Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2024, Vol. 50 ›› Issue (10): 2503-2514.doi: 10.3724/SP.J.1006.2024.31075

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Salt tolerance analysis of HvMBF1c in barley

ZHAN Xiao-Xiao1,2(), FENG Ju-Ling1,2, ZHANG Zhen-Huan1,3, ZHANG Hong1,2, WANG Jun-Cheng1,2, LI Bao-Chun1,3, YANG Ke1,2, SI Er-Jing1,2, MENG Ya-Xiong1,2, MA Xiao-Le1,2, WANG Hua-Jun1,2, YAO Li-Rong1,2,*()   

  1. 1State Key Laboratory of Crop Science in Arid Habitat Jointly Established by the Ministry of Province and Ministry of Finance / Key Laboratory of Crop Genetic Improvement and Germplasm Innovation in Gansu Province, Lanzhou 730070, Gansu, China
    2Agronomy College, Gansu Agricultural University, Lanzhou 730070, Gansu, China
    3College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, Gansu, China
  • Received:2023-11-30 Accepted:2024-06-20 Online:2024-10-12 Published:2024-07-11
  • Contact: *E-mail: ylr0384@163.com
  • Supported by:
    China Agriculture Research System of MOF and MARA(Barley, CARS-05-03B-03);China Agriculture Research System of MOF and MARA(CARS-05-03B-03);National Natural Science Foundation of China(30771331);National Natural Science Foundation of China(32160496);Gansu Agricultural University Student Research Training Program(202301047);Gansu Agricultural University Student Research Training Program(202210733008);Gansu Agricultural University Student Research Training Program(S202210733003);Gansu Youth Science and Technology Fund Program(20JR5RA010);Innovation Fund of Education Department of Gansu Province(2021A-055);Industry Support Plan of Education Department of Gansu Province(2021CYZC-12)

Abstract:

The HvMBF1c gene in barley is implicated in the plant’s response to salt stress. To investigate the HvMBF1c response mechanism to salt stress, we conducted bioinformatics analysis of the HvMBF1 gene, qRT-PCR analysis, and physiological index determination in Nakagawa barley (salt-tolerant type), GN18 (salt-sensitive type), wild-type (WT) and transgenic HvMBF1c Arabidopsis thaliana treated with 200 mmol L-1 NaCl for 0, 6, 12, 24, 48, and 72 hours. The results showed that the barley HvMBF1c gene is closely related to the wheat TaMBF1c gene, and is located on chromosome 7H. The exon of HvMBF1c is larger than those of HvMBF1a and HvMBF1b, with HvMBF1a and HvMBF1b containing a typical motif 4 domain, while the HvMBF1c gene has a unique motif 5 domain. The promoter sequence of the HvMBF1c gene includes photoreactive, root-specific regulatory elements, and hypoxia-specific inducible enhancing elements, homologous to wheat chromosomes 2, 3, and 7. qRT-PCR analysis revealed significant upregulation of HvMBF1c expression in two barley genotypes at the seedling, jointing, heading, and filling stages, with higher expression in Nakagawa barley compared to GN18 as salt treatment duration increased. Similarly, the expression of HvMBF1c in Arabidopsis thaliana also increased with prolonged salt treatment time. Physiological indices of Nakagawa barley at each growth stage were lower than those in GN18, and transgenic Arabidopsis exhibited lower indices compared to WT under different salt stress conditions. These findings provide a foundation for further exploration of the HvMBF1c gene function.

Key words: barley, HvMBF1c, physiological indicators, collinearity analysis, the extension

Table 1

Sequence and purpose of primers"

引物名称
Primer name
引物序列
Primer sequence (5′-3′)
用途
Purpose
HvMBF1c-qF
HvMBF1c-qR
HvActin-F
HvActin-R
CATCCAGAAGGCTCGCGT
CTCTCGTACTCCTGCACCAC
AAGCAGCCAGAATGTACAGCGAGAAC
GGTACAGACCAGCAAAGCCAGAAATG
荧光定量PCR
Fluorescence quantitative PCR
内参基因引物
Internal reference gene primer

Fig. 1

Phylogenetic evolutionary tree of MBF1 gene families in barley, wheat, rice, maize, and Arabidopsis Hv: barley; Ta: wheat; Os: rice; Zm: maize; At: Arabidopsis."

