Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2025, Vol. 51 ›› Issue (3): 667-675.doi: 10.3724/SP.J.1006.2025.44132

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Auxin response reporter gene transformation of Brassica napus and dynamic signal analysis of GUS in different tissues

ZHANG Qin(), DAI Cheng, MA Chao-Zhi()   

  1. National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, Hubei, China
  • Received:2024-08-19 Accepted:2024-10-25 Online:2025-03-12 Published:2024-11-12
  • Contact: *E-mail: yuanbeauty@mail.hzau.edu.cn
  • Supported by:
    National Natural Science Foundation of China(32072105)

Abstract:

To investigate the dynamic distribution of auxin in various tissues of Brassica napus, a growth hormone-responsive expression vector with DR5::GUS as the reporter gene was constructed and transformed into B. napus. Transgenic lines stably expressing the GUS gene were obtained. GUS staining revealed that during the seedling stage, strong GUS signals were observed in the cotyledons and hypocotyl, while weaker signals were detected in the true leaves and roots, indicating higher auxin accumulation in the cotyledons. The DR5 promoter was also induced by the auxin analog NAA. At the bud stage, strong GUS signals were found in the anthers and sepals, with weaker signals in the stigma, suggesting that auxin may play a significant role in anther development. In seeds and siliques at various developmental stages after pollination, auxin levels exhibited an increase followed by a decrease, implying a role for auxin in seed development. In conclusion, this study visualized auxin distribution in B. napus using the DR5::GUS auxin reporter system, providing a valuable method for further elucidating the role of auxin in the growth and development of B. napus.

Key words: Brassica napus, auxin, DR5, auxin distribution

Fig. 1

Diagram of auxin responsible vector pc2300-DR5::GUS"

Table 1

Primers for identification of positive transgenic plants"

名称Name 序列Sequence (5′-3′)
正向引物Forward primer CTTGGATCCAAGCTTCCGACAC
反向引物Reverse primer TCTGCCAGTTCAGTTCGTTGTTCAC

Table 2

Component PCR system"

组分Component 使用量Volume (μL)
正向引物Forward Primer 0.5
反向引物Reverse Primer 0.5
DNA template 1.0
Taq Plus Master Mix II (Dye plus) 5.0
ddH2O 3.0
合计Total 10.0

Fig. 2

Identification of GUS positive plants by PCR and GUS staining A: PCR identification of transgenic rapeseed plants with kanamycin resistance. M: marker, and the target band size was 705 bp. 8 transgenic single plants were 1-8, 9 was positive controls, and 10 was negative controls. B: GUS staining identification of transgenic rape plants with kanamycin resistance."

Fig. 3

Transgenic DR5::GUS rapeseed seedlings stained for GUS activity at different development stages A, C, E-I: GUS staining identification of seedlings from 1 to 15 days after germination. B, D: GUS staining identification of root tips of seedlings 1 and 2 days after germination. DAG: days after germination. Bar in Figs. E-I: 1 cm."

Fig. 4

DR5::GUS and GH3.6 gene expression levels in transgenic rapeseed seedlings at different developmental stages Significance analysis was performed using the t-test (n ≥ 3). * and ** indicate significant difference at the 0.05 and 0.01 probability levels, respectively. DAG: days after germination."

Fig. 5

GUS staining of DR5::GUS transgenic rapeseed seedlings under different concentrations of NAA treatment Bar: 1 cm."

Fig. 6

DR5::GUS staining of GUS transgenic rape in bud"

Fig. 7

DR5::GUS staining of GUS transgenic rape in seed A-J: GUS staining identification of seed from 1 to 20 days after pollination. DAP: days after pollination. Bar: 500 μm."

Fig. 8

DR5::GUS staining of GUS transgenic rape in silique DAP: days afer pollination."

