Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2024, Vol. 50 ›› Issue (12): 3046-3054.doi: 10.3724/SP.J.1006.2024.41014

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Genetic dissection of the albino hull mutations in barley (Hordeum vulgare L.)

SUN Man1,2(), AN Chao-Dan2, GAO Guang-Qi2, GUO Jie1, YANG Ping2, JIANG Cong-Cong2,*()   

  1. 1College of Agriculture, Shanxi Agricultural University, Jinzhong 030801, Shanxi, China
    2Key Laboratory of Grain Crop Genetic Resources Evaluation and Utilization, Ministry of Agriculture and Rural Affairs / Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
  • Received:2024-03-01 Accepted:2024-06-20 Online:2024-12-12 Published:2024-07-15
  • Contact: *E-mail: jiangcongcong@caas.cn

Abstract:

Lemma and palea are the outermost organs on each floret of barley (Hordeum vulgare L.), where the majority of spike photosynthesis occurs, supplying carbohydrates to the developing grains. The barley albino hull (alh) mutants, obtained from EMS mutagenesis, showed albinistic lemma and palea, as well as albinistic pulvini, stem nodes, and stem bases, while the leaves and awns remain green. In this study, multiple allelic alh mutants were identified, and segregating populations were generated accordingly. Genetic analysis indicated that a single recessive gene is responsible for the alh phenotype. Through re-sequencing of the candidate gene in multiple alh mutants, and co-segregation tests using competitive allele-specific PCR (KASP) markers, loss-of-function mutations in the gene HvGLK2 were shown to account for the alh phenotype. Each of the three independent mutations identified in this study is distinct from previously reported albino lemma variants such as alm1 or ebu-a. HvGLK2 encodes a Golden 2-like (GLK2) transcription factor, belonging to the GARP subfamily of MYB transcription factors, and has a paralog designated GLK1 in most monocot and dicot species. The temporal and spatial expression patterns showed that HvGLK2 is abundantly transcribed in senescent leaves, lemmas, and rachises. This study highlights the importance of HvGLK2 in chlorophyll synthesis in various organs, including lemma, palea, and stem nodes of barley plants. Moreover, it provides valuable materials for further studies aimed at evaluating the contribution of spike photosynthesis to the eventual grain yield.

Key words: barley, hull, albino mutant, HvGLK2, loss-of-function

Fig. 1

Morphology of the wild-type HTX and the albino hull mutants A: whole spike of wild-type HTX (left) and the homozygous albino hull (alh.a) mutant identified from family T-M3-4073 (right); B: zooming in the middle section of spike from wild-type HTX (left) and alh.a mutant (right); C: stem base of wild-type HTX (left) and alh.a mutant (right); D: stem segments of wild-type HTX (left) and alh.a mutant (right); E: leaf lobe of wild-type HTX (left) and alh.a mutant (right); F: structural anatomy of central spikelet of wild-type HTX (left) and alh.a mutant (right) at the grain filling stage; G: fully matured grain of wild-type HTX (left) and alh.a mutant (right), which at the bottom row had hull been removed, respectively. Scale bars in plots are all 1 cm."

Fig. 2

Comparison of the thousand-grain weight of wild-type HTX and the alh.a mutant **, significant at P < 0.01."

Table 1

Phenotypic statistics in each of the ten T-M4-4073 families"

M4家系
M4 family
野生型单株数目
Number of wild-type plants
稃壳白化单株数目
Number of alh plants
M3单株基因型
Deduced M3 genotype
卡方测验
χ2-test (χ20.05=3.841)
T-M4-4073-1 0 12 M Na
T-M4-4073-2 12 0 WT Na
T-M4-4073-3 0 12 M Na
T-M4-4073-4 51 17 Het χ2(1:3)=0
T-M4-4073-5 52 19 Het χ2(1:3)=0.082
T-M4-4073-6 12 0 WT Na
T-M4-4073-7 7 5 Het Na
T-M4-4073-8 12 0 WT Na
T-M4-4073-9 12 0 WT Na
T-M4-4073-10 6 6 Het Na

