Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2025, Vol. 51 ›› Issue (5): 1198-1214.doi: 10.3724/SP.J.1006.2025.41053

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Genome-wide identification of PRX gene family and analysis of their expressions under drought stress in barley

LU Wen-Jia1,2(), WANG Jun-Cheng1,2, YAO Li-Rong1,2, ZHANG Hong1,2, SI Er-Jing1,2, YANG Ke1,2, MENG Ya-Xiong1,2, LI Bao-Chun1,3, MA Xiao-Le1,2, WANG Hua-Jun1,2,*()   

  1. 1State Key Laboratory of Arid Habitat Crop Science / Gansu Provincial Key Laboratory of Crop Genetic Improvement and Germplasm Innovation, Lanzhou 730070, Gansu, China
    2College of Agronomy, Gansu Agricultural University, Lanzhou 730070, Gansu, China
    3College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, Gansu, China
  • Received:2024-08-07 Accepted:2025-01-23 Online:2025-05-12 Published:2025-02-11
  • Contact: *E-mail: huajunwang@sina.com
  • Supported by:
    China Agriculture Research System of MOF and MARA(CARS-05-02A-02);East West Science and Technology Cooperation Special Project(25CXNA030);State Key Laboratory of Aridland Crop Science Open Fund(GSCS-2021-02);Modern Agricultural Industry Technology System in Gansu Province(2025);Scientific Research Start-up Funds for Openly-recruited Doctors of Gansu Agricultural University(GAU-KYQD-2022-10);Industrial Support Project of Colleges and Universities in Gansu Province(2021CYZC-12);Fuxi Young Talents Fund of Gansu Agricultural University(GAUfx-04Y011);Fuxi Young Talents Fund of Gansu Agricultural University(Gaufx-03Y06);Gansu Province Longyuan Youth Talent Project(2023)

Abstract:

The Class III peroxidase (PRX) gene family plays a crucial role in regulating plant growth, development, and responses to abiotic stress. Barley (Hordeum vulgare L.), a typical C3 plant, has been relatively underexplored regarding the functional characterization of its HvPRX gene family. In this study, we performed a comprehensive analysis of HvPRX genes using bioinformatics tools and investigated their expression patterns under drought stress induced by 20% PEG-6000 treatment. A total of 178 HvPRX gene family members were identified in the barley genome and were named HvPRX1-HvPRX178 based on their chromosomal positions. Phylogenetic analysis grouped the peroxidases of barley, rice, and Arabidopsis into five subfamilies, indicating evolutionary conservation. Gene structure and domain analyses revealed high conservation within the same subfamilies. Gene duplication analysis showed that 15 HvPRX genes (8%) underwent segmental duplication, while 34 HvPRX genes (67%) arose from tandem duplication, highlighting the critical role of tandem duplication events in HvPRX gene expansion. Interspecies collinearity analysis between barley and Arabidopsis identified four direct orthologous PRX gene pairs, suggesting that large-scale molecular evolution events occurred during the divergence from monocotyledons to dicotyledons. Transcriptome analysis demonstrated that HvPRX gene expression patterns varied between barley roots and leaves. Promoter analysis revealed that 99 HvPRX genes contained cis-acting elements associated with drought stress responses. Finally, qRT-PCR analysis was used to validate the expression profiles of HvPRX genes under drought stress. The expression levels of HvPRX1, HvPRX18, HvPRX63, HvPRX160, and HvPRX167 were significantly upregulated three hours after treatment with 20% PEG-6000. These findings provide valuable insights into the biological functions and molecular mechanisms of HvPRX genes in barley’s drought resistance. This study also lays a foundation for breeding stress-tolerant crop varieties.

Key words: barley, PRX gene family, bioinformatics analysis, drought stress

Table 1

qRT-PCR primers of barley PRXs gene family"

基因名称Gene name 正向引物Forward primer (5'-3') 反向引物Reverse primer (5'-3')
HvPRX1 GGGAACTCAAGGTGGGGTAT TTCTTGCGGTTGGCCTTGAT
HvPRX6 TCGTGATGGTGCCTTCCTTG GAAGTCAGGGTGAGGGACAC
HvPRX18 TCGGACGCCGCCCTTCTTAC TGATTTCGCCTTGCTTGCCG
HvPRX48 CCCATGGACACAGTAACGCC CGAGCTCAGTAGGCCCATTC
HvPRX62 CCGGACGTGTTCGACAACAA CTGGTTGAGGGAGAAGCGTG
HvPRX63 CCCAACATCGACCTCAACCC CACGTCGAGGGTCTGATTGA
HvPRX71 CTGTTCGACAACGCGTACTTC GGTCTTGTTCTTGACCAGCG
HvPRX78 CAGGTTCTGTGGACCGGAAA CTCCGTCAGAACCCAAGAGG
HvPRX79 CCCCAACAAGGACTCTCTGA CGAGGGTGAGAATGTCGGC
HvPRX94 GACCCCGTCATGGACAAGTT CGGTTCAGCAGGTCCAAGTA
HvPRX160 CGACGGGTTCGAGATGAGG GATGAAGGAGCTGCAGTGGG
HvPRX167 TTTGGCCGACATGAACCTCC GGCCGTTGAAGTTTAGGCAC
HvPRX171 AACTTGCCCTATAAATGCAGCG GACGACCCGAGTGGAAGTAGA
HvPRX176 AACCCTAACCCGGAGAAGGA ATCGGAGCAGGAAACCACTC
HvEF1a ATGATTCCCACCAAGCCCAT ACACCAACAGCCACAGTTTGC

Table S1

Physicochemical properties of PRX barley gene family proteins"