[1] 黎家, 李传友. 新中国成立70年来植物激素研究进展. 中国科学: 生命科学, 2019, 49: 1227-1281.
Li J, Li C Y. Seventy-year major research progress in plant hormones by Chinese scholars. Sci Sin Vitae, 2019, 49: 1227-1281 (in Chinese with English abstract).
[2] Vernoux T, Brunoud G, Farcot E, Morin V, Van den Daele H, Legrand J, Oliva M, Das P, Larrieu A, Wells D, Guédon Y, Armitage L, Picard F, Guyomarc'h S, Cellier C, Parry G, Koumproglou R, Doonan JH, Estelle M, Godin C, Kepinski S, Bennett M, De Veylder L, Traas J. The auxin signalling network translates dynamic input into robust patterning at the shoot apex. Mol Syst Biol, 2011, 7: 508.
doi: 10.1038/msb.2011.39 pmid: 21734647
[3] Zhao Z, Andersen S U, Ljung K, Dolezal K, Miotk A, Schultheiss S J, Lohmann J U. Hormonal control of the shoot stem-cell niche. Nature, 2010, 465: 1089-1092.
[4] Dai Y Q, Luo L J, Zhao Z. Genetic robustness control of auxin output in priming organ initiation. Proc Natl Acad Sci USA, 2023, 120: e2221606120.
[5] Zhou W K, Wei L R, Xu J, Zhai Q Z, Jiang H L, Chen R, Chen Q, Sun J Q, Chu J F, Zhu L H, Liu C M, Li C Y. Arabidopsis Tyrosylprotein sulfotransferase acts in the auxin/PLETHORA pathway in regulating postembryonic maintenance of the root stem cell niche. Plant Cell, 2010, 22: 3692-3709.
[6] Ogura T, Goeschl C, Filiault D, Mirea M, Slovak R, Wolhrab B, Satbhai S B, Busch W. Root system depth in Arabidopsis is shaped by EXOCYST70A3 via the dynamic modulation of auxin transport. Cell, 2019, 178: 400-412.e16.
[7] Wang W, Xu B, Wang H, Li J Q, Huang H, Xu L. YUCCA genes are expressed in response to leaf adaxial-abaxial juxtaposition and are required for leaf margin development. Plant Physiol, 2011, 157: 1805-1819.
doi: 10.1104/pp.111.186395 pmid: 22003085
[8] Zhang Z J, Runions A, Mentink R A, Kierzkowski D, Karady M, Hashemi B, Huijser P, Strauss S, Gan X C, Ljung K, Tsiantis M. A WOX/auxin biosynthesis module controls growth to shape leaf form. Curr Biol, 2020, 30: 4857-4868.e6.
[9] Zhao Y D. Essential roles of local auxin biosynthesis in plant development and in adaptation to environmental changes. Annu Rev Plant Biol, 2018, 69: 417-435.
doi: 10.1146/annurev-arplant-042817-040226 pmid: 29489397
[10] Balcerowicz M. Filling the grain: transcription factor OsNF-YB1 triggers auxin biosynthesis to boost rice grain size. Plant Physiol, 2021, 185: 757-758.
doi: 10.1093/plphys/kiaa099 pmid: 33822224
[11] Batista R A, Figueiredo D D, Santos-González J, Köhler C. Auxin regulates endosperm cellularization in Arabidopsis. Genes Dev, 2019, 33: 466-476.
[12] Jing H W, Wilkinson E G, Sageman-Furnas K, Strader L C. Auxin and abiotic stress responses. J Exp Bot, 2023, 74: 7000-7014.
doi: 10.1093/jxb/erad325 pmid: 37591508
[13] Shi H T, Chen L, Ye T T, Liu X D, Ding K J, Chan Z L. Modulation of auxin content in Arabidopsis confers improved drought stress resistance. Plant Physiol Biochem, 2014, 82: 209-217.
[14] Waadt R, Seller C A, Hsu P K, Takahashi Y, Munemasa S, Schroeder J I. Plant hormone regulation of abiotic stress responses. Nat Rev Mol Cell Biol, 2022, 23: 680-694.
[15] Chew S C. Cold-pressed rapeseed (Brassica napus) oil: chemistry and functionality. Food Res Int, 2020, 131: 108997.