Fig. 3

Diagram of the HvGLK2 gene structure (A), and alignment of its encoded amino acid sequence in wild-type HTX and multiple loss-of-function alh mutants (B)"

Table 2

Primers for fragmental amplification of the causal gene HvGLK2 of alh mutants"

引物名称
Primer name
引物序列
Primer sequence (5'-3')
退火温度
Melting temperature
(℃)
产物大小
Product size (bp)
用途
Purpose
GLK2_5UTR_F1 TGCCATCGTCAAGTCAGCTG 60.12 746 覆盖exon1的片段扩增
Amplification of fragments covering exon1
GLK2_IN1_R1 GTGAGAGAATGCAGGGCAGTAC 58.95
GLK2_IN1_F1 CAGTGAGGCGCTCGATTTAG 58.62 521 覆盖exon2的片段扩增
Amplification of fragments covering exon2
GLK2_IN2_R1 GCGTACGTCCGTGTGAATTT 58.45
GLK2_IN2_F1 TATATGAGATTGCATTTGTGGTCG 59.82 1456 覆盖exon3-6的片段扩增
Amplification of fragments covering exon3-6
GLK2_3UTR_R1 TGCACGTAGGTACAGACGGAC 58.43
3H135348068-F CTCCATCTACCCATCGATCAAGA 60.75 178 检测基因型与表型关联性的KASP标记
KASP markers were used to detect genotype-phenotype associations
3H135348068-RA GAAGGTCGGAGTCAACGGATTGGCCGGACTAGGGCTTTA 61.11
3H135348068-RG GAAGGTGACCAAGTTCATGCTGGCCGGACTAGGGCTTTG 60.33

Fig. 4

Co-segregation analysis between the KASP marker that targets the loss-of-function mutation in alh.a and the albino hull phenotype"

Fig. 5

Spatial and temporal patterns of the HvGLK2 transcription during the barley lifecycle FPKM: Fragments Per Kilobase of exon model per Million mapped fragments. ROO1: roots from seedlings (10 cm shoot stage); LEA: shoots from seedlings (10 cm shoot stage); INF: young developing inflorescences (5 mm); INF2: developing inflorescences (1.0-1.5 cm); NOD: developing tillers, 3rd internode (42 DAP); CAR5: developing grain (5 DAP); CAR15: developing grain (15 DAP); ETI: etiolated seedling, dark cond. (10 DAP); LEM: inflorescences, lemma (42 DAP); LOD: inflorescences, lodicule (42 DAP); EPI: epidermal strips (28 DAP); RAC: inflorescences, rachis (35 DAP); ROO2: roots (28 DAP); SEN: senescing leaves (56 DAP)."

Fig. 6

The phylogenetic tree of GLK genes in various plant species Phylogenetic tree was constructed based on the GLK2 and GLK1 amino acid sequences in Hordeum vulgare (Hv), Oryza sativa (Os), Zea mays (Zm), Triticum aestivum (Ta), Sorghum bicolor (Sb), Setaria italica (Si), Arabidopsis thaliana (At), Gossypium raimondii (Gr), Glycine max (Gm), and Solanum lycopersicum (Sl)."