Fig. 2

Distribution of barley HvMBF1 gene family members on barley chromosomes"

Fig. 3

Gene structure of barley HvMBF1 gene family members UTR: untranslated region; CDS: coding region sequence."

Fig. 4

Family members of barley HvMBF1 gene conserve motif Motif: conserved base sequence."

Fig. 5

Logo of conserved motif sequence of barley HvMBF1 gene"

Fig. 6

Cis-acting element in the promoter of barley HvMBF1 gene"

Fig. 7

Collinear analysis of HvMBF1 gene in barley and wheat"

Fig. 8

HvMBF1c expression of barley at various periods and Arabidopsis thaliana under salt stress Different letters indicate significant differences at P < 0.05."

Fig. 9

Changes of SOD, POD, MDA, CAT, and soluble protein activities in barley under salt stress Different letters indicate significant differences at P < 0.05."

Fig. 10

Changes in SOD, POD, MDA, CAT, and soluble protein activities in Arabidopsis thaliana under salt stress Different letters indicate significant differences at P < 0.05."

[1] 杨建明, 沈秋泉, 汪军妹, 朱靖环. 我国大麦生产、需求与育种对策. 大麦科学, 2003, (1): 1-6.
Yang J M, Shen Q Q, Wang J M, Zhu J H. Barley production, demand and breeding in China. Barley Sci, 2003, (1): 1-6 (in Chinese with English abstract).
[2] 李颖波, 郭桂梅, 刘成洪, 何婷, 高润红, 徐红卫, 陈志伟, 陆瑞菊, 黄剑华. 大麦HvLEC1基因的克隆及其表达特征分析. 植物遗传资源学报, 2016, 17: 732-737.
doi: 10.13430/j.cnki.jpgr.2016.04.019
Li Y B, Guo G M, Liu C H, He T, Gao R H, Xu H W, Chen Z W, Lu R J, Huang J H. Cloning and expression characterization of HvLEC1 gene in barley. J Plant Genet Resour, 2016, 17: 732-737 (in Chinese with English abstract).
[3] Hayes S, Pantazopoulou C K, Gelderen K, Reinen E, Tween A L, Sharma A, Vries M, Prat S, Schuurink R C, Testerink C, Pierik R. Soil salinity limits plant shade avoidance. Curr Biol, 2019, 29: 1669-1676.
doi: S0960-9822(19)30340-9 pmid: 31056387
[4] Singh M, Nara U, Kumar A, Choudhary A, Singh H, Thapa S. Salinity tolerance mechanisms and their breeding implications. J Genet Eng Biotechnol, 2021, 19: 173.
doi: 10.1186/s43141-021-00274-4 pmid: 34751850
[5] 杨劲松. 中国盐渍土研究的发展历程与展望. 土壤学报, 2008, 45: 837-845.
Yang J S. Development and prospect of the research on salt-affected soils in China. Acta Pedol Sin, 2008, 45: 837-845 (in Chinese with English abstract).
[6] 余玲, 王彦荣, 孙建华. 野大麦种子萌发条件及抗逆性研究. 草业学报, 1999, 8(1): 50-57.
Yu L, Wang Y R, Sun J H. Study on germination conditions and stress resistance of wild barley seeds. Acta Prat Sin, 1999, 8(1): 50-57 (in Chinese with English abstract).
[7] 李瑞芬, 王雪青, 王宏芝, 魏建华. 野大麦耐盐适应性反应机制的研究. 中国农业科学, 2006, 39: 2459-2466.
Li R F, Wang X Q, Wang H Z, Wei J H. Study on the adaptive response mechanism of wild barley salt tolerance. Chin Agric Sci, 2006, 39: 2459-2466 (in Chinese with English abstract).
[8] 王雪青, 张俊文, 魏建华, 王宏芝, 李瑞芬. 盐胁迫下野大麦耐盐生理机制初探. 华北农学报, 2007, 22: 17-21.
doi: 10.3321/j.issn:1000-7091.2007.01.005