基因名称Gene name 基因ID
Gene ID
氨基酸长度Amino acids length
(aa)
分子量 Molecular weight
(Da)
等电点PI 带负电荷
残基总数
Total number of negatively charged residues
带正电荷
残基总数
Total number of positively charged residues
不稳定
指数Instability index
脂肪族
氨基酸指数Aliphatic index
平均疏水性Grand average of hydropathicity 亚细胞定位
Subcellular localization
HvPRX1 HORVU.MOREX.r3.1HG0017280 341 37,112.28 6.20 43 37 29.80 95.04 -0.104 细胞外基质 Extracell
HvPRX2 HORVU.MOREX.r3.1HG0017410 329 35,014.09 8.72 29 34 28.07 87.78 0.022 细胞外基质 Extracell
HvPRX3 HORVU.MOREX.r3.1HG0017420 342 37,099.78 5.42 43 34 41.21 80.20 -0.131 细胞外基质 Extracell
HvPRX4 HORVU.MOREX.r3.1HG0017430 341 36,832.81 6.51 39 37 32.7 77.57 -0.135 细胞外基质 Extracell
HvPRX5 HORVU.MOREX.r3.1HG0017480 332 36,167.96 8.11 36 38 29.93 78.77 -0.227 细胞质 Cytoplasm
HvPRX6 HORVU.MOREX.r3.1HG0017620 342 37,029.21 5.34 45 36 34.51 84.77 -0.111 细胞外基质 Extracell
HvPRX7 HORVU.MOREX.r3.1HG0021640 331 35,171.05 5.97 33 30 26.95 88.67 0.031 内质网 E.R.
HvPRX8 HORVU.MOREX.r3.1HG0021690 332 35,564.10 4.70 42 27 34.12 83.67 -0.057 内质网 E.R.
HvPRX9 HORVU.MOREX.r3.1HG0021710 338 36,291.16 5.96 35 32 24.11 82.34 -0.048 高尔基体 Golgi apparatus
HvPRX10 HORVU.MOREX.r3.1HG0025050 358 37,632.73 6.38 31 29 34.46 88.04 0.116 细胞外基质 Extracell
HvPRX11 HORVU.MOREX.r3.1HG0030320 348 37,714.54 4.86 40 27 47.24 83.07 -0.028 叶绿体 Chloroplast
HvPRX12 HORVU.MOREX.r3.1HG0057030 327 34,888.17 5.66 30 25 35.13 90.46 0.295 叶绿体 Chloroplast
HvPRX13 HORVU.MOREX.r3.1HG0067930 328 35,749.72 6.79 37 36 47.66 79.48 -0.135 细胞质 Cytoplasm
HvPRX14 HORVU.MOREX.r3.1HG0067960 384 41,652.87 7.58 40 41 38.89 85.91 -0.058 内质网 E.R.
HvPRX15 HORVU.MOREX.r3.1HG0067970 384 41,654.89 7.58 40 41 38.39 86.67 -0.043 内质网 E.R.
HvPRX16 HORVU.MOREX.r3.1HG0067990 385 41,755.01 7.57 40 41 38.79 86.44 -0.051 内质网 E.R.
HvPRX17 HORVU.MOREX.r3.1HG0068010 326 35,697.89 8.03 37 39 34.94 78.44 -0.139 叶绿体 Chloroplast
HvPRX18 HORVU.MOREX.r3.1HG0070250 325 35,017.26 6.59 34 33 38.15 86.77 0.032 细胞外基质 Extracell
HvPRX19 HORVU.MOREX.r3.1HG0076690 332 35,721.07 5.82 35 30 34.98 86.99 0.049 细胞外基质 Extracell
HvPRX20 HORVU.MOREX.r3.1HG0076700 332 35,714.98 5.82 35 30 35.64 84.67 0.019 细胞外基质 Extracell
HvPRX21 HORVU.MOREX.r3.1HG0076710 332 35,755.04 5.72 35 30 33.80 84.94 0.036 细胞外基质 Extracell
HvPRX22 HORVU.MOREX.r3.1HG0076720 332 35,729.01 5.82 35 30 34.75 84.94 0.031 细胞外基质 Extracell
HvPRX23 HORVU.MOREX.r3.1HG0081950 326 34,890.18 8.35 38 41 34.59 91.07 0.029 细胞外基质 Extracell
HvPRX24 HORVU.MOREX.r3.2HG0107970 337 36,100.07 7.99 35 37 36.06 83.47 -0.091 细胞外基质 Extracell
HvPRX25 HORVU.MOREX.r3.2HG0112560 313 32,178.23 8.38 20 23 32.56 83.07 0.069 叶绿体 Chloroplast
HvPRX26 HORVU.MOREX.r3.2HG0112580 315 32,990.08 6.07 24 22 31.86 82.19 0.008 叶绿体 Chloroplast
HvPRX27 HORVU.MOREX.r3.2HG0112600 315 33,122.59 8.79 22 27 38.97 87.14 0.036 叶绿体 Chloroplast
HvPRX28 HORVU.MOREX.r3.2HG0112610 314 33,041.32 7.53 21 22 31.20 81.15 -0.003 叶绿体 Chloroplast
HvPRX29 HORVU.MOREX.r3.2HG0112630 312 32,785.91 5.55 27 23 36.69 83.27 0.018 叶绿体 Chloroplast
HvPRX30 HORVU.MOREX.r3.2HG0112640 316 32,624.82 8.38 20 23 28.88 83.80 0.074 叶绿体 Chloroplast
HvPRX31 HORVU.MOREX.r3.2HG0112650 316 32,763.03 5.75 21 18 37.79 86.30 0.192 叶绿体 Chloroplast
HvPRX32 HORVU.MOREX.r3.2HG0112660 316 32,975.14 6.40 22 21 32.52 80.06 0.037 叶绿体 Chloroplast
HvPRX33 HORVU.MOREX.r3.2HG0112670 325 34,005.50 6.41 28 27 36.67 84.46 0.013 叶绿体 Chloroplast
HvPRX34 HORVU.MOREX.r3.2HG0112690 335 35,131.66 5.56 29 25 32.97 83.97 0.056 叶绿体 Chloroplast
HvPRX35 HORVU.MOREX.r3.2HG0112720 313 32,838.11 6.06 23 21 32.57 84.19 0.038 叶绿体 Chloroplast
HvPRX36 HORVU.MOREX.r3.2HG0119630 348 38,363.82 6.46 42 40 36.66 82.70 -0.240 细胞外基质 Extracell
HvPRX37 HORVU.MOREX.r3.2HG0119650 348 38,347.82 6.46 42 40 35.87 82.70 -0.228 细胞外基质 Extracell
HvPRX38 HORVU.MOREX.r3.2HG0120320 320 34,041.24 9.43 28 40 40.59 89.41 0.052 细胞外基质 Extracell
HvPRX39 HORVU.MOREX.r3.2HG0120350 396 42,825.16 9.64 31 46 60.4 78.71 -0.146 细胞外基质 Extracell
HvPRX40 HORVU.MOREX.r3.2HG0120360 327 35,765.33 9.13 30 40 34.22 83.82 -0.090 叶绿体 Chloroplast
HvPRX41 HORVU.MOREX.r3.2HG0120370 327 35,767.45 9.14 29 39 33.11 84.10 -0.045 叶绿体 Chloroplast
HvPRX42 HORVU.MOREX.r3.2HG0120420 527 54,707.07 6.10 40 37 85.27 61.37 -0.346 叶绿体 Chloroplast