[1] Nishantha M D L C. 野生大麦农艺性状的多样性及其遗传基础. 西北农林科技大学博士学位论文,陕西杨凌, 2018.
Nishantha M D L C. Diversity of Wild Barley in Agronomic Traits And Its Genetic Basis. PhD Dissertation of Northwest A&F University, Yangling, Shaanxi, China, 2018 (in Chinese with English abstract).
[2] Knüpffer H. Genetics and genomics of the triticeae. In: Feuillet C, Muehlbauer G J, eds. Plant Genetics and Genomics: Crops and Models. New York: Springer US, 2009. pp 31-79.
[3] Jiang C C, Lei M M, Guo Y, Gao G Q, Shi L J, Jin Y L, Cai Y, Himmelbach A, Zhou S H, He Q, Yao X F, Kan J H, Haberer G, Duan F Y, Li L H, Liu J, Zhang J, Spannagl M, Liu C M, Stein N, Feng Z Y, Mascher M, Yang P. A reference-guided TILLING by amplicon-sequencing platform supports forward and reverse genetics in barley. Plant Commun, 2022, 3: 100317.
[4] Frey-Wyssling A, Buttrose M S. Photosynthesis in the ear of barley. Nature, 1959, 184: 2031-2032.
[5] Duffus C M, Cochrane M P. Formation of the barley grain- morphology, physiology, and biochemistry. In: MacGregor A W, Bhatty R S, eds. Barley: Chemistry and Technology. St Paul: American Association of Cereal Chemists, 1993. pp 31-72.
[6] Abebe T, Skadsen R W, Kaeppler H F. Cloning and identification of highly expressed genes in barley lemma and Palea. Crop Sci, 2004, 44: 942-950.
[7] Ziegler-Jöns A. Gas-exchange of ears of cereals in response to carbon dioxide and light: II. Occurrence of a C3-C4 intermediate type of photosynthesis. Planta, 1989, 178: 164-175.
doi: 10.1007/BF00393191 pmid: 24212745
[8] Wei H, Zhang X Q, Zhu J H, Shang Y, Wang J M, Jia Q J, Zhang Q S, Yang J M, Li C D. Identification and fine mapping of a white husk gene in barley (Hordeum vulgare L.). PLoS One, 2016, 11: e0152128.
[9] Takahashi R, Hayashi J. Linkage study of albino lemma character in barley. Berichte des Ohara Instituts für landwirtschaftliche Biologie, Okayama Universität, 1959, 11: 132-140.
[10] Taketa S, Hattori M, Takami T, Himi E, Sakamoto W. Mutations in a Golden2-Like gene cause reduced seed weight in barley albino lemma 1 mutants. Plant Cell Physiol, 2021, 62: 447-457.
doi: 10.1093/pcp/pcab001 pmid: 33439257
[11] Yeh S Y, Lin H H, Chang Y M, Chang Y L, Chang C K, Huang Y C, Ho Y W, Lin C Y, Zheng J Z, Jane W N, Ng C Y, Lu M Y, Lai I L, To K Y, Li W H, Ku M S B. Maize Golden2-like transcription factors boost rice chloroplast development, photosynthesis, and grain yield. Plant Physiol, 2022, 188: 442-459.
[12] 卫云丰. 拟南芥PGA37转录组因子调控叶绿体发育的分子机制. 山西农业大学硕士学位论文,山西太谷, 2020.
Wei Y F. Molecular Mechanisms of Arabidopsis PGA37 Transcription Factor in Regulating Chloroplast Development. MS Thesis of Shanxi Agricultural University, Taigu, Shanxi, China, 2020 (in Chinese with English abstract).
[13] Song J, Wei X J, Shao G N, Sheng Z H, Chen D B, Liu C L, Jiao G A, Xie L H, Tang S Q, Hu P S. The rice nuclear gene WLP1 encoding a chloroplast ribosome L13 protein is needed for chloroplast development in rice grown under low temperature conditions. Plant Mol Biol, 2014, 84: 301-314.
[14] Tsuchiya T. Linkage maps of barley. Barley Genet Newslett, 1980, 10: 95-98.