Wang X Q, Zhang J W, Wei J H, Wang H Z, Li R F. Physiological mechanism of salt tolerance in wild barley under salt stress. Acta Agric Boreali-Sin, 2007, 22: 17-21 (in Chinese with English abstract).
[9] 赵勇, 马雅琴, 翁跃进. 盐胁迫下小麦甜菜碱和脯氨酸含量变化. 植物生理与分子生物学学报, 2005, 31: 103-106.
Zhao Y, Ma Y Q, Weng Y J. Changes of betaine and proline content in wheat under salt stress. J Plant Physiol Mol Biol, 2005, 31: 103-106 (in Chinese with English abstract).
[10] 王正凤. 内生真菌对野大麦耐盐性影响的研究. 兰州大学硕士学位论文, 甘肃兰州, 2009.
Wang Z F. Study on the Effect of Endophytic Fungi on Salt Tolerance of Wild Barley. MS Thesis of Lanzhou University, Lanzhou, Gansu, China, 2009 (in Chinese with English abstract).
[11] Hussain G, Al-Jaloud A, Al-Shammary S, Karimulla S, Al-Aswad S. Effect of saline irrigation on germination and growth parameters of barley (Hordeum vulgare L.) in a pot experiment. Agric Water Manag, 1997, 34: 125-135.
[12] 张寒冰. 大麦S-腺苷甲硫氨酸合成酶HvSAMS2基因的克隆及耐盐性功能分析. 西北农林科技大学硕士学位论文, 陕西杨凌, 2021.
Zhang H B. Cloning and Salt Tolerance Function Analysis of S-Adenosylmethionine Synthetase HvSAMS2Gene in Barley. MS Thesis of Northwest A&F University, Yangling, Shaanxi, China, 2021 (in Chinese with English abstract).
[13] 朱娟. 大麦耐盐性相关基因的发掘与定位研究. 扬州大学博士学位论文, 2021.
Zhu J. Discovery and Localization of Genes Related to Barley Salt Tolerance. PhD Dissertation of Yangzhou University, Yangzhou, Jiangsu, China, 2021 (in Chinese with English abstract).
[14] Alavilli H, Lee H, Park M, Lee B H. Antarctic moss multiprotein bridging factor 1c overexpression in Arabidopsis resulted in enhanced tolerance to salt stress. Front Plant Sci, 2017, 8: 1206.
doi: 10.3389/fpls.2017.01206 pmid: 28744295
[15] 秦丹丹, 许甫超, 董静, 葛双桃, 李梅芳. 大麦 MBF1基因的电子克隆与生物信息学分析. 湖北农业科学, 2014, 53: 5276-5281.
Qin D D, Xu F C, Dong J, Ge S T, Li M F. Electronic cloning and bioinformatics analysis of MBF1 gene in barley. Hubei Agric Sci, 2014, 53: 5276-5281 (in Chinese with English abstract).
[16] 冯举伶, 汪军成, 姚立蓉, 司二静, 杨轲, 孟亚雄, 马小乐, 李葆春, 赖勇, 尚勋武, 王化俊. 大麦HvMBF1c克隆及其响应盐胁迫的表达模式研究, 植物遗传资源学报, 2022, 23: 1175-1186.
doi: 10.13430/j.cnki.jpgr.20211122002
Feng J L, Wang J C, Yao L R, Si E J, Yang K, Meng Y X, Ma X L, Li B C, Lai Y, Shang X W, Wang H J. Expression pattern of barley HvMBF1c clone and its response to salt stress. J Plant Genet Resour, 2022, 23: 1175-1186 (in Chinese with English abstract)
[17] 冯举伶. 大麦盐胁迫应答基因HcMBF1c的克隆及其表达分析. 甘肃农业大学硕士学位论文, 甘肃兰州, 2022.
Feng J L. Cloning and Expression Analysis of HcMBF1c Response Gene in Barley Salt Stress. MS Thesis of Gansu Agricultural University, Lanzhou, Gansu, China, 2022 (in Chinese with English abstract).
[18] 刘畅, 杜羽晨, 李宁辉, 陆霄光, 赵烈, 付连双, 刘鑫, 刘君, 王晓楠. 不同抗寒性小麦品种生长点发育进程及生理指标差异分析. 麦类作物学报, 2023, 43: 721-728.