HvPRX43 HORVU.MOREX.r3.2HG0120470 420 44,622.90 6.44 37 36 51.06 73.40 -0.226 叶绿体 Chloroplast
HvPRX44 HORVU.MOREX.r3.2HG0120560 456 48,770.66 6.10 43 40 49.15 73.40 -0.237 内质网 E.R.
HvPRX45 HORVU.MOREX.r3.2HG0120650 343 37,214.72 7.49 36 37 35.31 81.95 -0.121 细胞外基质 Extracell
HvPRX46 HORVU.MOREX.r3.2HG0120830 437 46,985.32 5.96 51 44 41.30 78.03 -0.184 细胞外基质 Extracell
HvPRX47 HORVU.MOREX.r3.2HG0145360 336 37,211.48 8.65 44 49 38.68 74.94 -0.341 细胞外基质 Extracell
HvPRX48 HORVU.MOREX.r3.2HG0156430 326 34,128.90 8.38 26 29 35.02 86.32 0.132 叶绿体 Chloroplast
HvPRX49 HORVU.MOREX.r3.2HG0157410 323 34,869.65 4.85 39 25 25.41 90.03 0.102 细胞外基质 Extracell
HvPRX50 HORVU.MOREX.r3.2HG0157450 323 34,851.71 4.80 39 24 26.26 92.72 0.139 细胞外基质 Extracell
HvPRX51 HORVU.MOREX.r3.2HG0157470 337 36,270.41 8.35 34 37 43.74 84.04 -0.079 细胞外基质 Extracell
HvPRX52 HORVU.MOREX.r3.2HG0157500 323 34,785.93 9.12 33 43 37.48 82.57 -0.104 叶绿体 Chloroplast
HvPRX53 HORVU.MOREX.r3.2HG0168070 343 37,044.04 6.63 34 32 38.38 84.55 -0.169 过氧物酶体 Peroxisome
HvPRX54 HORVU.MOREX.r3.2HG0173960 335 35,687.64 8.62 32 36 40.91 85.79 0.001 叶绿体 Chloroplast
HvPRX55 HORVU.MOREX.r3.2HG0178640 328 33,936.30 4.66 37 24 31.37 91.16 0.195 内质网 E.R.
HvPRX56 HORVU.MOREX.r3.2HG0178700 498 50,299.87 9.02 33 41 75.07 67.59 -0.182 叶绿体 Chloroplast
HvPRX57 HORVU.MOREX.r3.2HG0192410 330 35,456.59 8.06 31 33 41.62 95.15 0.040 液泡 Vacuole
HvPRX58 HORVU.MOREX.r3.2HG0198560 335 37,063.69 6.65 34 33 37.93 86.42 -0.031 质膜 Plasma membrane
HvPRX59 HORVU.MOREX.r3.2HG0202620 328 35,064.29 8.74 26 32 40.62 84.57 0.141 细胞外基质 Extracell
HvPRX60 HORVU.MOREX.r3.2HG0204080 322 33,963.10 5.06 39 30 31.37 76.77 -0.128 叶绿体 Chloroplast
HvPRX61 HORVU.MOREX.r3.2HG0207080 401 43,468.90 5.27 46 33 41.45 82.27 -0.135 叶绿体 Chloroplast
HvPRX62 HORVU.MOREX.r3.2HG0215250 341 36,472.57 5.91 38 33 45.28 88.80 0.054 细胞外基质 Extracell
HvPRX63 HORVU.MOREX.r3.2HG0215280 344 36,709.91 5.74 36 30 46.36 95.93 0.132 液泡 Vacuole
HvPRX64 HORVU.MOREX.r3.2HG0215300 342 36,404.42 5.67 37 29 38.71 87.37 0.084 细胞外基质 Extracell
HvPRX65 HORVU.MOREX.r3.2HG0215310 352 37,260.87 4.97 32 21 51.92 84.86 0.089 液泡 Vacuole
HvPRX66 HORVU.MOREX.r3.2HG0215410 340 37,492.82 6.30 38 35 48.73 82.62 -0.144 液泡 Vacuole
HvPRX67 HORVU.MOREX.r3.2HG0215430 341 37,643.54 5.32 41 32 45.99 74.11 -0.259 液泡 Vacuole
HvPRX68 HORVU.MOREX.r3.2HG0215440 339 36,359.16 6.99 29 29 44.06 82.89 -0.105 叶绿体 Chloroplast
HvPRX69 HORVU.MOREX.r3.2HG0215540 343 35,868.75 8.12 31 33 42.46 85.77 0.093 叶绿体 Chloroplast
HvPRX70 HORVU.MOREX.r3.2HG0215550 314 32,888.25 8.17 26 28 40.49 83.66 0.025 液泡 Vacuole
HvPRX71 HORVU.MOREX.r3.2HG0215610 350 36,905.77 5.11 39 30 40.16 86.57 0.076 细胞外基质 Extracell
HvPRX72 HORVU.MOREX.r3.2HG0217850 293 31,363.60 5.80 34 29 24.56 81.02 -0.067 细胞质 Cytoplasm
HvPRX73 HORVU.MOREX.r3.2HG0217960 421 41,802.55 6.65 37 36 31.85 67.32 -0.161 叶绿体 Chloroplast
HvPRX74 HORVU.MOREX.r3.3HG0241690 326 34,821.29 6.89 34 34 45.04 85.03 -0.099 叶绿体 Chloroplast
HvPRX75 HORVU.MOREX.r3.3HG0243130 326 34,173.74 8.12 30 32 31.19 88.74 0.066 细胞外基质 Extracell
HvPRX76 HORVU.MOREX.r3.3HG0245220 352 37,268.27 6.88 27 27 45.96 90.74 0.134 叶绿体 Chloroplast
HvPRX77 HORVU.MOREX.r3.3HG0246550 329 34,778.59 4.74 49 29 43.53 75.68 -0.246 叶绿体 Chloroplast
HvPRX78 HORVU.MOREX.r3.3HG0254930 349 38,704.38 9.11 36 46 38.95 83.32 -0.283 细胞质 Cytoplasm
HvPRX79 HORVU.MOREX.r3.3HG0254990 335 35,750.84 8.31 27 30 39.62 93.49 0.038 细胞外基质 Extracell
HvPRX80 HORVU.MOREX.r3.3HG0255020 333 35,981.18 7.99 27 29 45.43 94.26 0.076 液泡 Vacuole
HvPRX81 HORVU.MOREX.r3.3HG0256190 337 35,312.23 8.87 22 29 36.45 83.74 0.000 叶绿体 Chloroplast
HvPRX82 HORVU.MOREX.r3.3HG0278550 359 38,662.65 9.65 34 50 31.26 85.43 -0.049 叶绿体 Chloroplast
HvPRX83 HORVU.MOREX.r3.3HG0284720 362 38,458.23 5.25 46 37 38.52 77.49 -0.086 叶绿体 Chloroplast
HvPRX84 HORVU.MOREX.r3.3HG0291870 360 38,946.19 6.24 39 38 36.37 77.31 -0.206 细胞外基质 Extracell
HvPRX85 HORVU.MOREX.r3.3HG0291890 355 38,486.34 7.97 40 42 35.37 74.87 -0.310 细胞外基质 Extracell
HvPRX86 HORVU.MOREX.r3.3HG0291900 362 39,524.80 9.15 37 47 36.64 72.87 -0.317 细胞外基质 Extracell
HvPRX87 HORVU.MOREX.r3.3HG0291910 357 38,639.54 5.88 40 38 34.75 73.59 -0.272 细胞外基质 Extracell
HvPRX88 HORVU.MOREX.r3.3HG0294340 335 37,237.48 5.03 53 41 34.37 85.37 -0.231 细胞质 Cytoplasm