[15] 金婷, 杨建明, 贾巧君, 汪军妹, 吴宽然, 陈和, 乔海龙, 华为. 大麦白化颖壳突变体的遗传、生理及品质分析. 核农学报, 2013, 27: 1624-1629.
doi: 10.11869/hnxb.2013.11.1624
Jin T, Yang J M, Jia Q J, Wang J M, Wu K R, Chen H, Qiao H L, Hua W. Heredity, physiology and malt quality analysis of albino-lemma barley. J Nucl Agri Sci, 2013, 27: 1624-1629 (in Chinese with English abstract).
[16] Qin D D, Dong J, Xu F C, Guo G G, Ge S T, Xu Q, Xu Y X, Li M F. Characterization and fine mapping of a novel barley Stage Green-Revertible Albino gene (HvSGRA) by bulked segregant analysis based on SSR assay and specific length amplified fragment sequencing. BMC Genom, 2015, 16: 838.
[17] Faris D G. Physiology and Genetics of the Kernel Color of Barley. PhD Dissertation of University of British Columbia, New York, America, 1955.
[18] Lundqvist U, Franckowiak J D, Konishi T. New and revised descriptions of barley genes. Barley Genet Newslett, 1997, 26: 209.
[19] Yang P, Perovic D, Habekuß A, Zhou R N, Graner A, Ordon F, Stein N. Gene-based high-density mapping of the gene rym7 conferring resistance to Barley mild mosaic virus (BaMMV). Mol Breed, 2013, 32: 27-37.
[20] 安朝丹, 高广奇, 杨平, 程小毛, 蒋枞璁. 大麦钩芒突变体的遗传解析. 植物遗传资源学报, 2023, 24: 1725-1735.
doi: 10.13430/j.cnki.jpgr.20230608001
An C D, Gao G Q, Yang P, Cheng X M, Jiang C C. Genetic dissection of hooded awn mutation in cultivated barley (Hordeum vulgare L.). J Plant Genet Resour, 2023, 24: 1725-1735 (in Chinese with English abstract).
[21] 高广奇. 大麦黄花叶病抗性新位点rym7H-1遗传解析. 中国农业科学院硕士学位论文,北京, 2021.
Gao G Q. Genetic Dissertation of rym7H-1, a New Resistant Locus against BaYMV/BaMMV in Cultivated Barley. MS Thesis of Chinese Academy of Agricultural Sciences,Beijing, China, 2021 (in Chinese with English abstract).
[22] Riechmann J L, Heard J, Martin G. Transcription factors: genome- wide comparative analysis among eukaryotes. Science, 2000, 290: 2105-2110.
doi: 10.1126/science.290.5499.2105 pmid: 11118137
[23] 刘俊芳, 张佳, 李贺, 赵婷婷, 李景富. 植物GOLDEN2-Like转录因子研究进展. 分子植物育种, 2017, 15: 3949-3956.
Liu J F, Zhang J, Li H, Zhao T T, Li J F. Research progress of plant GOLDEN2-Like transcription factor. Mol Plant Breed, 2017, 15: 3949-3956 (in Chinese with English abstract).
[24] Fitter D W, Martin D J, Copley M J, Scotland R W, Langdale J A. GLK gene pairs regulate chloroplast development in diverse plant species. Plant J, 2002, 31: 713-727.
doi: 10.1046/j.1365-313x.2002.01390.x pmid: 12220263
[25] Brand A, Borovsky Y, Hill T, Rahman K A A, Bellalou A, van Deynze A, Paran I. CaGLK2 regulates natural variation of chlorophyll content and fruit color in pepper fruit. Theor Appl Genet, 2014, 127: 2139-2148.
[26] Powell A L T, Nguyen C V, Hill T, Cheng K L, Figueroa-Balderas R, Aktas H, Ashrafi H, Pons C, Fernández-Muñoz R, Vicente A, Lopez-Baltazar J, Barry C S, Liu Y S, Chetelat R, Granell A, van Deynze A, Giovannoni J J, Bennett A B. Uniform ripening encodes a golden 2-like transcription factor regulating tomato fruit chloroplast development. Science, 2012, 336: 1711-1715.
doi: 10.1126/science.1222218 pmid: 22745430