Liu C, Du Y C, Li N H, Lu X G, Zhao L, Fu L S, Liu X, Liu J, Wang X N. Analysis of the development process of growth points and physiological indexes of different cold-tolerant wheat cultivars. J Triticeae Crops, 2023, 43: 721-728 (in Chinese with English abstract).
[19] Zhang L, Wang Y, Zhang Q, Jiang Y, Zhang H, Li R. Overexpression of HbMBF1a, encoding multiprotein bridging factor 1 from the halophyte Hordeum brevisubulatum, confers salinity tolerance and ABA insensitivity to transgenic Arabidopsis thaliana. Plant Mol Biol, 2020, 102: 1-17.
doi: 10.1007/s11103-019-00926-7 pmid: 31655970
[20] Zou L, Yu B, Ma X L, Cao B, Chen G, Chen C, Lei J. Cloning and expression analysis of the BocMBF1c gene involved in heat tolerance in Chinese kale. Int J Mol Sci, 2019, 20: 5637.
[21] Di Mauro M F, Iglesias M J, Arce D P, Valle E M, Arnold R B, Tsuda K, Yamazaki K, Casalongué C A, Godoy A V. MBF1s regulate ABA-dependent germination of Arabidopsis seeds. Plant Signal Behav, 2012, 7: 188-192.
[22] Tsuda K, Yamazaki K. Structure and expression analysis of three subtypes of Arabidopsis MBF1genes. Biochim Biophys Acta, 2014, 1680: 1-10.
[23] 曹志琛, 吴娴, 汪德州, 柳珊, 杨慧玉, 郝小聪, 房兆峰, 朱文根, 王伟伟, 王小燕, 唐益苗. 小麦多蛋白桥梁因子基因 TaMBF1c的克隆与表达分析. 麦类作物学报, 2021, 41: 391-400.
Cao Z C, Wu X, Wang D Z, Liu S, Yang H Y, Hao X C, Fang Z F, Zhu W G, Wang W W, Wang X Y, Tang Y M. Cloning and expression analysis of TaMBF1c in wheat polyprotein bridge factor gene. J Triticeae Crops, 2021, 41: 391-400 (in Chinese with English abstract).
[24] Qin D D, Wu H Y, Peng H R, Yao Y Y, Ni Z, Li Z F, Li Z X, Zhou C L, Sun Q X. Heat stress-responsive transcriptome analysis in heat susceptible and tolerant wheat (Triticum aestivum L.) by using Wheat Genome Array. BMC Genomics, 2008, 9: 432.
[25] 李小冬, 尚以顺, 武语迪, 王学敏, 熊先勤, 陈光吉, 孙方, 张文, 蔡一鸣. 紫花苜蓿 MsMBF1c基因在拟南芥中表达提高转基因植株的耐热性. 草业学报, 2019, 28: 187-198.
doi: 10.11686/cyxb2018739
Li X D, Shang Y S, Wu Y D, Wang X M, Xiong X Q, Chen G J, Sun F, Zhang W, Cai Y M. Expression of alfalfa MsMBF1c gene in Arabidopsis enhances heat tolerance of transgenic plants. Acta Prat Sin, 2019, 28: 187-198 (in Chinese with English abstract).
[26] 曹兴, 郭尚敬, 高祥斌, 吕福堂, 隋娟娟, 穆红梅, 吴泽, 义鸣放, 张秀省. 百合转录辅激活因子LlMBF1c基因的克隆与表达分析. 江苏农业学报, 2018, 34: 1120-1127.
Cao X, Guo S J, Gao X B, Lyu F T, Sui J J, Mu H M, Wu Z, Yi M F, Zhang X S. Cloning and expression analysis of transcription coactivator LlMBF1c gene in lily. Jiangsu J Agric Sci, 2018, 34: 1120-1127 (in Chinese with English abstract).
[27] 刘红. 大豆MBF1转录辅激活因子基因的克隆及遗传转化. 山东农业大学硕士学位论文, 山东泰安, 2015.
Liu H. Cloning and Genetic Transformation of MBF1Transcription Coactivator Gene in Soybean. MS Thesis of Shandong Agricultural University, Tai’an, Shandong, China, 2015 (in Chinese with English abstract).
[28] Yu R M, Suo Y Y, Yang R, Chang Y N, Tian T, Song Y J, Wang H J, Wang C, Yang R J, Liu H L, Gao G. StMBF1c positively regulates disease resistance to Ralstonia solanacearum via its primary and secondary upregulation combining expression of StTPS5 and resistance marker genes in potato. Plant Sci, 2021, 307: 110877.
