networks in Brassica napus L. [J]. Acta Agronomica Sinica, 2024, 50(1): 237-250.
[13] XIANG Jia-Ming, DAI Qian, LIU Li-Jun. Exogenous salicylic acid improves the tolerance of Yunma 1 (Cannabis sativa L.) to copper stress [J]. Acta Agronomica Sinica, 2023, 49(7): 1979-1993.
[14] SONG Yi, LI Jing, GU He-He, LU Zhi-Feng, LIAO Shi-Peng, LI Xiao-Kun, CONG Ri-Huan, REN Tao, LU Jian-Wei. Effects of application of nitrogen on seed yield and quality of winter oilseed rape (Brassica napus L.) [J]. Acta Agronomica Sinica, 2023, 49(7): 2002-2011.
[15] TANG Yu-Feng, YAO Min, HE Xin, GUAN Mei, LIU Zhong-Song, GUAN Chun-Yun, QIAN Lun-Wen. Genome-wide identification and functional analysis of SGR gene family in Brassica napus L. [J]. Acta Agronomica Sinica, 2023, 49(7): 1829-1842.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!