HvPRX89 HORVU.MOREX.r3.3HG0299560 332 35,730.95 5.28 38 29 43.77 86.72 0.028 细胞外基质 Extracell
HvPRX90 HORVU.MOREX.r3.3HG0307890 321 34,755.39 5.98 36 32 47.22 84.80 -0.136 内质网 E.R.
HvPRX91 HORVU.MOREX.r3.3HG0307910 321 34,736.34 5.90 36 31 47.45 84.80 -0.032 内质网 E.R.
HvPRX92 HORVU.MOREX.r3.3HG0307930 321 34,708.29 5.90 36 31 46.92 84.21 -0.138 内质网 E.R.
HvPRX93 HORVU.MOREX.r3.3HG0325140 369 39,548.90 6.22 39 34 38.85 88.83 -0.037 细胞外基质 Extracell
HvPRX94 HORVU.MOREX.r3.3HG0325250 359 37,829.41 5.88 37 33 34.29 97.10 0.170 内质网 E.R.
HvPRX95 HORVU.MOREX.r3.3HG0325540 380 40,951.73 9.04 38 45 41.38 90.61 -0.052 液泡 Vacuole
HvPRX96 HORVU.MOREX.r3.4HG0345880 330 34,485.89 5.41 35 30 31.29 90.06 0.094 质膜 Plasma membrane
HvPRX97 HORVU.MOREX.r3.4HG0351880 321 34,147.72 6.38 31 29 41.05 85.45 -0.029 叶绿体 Chloroplast
HvPRX98 HORVU.MOREX.r3.4HG0351890 319 33,885.60 8.57 29 33 43.76 87.18 -0.008 叶绿体 Chloroplast
HvPRX99 HORVU.MOREX.r3.4HG0378960 342 37,526.95 6.27 45 42 33.26 90.94 -0.151 细胞外基质 Extracell
HvPRX100 HORVU.MOREX.r3.4HG0380360 320 33,392.53 5.03 31 23 26.08 93.75 0.072 叶绿体 Chloroplast
HvPRX101 HORVU.MOREX.r3.4HG0393860 328 34,542.35 5.67 34 39 33.27 98.23 0.094 内质网 E.R.
HvPRX102 HORVU.MOREX.r3.4HG0393870 336 35,984.96 9.31 30 41 37.88 82.20 -0.164 叶绿体 Chloroplast
HvPRX103 HORVU.MOREX.r3.4HG0393900 334 35,542.19 5.56 34 29 45.80 83.71 -0.086 细胞外基质 Extracell
HvPRX104 HORVU.MOREX.r3.4HG0400810 392 41,892.69 5.06 57 44 34.22 87.40 -0.223 细胞质 Cytoplasm
HvPRX105 HORVU.MOREX.r3.4HG0412630 325 33,289.34 5.57 30 23 29.29 80.62 0.051 细胞外基质 Extracell
HvPRX106 HORVU.MOREX.r3.4HG0412640 330 33,671.80 5.14 23 18 24.23 80.18 0.083 叶绿体 Chloroplast
HvPRX107 HORVU.MOREX.r3.4HG0417920 312 32,704.18 6.09 29 27 42.85 90.80 0.133 叶绿体 Chloroplast
HvPRX108 HORVU.MOREX.r3.4HG0418410 353 38,205.05 9.89 28 46 37.60 81.61 -0.095 细胞外基质 Extracell
HvPRX109 HORVU.MOREX.r3.5HG0428280 339 36,710.40 6.23 39 37 27.68 84.69 -0.227 线粒体 Mitochondrion
HvPRX110 HORVU.MOREX.r3.5HG0446790 331 34,768.78 8.42 31 34 44.29 95.56 0.165 液泡 Vacuole
HvPRX111 HORVU.MOREX.r3.5HG0464630 320 33,247.53 6.42 25 24 33.76 80.25 0.034 叶绿体 Chloroplast
HvPRX112 HORVU.MOREX.r3.5HG0488200 343 37,568.83 5.91 41 38 42.14 84.23 -0.136 叶绿体 Chloroplast
HvPRX113 HORVU.MOREX.r3.5HG0492600 323 34,543.18 5.10 37 30 37.76 76.50 -0.129 细胞外基质 Extracell
HvPRX114 HORVU.MOREX.r3.5HG0494460 330 34,440.21 6.52 36 35 35.43 81.97 0.108 细胞外基质 Extracell
HvPRX115 HORVU.MOREX.r3.5HG0499470 349 35,329.96 4.90 35 25 31.66 92.18 0.265 叶绿体 Chloroplast
HvPRX116 HORVU.MOREX.r3.5HG0512460 327 35,389.42 8.73 33 38 39.23 88.56 -0.094 叶绿体 Chloroplast
HvPRX117 HORVU.MOREX.r3.5HG0512470 327 34,503.44 8.73 33 38 39.23 88.87 -0.094 细胞外基质 Extracell
HvPRX118 HORVU.MOREX.r3.5HG0512490 327 35,318.17 8.94 33 40 35.19 84.95 -0.186 叶绿体 Chloroplast
HvPRX119 HORVU.MOREX.r3.5HG0512600 344 36,866.87 6.51 33 32 43.62 84.56 -0.049 叶绿体 Chloroplast
HvPRX120 HORVU.MOREX.r3.5HG0512620 325 33,509.01 4.67 28 17 28.24 96.80 0.288 液泡 Vacuole
HvPRX121 HORVU.MOREX.r3.5HG0513610 320 34,220.71 5.82 31 28 32.11 82.97 -0.047 叶绿体 Chloroplast
HvPRX122 HORVU.MOREX.r3.5HG0517740 330 35,096.07 5.96 27 23 30.02 79.58 0.123 细胞外基质 Extracell
HvPRX123 HORVU.MOREX.r3.6HG0543310 295 31,840.74 5.06 32 24 31.11 78.44 -0.129 叶绿体 Chloroplast
HvPRX124 HORVU.MOREX.r3.6HG0546340 322 34,780.93 8.68 25 30 41.47 89.72 0.031 叶绿体 Chloroplast
HvPRX125 HORVU.MOREX.r3.6HG0546360 322 34,334.90 6.93 26 26 43.78 85.56 0.030 叶绿体 Chloroplast
HvPRX126 HORVU.MOREX.r3.6HG0546390 322 34,815.92 8.51 27 31 40.94 93.70 0.024 叶绿体 Chloroplast
HvPRX127 HORVU.MOREX.r3.6HG0547280 333 35,662.45 6.08 27 25 39.58 81.23 0.006 叶绿体 Chloroplast
HvPRX128 HORVU.MOREX.r3.6HG0551230 335 36,109.42 9.54 32 44 45.74 88.87 0.010 细胞外基质 Extracell
HvPRX129 HORVU.MOREX.r3.6HG0558550 292 31,280.73 5.72 27 23 43.83 86.30 0.050 叶绿体 Chloroplast
HvPRX130 HORVU.MOREX.r3.6HG0559160 328 33,945.29 5.49 28 23 33.75 84.94 0.078 叶绿体 Chloroplast
HvPRX131 HORVU.MOREX.r3.6HG0565800 343 35,996.32 8.94 29 35 39.64 89.91 0.142 叶绿体 Chloroplast
HvPRX132 HORVU.MOREX.r3.6HG0566190 325 33,560.73 8.68 24 28 46.42 82.09 0.029 叶绿体 Chloroplast
HvPRX133 HORVU.MOREX.r3.6HG0614870 337 36,320.41 8.61 28 32 47.53 87.48 -0.086 液泡 Vacuole