[27] 刘星, 苏良辰, 张拜宏, 曾丽丹, 李媚娟, 李玲. 异源表达花生基因AhGLK1对拟南芥glk1glk2突变体表型特征及抗旱性的影响. 华南师范大学学报(自然科学版), 2020, 52: 78-84.
Liu X, Su L C, Zhang B H, Zeng L D, Li M J, Li L. The effect of heterologous expression of peanut gene AhGLK1 on the phenotypic characteristics and drought resistance of Arabidopsis glk1glk2 mutants. J South China Norm Univ (Nat Sci Edn), 2020, 52: 78-84 (in Chinese with English abstract).
[1] MA Min-Hu, CHANG Hua-Yu, CHEN Zhao-Yan, REN Zeng, LIU Ting-Hui, XING Guo-Fang, GUO Gang-Gang. Identification and genome-wide association study of specialized seedling grass barley cultivars [J]. Acta Agronomica Sinica, 2025, 51(1): 91-102.
[2] LU Zong-Hui, SI Er-Jing, YE Pei-Yin, WANG Jun-Cheng, YAO Li-Rong, MA Xiao-Le, LI Bao-Chun, WANG Hua-Jun, SHANG Xun-Wu, MENG Ya-Xiong. Genome-wide association analysis and candidate genes prediction of β-glucan content in barley grains [J]. Acta Agronomica Sinica, 2024, 50(10): 2483-2492.
[3] ZHAN Xiao-Xiao, FENG Ju-Ling, ZHANG Zhen-Huan, ZHANG Hong, WANG Jun-Cheng, LI Bao-Chun, YANG Ke, SI Er-Jing, MENG Ya-Xiong, MA Xiao-Le, WANG Hua-Jun, YAO Li-Rong. Salt tolerance analysis of HvMBF1c in barley [J]. Acta Agronomica Sinica, 2024, 50(10): 2503-2514.
[4] TIAN Min, LIU Xin-Chun, PAN Jia-Jia, LIANG Li-Jing, DONG Lei, LIU Mei-Chi, FENG Zong-Yun. Genome-wide association analysis of cellulose content and hemicellulose content in grains of barley [J]. Acta Agronomica Sinica, 2023, 49(6): 1726-1732.
[5] LI Ying, LIU Hai-Cui, SHI Lyu, SHI Xiao-Xu, HAN Xiao, LIU Jian, WEI Ya-Feng. Genetic diversity and population structure analysis of naked barley germplasm resources in Jiangsu province [J]. Acta Agronomica Sinica, 2023, 49(10): 2687-2697.
[6] GUO Nan-Nan, LIU Tian-Ce, SHI Shuo, HU Xin-Ting, NIU Ya-Dan, LI Liang. Regulation of long non-coding RNA (LncRNA) in barley roots in response to Piriformospora indica colonization [J]. Acta Agronomica Sinica, 2022, 48(7): 1625-1634.
[7] WANG Xing-Rong, LI Yue, ZHANG Yan-Jun, LI Yong-Sheng, WANG Jun-Cheng, XU Yin-Ping, QI Xu-Sheng. Drought resistance identification and drought resistance indexes screening of Tibetan hulless barley resources at adult stage [J]. Acta Agronomica Sinica, 2022, 48(5): 1279-1287.
[8] YAO Xiao-Hua, WANG Yue, YAO You-Hua, AN Li-Kun, WANG Yan, WU Kun-Lun. Isolation and expression of a new gene HvMEL1 AGO in Tibetan hulless barley under leaf stripe stress [J]. Acta Agronomica Sinica, 2022, 48(5): 1181-1190.
[9] GUO Bao-Jian, WANG Shuang, LYU Chao, WANG Fei-Fei, XU Ru-Gen. Regulation of adventitious root development by HvLBD19 gene in barley (Hordeum vulgare L.) [J]. Acta Agronomica Sinica, 2022, 48(10): 2435-2442.
[10] YU Xin-Lian, LI Xin, YAO Xiao-Hua, YAO You-Hua, BAI Yi-Xiong, AN Li-Kun, WU Kun-Lun. Genetic mapping and candidate gene analysis of the major QTL cqHD2H-2 for early heading in barley (Hordeum vulgare L.) [J]. Acta Agronomica Sinica, 2022, 48(10): 2463-2474.
[11] HE Jun-Yu, ZHONG Wei, CHEN Yun-Qiong, WANG Wei-Bin, XIONG Jing-Lei, JIANG Ya-Li, SHI Hui-Meng, CHEN Sheng-Wei. Analysis on the accumulation characteristics of seven flavonoids at grain development stage in barley [J]. Acta Agronomica Sinica, 2021, 47(8): 1624-1630.