[16] Pallai R, Hynes R K, Verma B, Nelson L M. Phytohormone production and colonization of canola (Brassica napus L.)roots by Pseudomonas fluorescens 6-8 under gnotobiotic conditions. Can J Microbiol, 2012, 58: 170-178.
[17] Cheng F, Liu Y F, Lu G Y, Zhang X K, Xie L L, Yuan C F, Xu B B. Graphene oxide modulates root growth of Brassica napus L.and regulates ABA and IAA concentration. J Plant Physiol, 2016, 193: 57-63.
[18] Rodríguez-Sanz H, Solís M T, López M F, Gómez-Cadenas A, Risueño M C, Testillano P S. Auxin biosynthesis, accumulation, action and transport are involved in stress-induced microspore embryogenesis initiation and progression in Brassica napus. Plant Cell Physiol, 2015, 56: 1401-1417.
doi: 10.1093/pcp/pcv058 pmid: 25907568
[19] Yuan D S, Zhang Y, Wang Z, Qu C M, Zhu D M, Wan H F, Liang Y. BnKAT2 positively regulates the main inflorescence length and silique number in Brassica napus by regulating the auxin and cytokinin signaling pathways. Plants (Basel), 2022, 11: 1679.
[20] Li H T, Li J J, Song J R, Zhao B, Guo C C, Wang B, Zhang Q H, Wang J, King G J, Liu K D. An auxin signaling gene BnaA3.IAA7 contributes to improved plant architecture and yield heterosis in rapeseed. New Phytol, 2019, 222: 837-851.
doi: 10.1111/nph.15632 pmid: 30536633
[21] Hao M Y, Wang W X, Liu J, Wang H, Zhou R J, Mei D S, Fu L, Hu Q, Cheng H T. Auxin biosynthesis genes in allotetraploid oilseed rape are essential for plant development and response to drought stress. Int J Mol Sci, 2022, 23: 15600.
[22] Schlicht M, Strnad M, Scanlon M J, Mancuso S, Hochholdinger F, Palme K, Volkmann D, Menzel D, Baluska F. Auxin immunolocalization implicates vesicular neurotransmitter-like mode of polar auxin transport in root apices. Plant Signal Behav, 2006, 1: 122-133.
doi: 10.4161/psb.1.3.2759 pmid: 19521492
[23] Hellgren J M, Olofsson K, Sundberg B. Patterns of auxin distribution during gravitational induction of reaction wood in poplar and pine. Plant Physiol, 2004, 135: 212-220.
doi: 10.1104/pp.104.038927 pmid: 15122024
[24] Ulmasov T, Murfett J, Hagen G, Guilfoyle T J. Aux/IAA proteins repress expression of reporter genes containing natural and highly active synthetic auxin response elements. Plant Cell, 1997, 9: 1963-1971.
doi: 10.1105/tpc.9.11.1963 pmid: 9401121
[25] Hagen G, Kleinschmidt A, Guilfoyle T. Auxin-regulated gene expression in intact soybean hypocotyl and excised hypocotyl sections. Planta, 1984, 162: 147-153.
doi: 10.1007/BF00410211 pmid: 24254049
[26] Gee M A, Hagen G, Guilfoyle T J. Tissue-specific and organ-specific expression of soybean auxin-responsive transcripts GH3 and SAURs. Plant Cell, 1991, 3: 419-430.
doi: 10.1105/tpc.3.4.419 pmid: 1840920
[27] McClure B A, Guilfoyle T. Rapid redistribution of auxin-regulated RNAs during gravitropism. Science, 1989, 243: 91-93.
pmid: 11540631
[28] Boer D R, Freire-Rios A, van den Berg W A M, Saaki T, Manfield I W, Kepinski S, López-Vidrieo I, Franco-Zorrilla J M, de Vries S C, Solano R, Weijers D, Coll M.Structural basis for DNA binding specificity by the auxin-dependent ARF transcription factors. Cell, 2014, 156: 577-589.
doi: 10.1016/j.cell.2013.12.027 pmid: 24485461
[29] Benková E, Michniewicz M, Sauer M, Teichmann T, Seifertová D, Jürgens G, Friml J. Local,efflux-dependent auxin gradients as a common module for plant organ formation. Cell, 2003, 115: 591-602.