HvPRX134 HORVU.MOREX.r3.6HG0615810 382 40,727.56 6.33 40 38 45.57 76.81 -0.066 叶绿体 Chloroplast
HvPRX135 HORVU.MOREX.r3.6HG0618250 334 35,910.94 7.53 32 33 36.34 84.13 -0.049 细胞外基质 Extracell
HvPRX136 HORVU.MOREX.r3.6HG0626020 422 44,920.93 7.51 39 40 50.70 64.05 -0.386 叶绿体 Chloroplast
HvPRX137 HORVU.MOREX.r3.6HG0626030 383 40,971.44 5.89 40 37 36.99 71.83 -0.257 叶绿体 Chloroplast
HvPRX138 HORVU.MOREX.r3.7HG0642520 324 34,448.30 6.87 31 31 38.84 84.07 0.056 细胞外基质 Extracell
HvPRX139 HORVU.MOREX.r3.7HG0643670 341 36,661.87 9.36 38 41 35.87 83.90 -0.131 叶绿体 Chloroplast
HvPRX140 HORVU.MOREX.r3.7HG0645180 359 38,692.99 6.14 40 38 40.91 91.53 -0.062 液泡 Vacuole
HvPRX141 HORVU.MOREX.r3.7HG0647950 369 37,671.80 6.16 31 28 26.44 93.52 0.266 液泡 Vacuole
HvPRX142 HORVU.MOREX.r3.7HG0649080 349 37,092.43 8.34 28 31 36.01 92.03 0.079 叶绿体 Chloroplast
HvPRX143 HORVU.MOREX.r3.7HG0649690 329 35,051.14 5.01 39 28 39.79 91.67 0.062 细胞外基质 Extracell
HvPRX144 HORVU.MOREX.r3.7HG0649700 331 35,431.54 5.10 39 29 38.99 89.91 0.033 细胞外基质 Extracell
HvPRX145 HORVU.MOREX.r3.7HG0649720 331 35,445.57 5.10 39 29 39.25 90.21 0.039 细胞外基质 Extracell
HvPRX146 HORVU.MOREX.r3.7HG0649730 329 35,112.18 5.01 39 28 39.79 90.49 0.051 细胞外基质 Extracell
HvPRX147 HORVU.MOREX.r3.7HG0655210 349 37,331.06 5.55 32 27 37.64 84.47 -0.018 细胞质 Cytoplasm
HvPRX148 HORVU.MOREX.r3.7HG0667610 329 35,342.68 7.54 40 41 31.73 89.03 -0.011 细胞外基质 Extracell
HvPRX149 HORVU.MOREX.r3.7HG0667620 329 35,490.86 7.00 41 41 33.00 89.30 -0.025 细胞外基质 Extracell
HvPRX150 HORVU.MOREX.r3.7HG0667630 329 35,361.67 7.54 41 42 32.48 90.79 -0.027 细胞外基质 Extracell
HvPRX151 HORVU.MOREX.r3.7HG0667660 329 35,392.68 7.54 41 42 29.81 90.21 -0.031 细胞外基质 Extracell
HvPRX152 HORVU.MOREX.r3.7HG0667680 329 35,395.56 6.54 42 41 31.50 89.03 -0.046 细胞外基质 Extracell
HvPRX153 HORVU.MOREX.r3.7HG0671530 334 36,369.34 4.82 45 30 25.34 80.69 -0.078 细胞外基质 Extracell
HvPRX154 HORVU.MOREX.r3.7HG0674680 324 34,875.05 8.06 39 41 34.20 88.55 -0.036 内质网 E.R.
HvPRX155 HORVU.MOREX.r3.7HG0677150 372 41,395.54 6.72 46 45 45.55 81.83 -0.238 液泡 Vacuole
HvPRX156 HORVU.MOREX.r3.7HG0684180 334 36,407.44 5.62 43 37 44.79 81.44 -0.132 细胞外基质 Extracell
HvPRX157 HORVU.MOREX.r3.7HG0705160 322 34,593.54 5.97 33 30 33.55 83.94 0.023 内质网 E.R.
HvPRX158 HORVU.MOREX.r3.7HG0707110 323 34,096.91 6.58 29 28 28.23 88.58 0.191 细胞外基质 Extracell
HvPRX159 HORVU.MOREX.r3.7HG0710070 321 34,243.88 5.39 34 28 36.56 79.10 -0.084 细胞外基质 Extracell
HvPRX160 HORVU.MOREX.r3.7HG0713280 333 35,351.15 7.59 26 27 42.83 88.86 0.069 叶绿体 Chloroplast
HvPRX161 HORVU.MOREX.r3.7HG0713340 356 37,764.16 8.54 30 34 32.92 87.19 0.066 叶绿体 Chloroplast
HvPRX162 HORVU.MOREX.r3.7HG0718930 292 31,031.11 9.36 20 29 51.76 76.68 -0.127 叶绿体 Chloroplast
HvPRX163 HORVU.MOREX.r3.7HG0718940 321 33,654.38 9.24 26 36 32.55 82.83 0.036 叶绿体 Chloroplast
HvPRX164 HORVU.MOREX.r3.7HG0718950 320 33,826.37 7.51 28 29 34.54 80.03 -0.048 叶绿体 Chloroplast
HvPRX165 HORVU.MOREX.r3.7HG0718990 320 34,008.63 7.50 30 31 42.03 80.06 -0.063 细胞外基质 Extracell
HvPRX166 HORVU.MOREX.r3.7HG0719010 267 28,618.42 8.10 22 24 52.55 84.16 -0.027 叶绿体 Chloroplast
HvPRX167 HORVU.MOREX.r3.7HG0719110 314 33,535.34 6.58 30 29 44.59 89.65 0.044 细胞外基质 Extracell
HvPRX168 HORVU.MOREX.r3.7HG0719260 373 40,318.65 5.78 44 36 42.31 78.55 -0.156 叶绿体 Chloroplast
HvPRX169 HORVU.MOREX.r3.7HG0721470 324 34,937.17 8.29 30 33 42.32 86.14 -0.010 叶绿体 Chloroplast
HvPRX170 HORVU.MOREX.r3.7HG0723600 326 35,098.37 8.29 30 33 43.27 85.92 0.004 叶绿体 Chloroplast
HvPRX171 HORVU.MOREX.r3.7HG0728480 375 39,843.53 4.75 45 28 31.74 79.68 -0.099 叶绿体 Chloroplast
HvPRX172 HORVU.MOREX.r3.7HG0728980 347 37,100.51 9.47 25 37 42.70 85.82 -0.046 线粒体 Mitochondrion
HvPRX173 HORVU.MOREX.r3.7HG0729010 316 34,164.36 6.30 29 28 41.63 76.93 -0.149 叶绿体 Chloroplast
HvPRX174 HORVU.MOREX.r3.7HG0732650 336 36,042.25 7.04 37 37 41.98 88.87 0.051 细胞外基质 Extracell
HvPRX175 HORVU.MOREX.r3.7HG0737460 361 39,645.13 9.15 41 51 40.14 77.37 -0.323 细胞外基质 Extracell
HvPRX176 HORVU.MOREX.r3.7HG0737470 345 37,514.62 6.26 39 34 39.58 94.46 -0.068 细胞外基质 Extracell
HvPRX177 HORVU.MOREX.r3.7HG0737890 322 34,589.48 6.98 26 26 37.05 93.14 0.101 叶绿体 Chloroplast
HvPRX178 HORVU.MOREX.r3.7HG0746290 327 34,328.08 5.86 34 30 40.58 90.76 0.133 细胞外基质 Extracell