[12] GENG La, HUANG Ye-Chang, LI Meng-Di, XIE Shang-Geng, YE Ling-Zhen, ZHANG Guo-Ping. Genome-wide association study of β-glucan content in barley grains [J]. Acta Agronomica Sinica, 2021, 47(7): 1205-1214.
[13] LI Jie, FU Hui, YAO Xiao-Hua, WU Kun-Lun. Differentially expressed protein analysis of different drought tolerance hulless barley leaves [J]. Acta Agronomica Sinica, 2021, 47(7): 1248-1258.
[14] ZHANG Fan, YANG Qian. Effects of combined application of organic materials and chemical fertilizers in barley-double cropping rice rotation system on barley resource utilization efficiency and yield [J]. Acta Agronomica Sinica, 2021, 47(12): 2522-2531.
[15] XU Ting-Ting, WANG Qiao-Ling, ZOU Shu-Qiong, DI Jia-Chun, YANG Xin, ZHU Yin, ZHAO Han, YAN Wei. Development and application of InDel markers based on high throughput sequencing in barley [J]. Acta Agronomica Sinica, 2020, 46(9): 1340-1350.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Li Shaoqing, Li Yangsheng, Wu Fushun, Liao Jianglin, Li Damo. Optimum Fertilization and Its Corresponding Mechanism under Complete Submergence at Booting Stage in Rice[J]. Acta Agronomica Sinica, 2002, 28(01): 115 -120 .
[2] Wang Lanzhen;Mi Guohua;Chen Fanjun;Zhang Fusuo. Response to Phosphorus Deficiency of Two Winter Wheat Cultivars with Different Yield Components[J]. Acta Agron Sin, 2003, 29(06): 867 -870 .
[3] WANG Yan;QIU Li-Ming;XIE Wen-Juan;HUANG Wei;YE Feng;ZHANG Fu-Chun;MA Ji. Cold Tolerance of Transgenic Tobacco Carrying Gene Encoding Insect Antifreeze Protein[J]. Acta Agron Sin, 2008, 34(03): 397 -402 .
[4] ZHENG Xi;WU Jian-Guo;LOU Xiang-Yang;XU Hai-Ming;SHI Chun-Hai. Mapping and Analysis of QTLs on Maternal and Endosperm Genomes for Histidine and Arginine in Rice (Oryza sativa L.) across Environments[J]. Acta Agron Sin, 2008, 34(03): 369 -375 .
[5] XING Guang-Nan, ZHOU Bin, ZHAO Tuan-Jie, YU De-Yue, XING Han, HEN Shou-Yi, GAI Jun-Yi. Mapping QTLs of Resistance to Megacota cribraria (Fabricius) in Soybean[J]. Acta Agronomica Sinica, 2008, 34(03): 361 -368 .
[6] ZHENG Yong-Mei;DING Yan-Feng;WANG Qiang-Sheng;LI Gang-Hua;WANG Hui-Zhi;WANG Shao-Hua. Effect of Nitrogen Applied before Transplanting on Tillering and Nitrogen Utilization in Rice[J]. Acta Agron Sin, 2008, 34(03): 513 -519 .
[7] QIN En-Hua;YANG Lan-Fang;. Selenium Content in Seedling and Selenium Forms in Rhizospheric Soil of Nicotiana tabacum L.[J]. Acta Agron Sin, 2008, 34(03): 506 -512 .
[8] LÜ Li-Hua;TAO Hong-Bin;XIA Lai-Kun; HANG Ya-Jie;ZHAO Ming;ZHAO Jiu-Ran;WANG Pu;. Canopy Structure and Photosynthesis Traits of Summer Maize under Different Planting Densities[J]. Acta Agron Sin, 2008, 34(03): 447 -455 .
[9] Zhang Shubiao;Yang Rencui. Some Biological Character of eui-hybrid Rice[J]. Acta Agron Sin, 2003, 29(06): 919 -924 .
[10] SHAO Rui-Xin;SHANG-GUAN Zhou-Ping. Effects of Exogenous Nitric Oxide Donor Sodium Nitroprusside on Photosynthetic Pigment Content and Light Use Capability of PS II in Wheat under Water Stress[J]. Acta Agron Sin, 2008, 34(05): 818 -822 .