[29] Frank G, Pressman E, Ophir R, Althan L, Shaked R, Freedman M, Shen S, Firon N. Transcriptional profiling of maturing tomato (Solanum lycopersicum L.) microspores reveals the involvement of heat shock proteins, ROS scavengers, hormones, and sugars in the heat stress response. J Exp Bot, 2009, 60: 3891-3908.
doi: 10.1093/jxb/erp234 pmid: 19628571
[30] Zhao Q, He L, Wang B, Liu Q, Pan Y, Zhang F, Jiang B, Zhang L. Overexpression of a multiprotein bridging factor 1 gene DgMBF1 improves the salinity tolerance of chrysanthemum. Int J Mol Sci, 2019, 20: 2453.
[31] 付娆, 张海洋, 梁晓艳, 顾寅钰, 邢延富, 宋延静, 李萌, 李茹霞, 王向誉, 郭洪恩. 蒲公英对NaCl单盐和海水复合盐胁迫的生理响应. 山东农业科学, 2020, 52: 33-37.
Fu R, Zhang H Y, Liang X Y, Gu Y Y, Xing Y F, Song Y J, Li M, Li R X, Wang X Y, Guo H E. Physiological response of dandelion to NaCl monosalt and seawater composite salt stress. Shandong Agric Sci, 2020, 52: 33-37 (in Chinese with English abstract).
[32] 李尉霞, 齐军仓, 石国亮, 王鹏, 曹连莆. 大麦苗期耐盐性生理指标的筛选. 石河子大学学报(自然科学版), 2007, 25: 23-26.
Li W X, Qi J C, Shi G L, Wang P, Cao L P. Selection of the salt-tolerance physiological parameters of barley seedling. J Shihezi Univ (Nat Sci), 2007, 25: 23-26 (in Chinese with English abstract).
[33] 黄爱兰, 陈晓嫚, 曹凤红, 胡静. 盐胁迫下黑玉米发芽期间各生理指标和GABA含量变化. 长春师范大学学报, 2020, 39: 134-138.
Huang A L, Chen X M, Cao F H, Hu J. Changes of physiological indexes and GABA content during germination of black maize under salt stress. J Changchun Norm Univ, 2020, 39: 134-138 (in Chinese with English abstract).
[34] 刘建巍, 朱宏. 盐胁迫下小麦种子萌发及生理指标的测定. 哈尔滨师范大学自然科学学报, 2014, 30: 133-136.
Liu J W, Zhu H. Determination of seed germination and physiological indexes of wheat under salt stress. Nat Sci J Harbin Norm Univ, 2014, 30: 133-136 (in Chinese with English abstract).
[1] JU Ji-Hao, MA Chao, WANG Tian-Ning, WU Yi, DONG Zhong, FANG Mei-E, CHEN Yu-Shu, ZHANG Jun, FU Guo-Zhan. Genome wide identification and expression analysis of TaPOD family in wheat [J]. Acta Agronomica Sinica, 2024, 50(3): 779-792.
[2] LU Zong-Hui, SI Er-Jing, YE Pei-Yin, WANG Jun-Cheng, YAO Li-Rong, MA Xiao-Le, LI Bao-Chun, WANG Hua-Jun, SHANG Xun-Wu, MENG Ya-Xiong. Genome-wide association analysis and candidate genes prediction of β-glucan content in barley grains [J]. Acta Agronomica Sinica, 2024, 50(10): 2483-2492.
[3] TIAN Min, LIU Xin-Chun, PAN Jia-Jia, LIANG Li-Jing, DONG Lei, LIU Mei-Chi, FENG Zong-Yun. Genome-wide association analysis of cellulose content and hemicellulose content in grains of barley [J]. Acta Agronomica Sinica, 2023, 49(6): 1726-1732.
[4] LI Ying, LIU Hai-Cui, SHI Lyu, SHI Xiao-Xu, HAN Xiao, LIU Jian, WEI Ya-Feng. Genetic diversity and population structure analysis of naked barley germplasm resources in Jiangsu province [J]. Acta Agronomica Sinica, 2023, 49(10): 2687-2697.