Fig. 1

Phylogenetic tree of Class III PRXs gene family in Arabidopsis thaliana L., Oryza sativa L., and Hordeum vulgare L. AtPRXs: class III PRXs genes in Arabidopsis thaliana L. (red circle marks); OsPRXs: class III PRXs genes in Oryza sativa L. (fleshy pink circle marks); HvPRXs: class III PRXs genes in Setaria italica L. (blue circle marks)."

Fig. 2

Motif of Class III PRXs gene family members in Hordeum vulgare L."

Fig. 3

Motif map, gene structure and conserved motifs of PRXs gene family members in Hordeum vulgare L. Motif: conservative base sequence; UTR: untranslated region; CDS: coding region sequence."

Fig. 4

Cis-acting elements analysis of PRXs gene family in Hordeum vulgare L."

Fig. 5

Synteny analysis of PRXs gene family in Hordeum vulgare L."

Fig. 6

Collinearity analysis of PRXs gene family members in Hordeum vulgare L. and Arabidopsis thaliana PRXs gene"

Fig. 7

Distribution of PRX gene family members on chromosomes in Hordeum vulgare L. 1H-7H represents chromosomes 1-7 in Hordeum vulgare L., respectively."

Fig. 8

Tissue expression profile of PRX gene family in Hordeum vulgare L. Scarlett leaf control is the leaf expression quantity of barley variety Scarlett under normal treatment, and Scarlett leaf drought is the leaf expression quantity of barley variety Scarlett under drought treatment. SBCC073D leaf control is the expression amount of barley variety SBCC073D under normal treatment, SBCC073D leaf drought is the expression amount of barley variety SBCC073D under drought treatment. Scarlett Root A was the expression level of Root tip A of barley variety Scarlett under drought treatment, Scarlett root B was the expression level of root tip B of barley variety Scarlett under drought treatment, and Scarlett Root C was the expression of root tip C of barley variety Scarlett under drought treatment."

Fig. 9

Expression patterns of PRXs gene family members under drought stress in Hordeum vulgare L. A: variety ZDM5850; B: variety IL-12. * indicates significant differences (P < 0.05) between 20% PEG-6000 treatments at 0.5, 1.0, 1.5, 2.0, 2.5, and 3.0 h compared to the untreated control (0 h)."