[5] GUO Nan-Nan, LIU Tian-Ce, SHI Shuo, HU Xin-Ting, NIU Ya-Dan, LI Liang. Regulation of long non-coding RNA (LncRNA) in barley roots in response to Piriformospora indica colonization [J]. Acta Agronomica Sinica, 2022, 48(7): 1625-1634.
[6] WANG Xing-Rong, LI Yue, ZHANG Yan-Jun, LI Yong-Sheng, WANG Jun-Cheng, XU Yin-Ping, QI Xu-Sheng. Drought resistance identification and drought resistance indexes screening of Tibetan hulless barley resources at adult stage [J]. Acta Agronomica Sinica, 2022, 48(5): 1279-1287.
[7] YAO Xiao-Hua, WANG Yue, YAO You-Hua, AN Li-Kun, WANG Yan, WU Kun-Lun. Isolation and expression of a new gene HvMEL1 AGO in Tibetan hulless barley under leaf stripe stress [J]. Acta Agronomica Sinica, 2022, 48(5): 1181-1190.
[8] HUANG Cheng, LIANG Xiao-Mei, DAI Cheng, WEN Jing, YI Bin, TU Jin-Xing, SHEN Jin-Xiong, FU Ting-Dong, MA Chao-Zhi. Genome wide analysis of BnAPs gene family in Brassica napus [J]. Acta Agronomica Sinica, 2022, 48(3): 597-607.
[9] WANG Yang-Yang, HE Li, REN De-Chao, DUAN Jian-Zhao, HU Xin, LIU Wan-Dai, GU Tian-Cai, WANG Yong-Hua, FENG Wei. Evaluations of winter wheat late frost damage under different water based on principal component-cluster analysis [J]. Acta Agronomica Sinica, 2022, 48(2): 448-462.
[10] GUO Bao-Jian, WANG Shuang, LYU Chao, WANG Fei-Fei, XU Ru-Gen. Regulation of adventitious root development by HvLBD19 gene in barley (Hordeum vulgare L.) [J]. Acta Agronomica Sinica, 2022, 48(10): 2435-2442.
[11] YU Xin-Lian, LI Xin, YAO Xiao-Hua, YAO You-Hua, BAI Yi-Xiong, AN Li-Kun, WU Kun-Lun. Genetic mapping and candidate gene analysis of the major QTL cqHD2H-2 for early heading in barley (Hordeum vulgare L.) [J]. Acta Agronomica Sinica, 2022, 48(10): 2463-2474.
[12] HE Jun-Yu, ZHONG Wei, CHEN Yun-Qiong, WANG Wei-Bin, XIONG Jing-Lei, JIANG Ya-Li, SHI Hui-Meng, CHEN Sheng-Wei. Analysis on the accumulation characteristics of seven flavonoids at grain development stage in barley [J]. Acta Agronomica Sinica, 2021, 47(8): 1624-1630.
[13] GENG La, HUANG Ye-Chang, LI Meng-Di, XIE Shang-Geng, YE Ling-Zhen, ZHANG Guo-Ping. Genome-wide association study of β-glucan content in barley grains [J]. Acta Agronomica Sinica, 2021, 47(7): 1205-1214.
[14] LI Jie, FU Hui, YAO Xiao-Hua, WU Kun-Lun. Differentially expressed protein analysis of different drought tolerance hulless barley leaves [J]. Acta Agronomica Sinica, 2021, 47(7): 1248-1258.
[15] ZHANG Fan, YANG Qian. Effects of combined application of organic materials and chemical fertilizers in barley-double cropping rice rotation system on barley resource utilization efficiency and yield [J]. Acta Agronomica Sinica, 2021, 47(12): 2522-2531.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!