[1] Exposito-Rodriguez M, Laissue P P, Yvon-Durocher G, Smirnoff N, Mullineaux P M. Photosynthesis-dependent H2O2 transfer from chloroplasts to nuclei provides a high-light signalling mechanism. Nat Commun, 2017, 8: 49.
doi: 10.1038/s41467-017-00074-w pmid: 28663550
[2] Yadav M, Rai N, Yadav H S. The role of peroxidase in the enzymatic oxidation of phenolic compounds to quinones from Luffa aegyptiaca (gourd) fruit juice. Green Chem Lett Rev, 2017, 10: 154-161.
[3] Kidwai M, Ahmad I Z, Chakrabarty D. Class III peroxidase: an indispensable enzyme for biotic/abiotic stress tolerance and a potent candidate for crop improvement. Plant Cell Rep, 2020, 39: 1381-1393.
[4] Amaya I, Botella M A, de la Calle M, Medina M I, Heredia A, Bressan R A, Hasegawa P M, Quesada M A, Valpuesta V. Improved germination under osmotic stress of tobacco plants overexpressing a cell wall peroxidase. FEBS Lett, 1999, 457: 80-84.
doi: 10.1016/s0014-5793(99)01011-x pmid: 10486568
[5] Passardi F, Penel C, Dunand C. Performing the paradoxical: how plant peroxidases modify the cell wall. Trends Plant Sci, 2004, 9: 534-540.
doi: 10.1016/j.tplants.2004.09.002 pmid: 15501178
[6] Bernards M A, Fleming W D, Llewellyn D B, Priefer R, Yang X, Sabatino A, Plourde G L. Biochemical characterization of the suberization-associated anionic peroxidase of potato. Plant Physiol, 1999, 121: 135-146.
doi: 10.1104/pp.121.1.135 pmid: 10482668
[7] Pandey V P, Singh S, Singh R, Dwivedi U N. Purification and characterization of peroxidase from Papaya (Carica papaya) fruit. Appl Biochem Biotechnol, 2012, 167: 367-376.
doi: 10.1007/s12010-012-9672-1 pmid: 22552804
[8] Ostergaard L, Teilum K, Mirza O, Mattsson O, Petersen M, Welinder K G, Mundy J, Gajhede M, Henriksen A. Arabidopsis ATP A2 peroxidase. Expression and high-resolution structure of a plant peroxidase with implications for lignification. Plant Mol Biol, 2000, 44: 231-243.
pmid: 11117266
[9] Barros J, Serk H, Granlund I, Pesquet E. The cell biology of lignification in higher plants. Ann Bot, 2015, 115: 1053-1074.
[10] Mathé C, Barre A, Jourda C, Dunand C. Evolution and expression of class III peroxidases. Arch Biochem Biophys, 2010, 500: 58-65.
doi: 10.1016/j.abb.2010.04.007 pmid: 20398621
[11] Tognolli M, Penel C, Greppin H, Simon P. Analysis and expression of the class III peroxidase large gene family in Arabidopsis thaliana. Gene, 2002, 288: 129-138.
doi: 10.1016/s0378-1119(02)00465-1 pmid: 12034502
[12] Passardi F, Longet D, Penel C, Dunand C. The class III peroxidase multigenic family in rice and its evolution in land plants. Phytochemistry, 2004, 65: 1879-1893.
doi: 10.1016/j.phytochem.2004.06.023 pmid: 15279994
[13] 马鑫磊, 许瑞琪, 索晓曼, 李婧实, 顾鹏鹏, 姚锐, 林小虎, 高慧. 谷子III型PRX基因家族全基因组鉴定及干旱胁迫下表达分析. 作物学报, 2022, 48: 2517-2532.
doi: 10.3724/SP.J.1006.2022.14185
Ma X L, Xu R Q, Suo X M, Li J S, Gu P P, Yao R, Lin X H, Gao H. Genome-wide identification of the Class III PRX gene family in foxtail millet (Setaria italica L.) and expression analysis under drought stress. Acta Agron Sin, 2022, 48: 2517-2532 (in Chinese with English abstract).
[14] Yan J, Su P S, Li W, Xiao G L, Zhao Y, Ma X, Wang H W, Nevo E, Kong L R. Genome-wide and evolutionary analysis of the class III peroxidase gene family in wheat and Aegilops tauschii reveals that some members are involved in stress responses. BMC Genomics, 2019, 20: 666.
doi: 10.1186/s12864-019-6006-5 pmid: 31438842
[15] Wang Y, Wang Q Q, Zhao Y, Han G M, Zhu S W. Systematic analysis of maize class III peroxidase gene family reveals a conserved subfamily involved in abiotic stress response. Gene, 2015, 566: 95-108.
doi: 10.1016/j.gene.2015.04.041 pmid: 25895479
[16] Gabaldón C, López-Serrano M, Pedreño M A, Barceló A R. Cloning and molecular characterization of the basic peroxidase isoenzyme from Zinnia elegans, an enzyme involved in lignin biosynthesis. Plant Physiol, 2005, 139: 1138-1154.
pmid: 16258008
[17] Herrero J, Fernández-Pérez F, Yebra T, Novo-Uzal E, Pomar F, Pedreño M Á, Cuello J, Guéra A, Esteban-Carrasco A, Zapata J M. Bioinformatic and functional characterization of the basic peroxidase 72 from Arabidopsis thaliana involved in lignin biosynthesis. Planta, 2013, 237: 1599-1612.
[18] Hiraga S, Sasaki K, Ito H, Ohashi Y, Matsui H. A large family of class III plant peroxidases. Plant Cell Physiol, 2001,42: 462-468.
[19] Mei W Q, Qin Y M, Song W Q, Li J, Zhu Y X. Cotton GhPOX1 encoding plant class III peroxidase may be responsible for the high level of reactive oxygen species production that is related to cotton fiber elongation. J Genet Genomics, 2009, 36: 141-150.
doi: 10.1016/S1673-8527(08)60101-0 pmid: 19302970
[20] Mika A, Buck F, Lüthje S. Membrane-bound class III peroxidases: identification, biochemical properties and sequence analysis of isoenzymes purified from maize (Zea mays L.) roots. J Proteomics, 2009, 71: 412-424.
[21] Ren L L, Liu Y J, Liu H J, Qian T T, Qi L W, Wang X R, Zeng Q Y. Subcellular relocalization and positive selection play key roles in the retention of duplicate genes of Populus class III peroxidase family. Plant Cell, 2014, 26: 2404-2419.
[22] Cao Y P, Han Y H, Meng D D, Li D H, Jin Q, Lin Y, Cai Y P. Structural, evolutionary, and functional analysis of the class III peroxidase gene family in Chinese pear (Pyrus bretschneideri). Front Plant Sci, 2016, 7: 1874.
[23] Xie Z H, Rui W K, Yuan Y Z, Song X F, Liu X, Gong X, Bao J P, Zhang S L, Shahrokh K, Tao S T. Analysis of PRX gene family and its function on cell lignification in pears (Pyrus bretschneideri). Plants, 2021, 10: 1874.
[24] Onele A, Mazina A, Leksin I, Chasov A, Minibayeva F, Beckett R. Class III peroxidase genes in the moss Dicranum scoparium: identification and abiotic stress induced expression analysis. S Afr N J Bot, 2023, 159: 72-84.
[25] Ellis R P, Forster B P, Robinson D, Handley L L, Gordon D C, Russell J R, Powell W. Wild barley: a source of genes for crop improvement in the 21st century? J Exp Bot, 2000, 51: 9-17.
pmid: 10938791
[26] Bornare S S, Prasad L C, Prasad R, Lal J P. Perspective of barley drought tolerance; methods and mechanisms comparable to other cereals. J Progressive Agric, 2012, 3: 68-70.
[27] George T S, Brown L K, Ramsay L, White P J, Newton A C, Bengough A G, Russell J, Thomas W T B. Understanding the genetic control and physiological traits associated with rhizosheath production by barley (Hordeum vulgare). New Phytol, 2014, 203: 195-205.
doi: 10.1111/nph.12786 pmid: 24684319
[28] Baik B K, Ullrich S E. Barley for food: Characteristics, improvement, and renewed interest. J Cereal Sci, 2008, 48: 233-242.
[29] 马小英, 贾方兴, 赵颖岚, 赵杰才. 干旱和盐胁迫中大麦实时定量PCR内参基因的筛选. 分子植物育种, 2016, 14: 3093-3101.
Ma X Y, Jia F X, Zhao Y L, Zhao J C. Reference genes screening for quantitative real-time PCR in barley under drought and salt stress. Mol Plant Breed, 2016, 14: 3093-3101 (in Chinese with English abstract).
[30] Meng G, Fan W Y, Rasmussen S K. Characterisation of the class III peroxidase gene family in carrot taproots and its role in anthocyanin and lignin accumulation. Plant Physiol Biochem, 2021, 167: 245-256.
[31] Yang X, Yuan J Z, Luo W B, Qin M Y, Yang J H, Wu W R, Xie X F. Genome-wide identification and expression analysis of the class III peroxidase gene family in potato (Solanum tuberosum L.). Front Genet, 2020, 11: 593577.
[32] Rogozin I B, Wolf Y I, Sorokin A V, Mirkin B G, Koonin E V. Remarkable interKingdom conservation of intron positions and massive, lineage-specific intron loss and gain in eukaryotic evolution. Curr Biol, 2003, 13: 1512-1517.
pmid: 12956953
[33] Cannon S B, Mitra A, Baumgarten A, Young N D, May G. The roles of segmental and tandem gene duplication in the evolution of large gene families in Arabidopsis thaliana. BMC Plant Biol, 2004, 4: 10.
pmid: 15171794
[34] Harris R M, Hofmann H A. Seeing is believing: Dynamic evolution of gene families. Proc Natl Acad Sci USA, 2015, 112: 1252-1253.
doi: 10.1073/pnas.1423685112 pmid: 25624486
[1] CHENG Hong-Na, QIN Dan-Dan, XU Fu-Chao, XU Qing, PENG Yan-Chun, SUN Long-Qing, XU Le, GUO Ying, YANG Xin-Quan, XU De-Ze, DONG Jing. Comparative analysis of metabolomics of colored hulless barley and colored wheat grains [J]. Acta Agronomica Sinica, 2025, 51(4): 932-942.
[2] WANG Lin, CHEN Xiao-Yu, ZHANG Wen-Meng-Long, WANG Si-Qi, CHENG Bing-Yun, CHENG Jing-Qiu, PAN Rui, ZHANG Wen-Ying. Molecular characteristics and functional analysis of HvMYB2 in response to drought stress in barley [J]. Acta Agronomica Sinica, 2025, 51(4): 873-887.
[3] HUO Ru-Xue, GE Xiang-Han, SHI Jia, LI Xue-Rui, DAI Sheng-Jie, LIU Zhen-Ning, LI Zong-Yun. Functional analysis of the sweetpotato histidine kinase protein IbHK5 in response to drought and salt stresses [J]. Acta Agronomica Sinica, 2025, 51(3): 650-666.
[4] MA Min-Hu, CHANG Hua-Yu, CHEN Zhao-Yan, REN Zeng, LIU Ting-Hui, XING Guo-Fang, GUO Gang-Gang. Identification and genome-wide association study of specialized seedling grass barley cultivars [J]. Acta Agronomica Sinica, 2025, 51(1): 91-102.
[5] YANG Yu-Chen, JIN Ya-Rong, LUO Jin-Chan, ZHU Xin, LI Wei-Hang, JIA Ji-Yuan, WANG Xiao-Shan, HUANG De-Jun, HUANG Lin-Kai. Identification and expression analysis of the WD40 gene family in pearl millet [J]. Acta Agronomica Sinica, 2024, 50(9): 2219-2236.
[6] LIU Yong-Hui, SHEN Yi, SHEN Yue, LIANG Man, SHA Qin, ZHANG Xu-Yao, CHEN Zhi-De. Cloning and functional analysis of drought-inducible promoter AhMYB44-11- Pro in peanut (Arachis hypogaea L.) [J]. Acta Agronomica Sinica, 2024, 50(9): 2157-2166.
[7] LI Wen-Juan, WANG Li-Min, QI Yan-Ni, ZHAO Wei, XIE Ya-Ping, DANG Zhao, ZHAO Li-Rong, LI Wen, XU Chen-Meng, WANG Yan, ZHANG Jian-Ping. Functional analysis of flax LuWRI1a in response to drought and salt stresses [J]. Acta Agronomica Sinica, 2024, 50(7): 1750-1761.
[8] QIAO Zhi-Xin, ZHANG Jie-Dao, WANG Yu, GUO Qi-Fang, LIU Yan-Jing, CHEN Rui, HU Wen-Hao, SUN Ai-Qing. Difference in germination characteristics of different winter wheat cultivars under drought stress [J]. Acta Agronomica Sinica, 2024, 50(6): 1568-1583.
[9] SUN Man, AN Chao-Dan, GAO Guang-Qi, GUO Jie, YANG Ping, JIANG Cong-Cong. Genetic dissection of the albino hull mutations in barley (Hordeum vulgare L.) [J]. Acta Agronomica Sinica, 2024, 50(12): 3046-3054.
[10] LU Zong-Hui, SI Er-Jing, YE Pei-Yin, WANG Jun-Cheng, YAO Li-Rong, MA Xiao-Le, LI Bao-Chun, WANG Hua-Jun, SHANG Xun-Wu, MENG Ya-Xiong. Genome-wide association analysis and candidate genes prediction of β-glucan content in barley grains [J]. Acta Agronomica Sinica, 2024, 50(10): 2483-2492.
[11] ZHAN Xiao-Xiao, FENG Ju-Ling, ZHANG Zhen-Huan, ZHANG Hong, WANG Jun-Cheng, LI Bao-Chun, YANG Ke, SI Er-Jing, MENG Ya-Xiong, MA Xiao-Le, WANG Hua-Jun, YAO Li-Rong. Salt tolerance analysis of HvMBF1c in barley [J]. Acta Agronomica Sinica, 2024, 50(10): 2503-2514.
[12] WANG Li-Ping, WANG Xiao-Yu, FU Jing-Ye, WANG Qiang. Functional identification of maize transcription factor ZmMYB12 to enhance drought resistance and low phosphorus tolerance in plants [J]. Acta Agronomica Sinica, 2024, 50(1): 76-88.
[13] CHEN Li, WANG Jing, QIU Xiao, SUN Hai-Lian, ZHANG Wen-Hao, WANG Tian-Zuo. Differences of physiological responses and transcriptional regulation of alfalfa with different drought tolerances under drought stresses [J]. Acta Agronomica Sinica, 2023, 49(8): 2122-2132.
[14] WEI Zheng-Xin, LIU Chang-Yan, CHEN Hong-Wei, LI Li, SUN Long-Qing, HAN Xue-Song, JIAO Chun-Hai, SHA Ai-Hua. Analysis of ASPAT gene family based on drought-stressed transcriptome sequencing in Vicia faba L. [J]. Acta Agronomica Sinica, 2023, 49(7): 1871-1881.
[15] TIAN Min, LIU Xin-Chun, PAN Jia-Jia, LIANG Li-Jing, DONG Lei, LIU Mei-Chi, FENG Zong-Yun. Genome-wide association analysis of cellulose content and hemicellulose content in grains of barley [J]. Acta Agronomica Sinica, 2023, 49(6): 1726-1732.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!