doi: 10.1016/s0092-8674(03)00924-3 pmid: 14651850
[30] Chen Y R, Yordanov Y S, Ma C, Strauss S, Busov V B. DR5 as a reporter system to study auxin response in Populus. Plant Cell Rep, 2013, 32: 453-463.
[31] 匡政成, 曾潜, 赵燕, 匡逢春, 肖才升, 陈浩东, 李庠, 李育强, 张学文. 生长素响应报告基因转化棉花及GUS检测. 棉花学报, 2014, 26: 350-355.
doi: 10.11963/cs140410
Kuang Z C, Zeng Q, Zhao Y, Kuang F C, Xiao C S, Chen H D, Li X, Li Y Q, Zhang X W. The auxin responsible reporter DR5: GUS transformation of cotton illustrates the auxin early distribution in fiber differentiation. Cotton Sci, 2014, 26: 350-355 (in Chinese with English abstract).
[32] Dai C, Li Y Q, Li L, Du Z L, Lin S L, Tian X, Li S J, Yang B, Yao W, Wang J, Guo L, Lu S P. An efficient Agrobacterium- mediated transformation method using hypocotyl as explants for Brassica napus. Mol Breed, 2020, 40: 96.
[33] Bai F, Demason D A. Hormone interactions and regulation of PsPK2: GUS compared with DR5: GUS and PID: GUS in Arabidopsis thaliana. Am J Bot, 2008, 95: 133-145.
[34] Nakamura A, Higuchi K, Goda H, Fujiwara M T, Sawa S, Koshiba T, Shimada Y, Yoshida S. Brassinolide induces IAA5, IAA19, and DR5, a synthetic auxin response element in Arabidopsis, implying a cross talk point of brassinosteroid and auxin signaling. Plant Physiol, 2003, 133: 1843-1853.
pmid: 14605219
[35] Cucinotta M, Cavalleri A, Chandler J W, Colombo L. Auxin and flower development: a blossoming field. Cold Spring Harb Perspect Biol, 2021, 13: a039974.
[36] Olatunji D, Geelen D, Verstraeten I. Control of endogenous auxin levels in plant root development. Int J Mol Sci, 2017, 18: 2587.
[37] Jedličková V, Ebrahimi Naghani S, Robert H S. On the trail of auxin: reporters and sensors. Plant Cell, 2022, 34: 3200-3213.
[38] Hagen G, Guilfoyle T J. Rapid induction of selective transcription by auxins. Mol Cell Biol, 1985, 5: 1197-1203.
doi: 10.1128/mcb.5.6.1197-1203.1985 pmid: 4041007
[39] Hagen G, Martin G, Li Y, Guilfoyle T J. Auxin-induced expression of the soybean GH3 promoter in transgenic tobacco plants. Plant Mol Biol, 1991, 17: 567-579.
doi: 10.1007/BF00040658 pmid: 1884011
[40] Sabatini S, Beis D, Wolkenfelt H, Murfett J, Guilfoyle T, Malamy J, Benfey P, Leyser O, Bechtold N, Weisbeek P, Scheres B. An auxin-dependent distal organizer of pattern and polarity in the Arabidopsis root. Cell, 1999, 99: 463-472.
doi: 10.1016/s0092-8674(00)81535-4 pmid: 10589675
[41] Friml J, Vieten A, Sauer M, Weijers D, Schwarz H, Hamann T, Offringa R, Jürgens G. Efflux-dependent auxin gradients establish the apical-basal axis of Arabidopsis. Nature, 2003, 426: 147-153.
[42] Gallavotti A, Yang Y, Schmidt R J, Jackson D. The Relationship between auxin transport and maize branching. Plant Physiol, 2008, 147: 1913-1923.
doi: 10.1104/pp.108.121541 pmid: 18550681
[43] Chaabouni S, Jones B, Delalande C, Wang H, Li Z G, Mila I, Frasse P, Latché A, Pech J C, Bouzayen M. Sl-IAA3, a tomato Aux/IAA at the crossroads of auxin and ethylene signalling involved in differential growth. J Exp Bot, 2009, 60: 1349-1362.
doi: 10.1093/jxb/erp009 pmid: 19213814
[44] Spicer R, Tisdale-Orr T, Talavera C. Auxin-responsive DR5 promoter coupled with transport assays suggest separate but linked routes of auxin transport during woody stem development in Populus. PLoS One, 2013, 8: e72499.
[1] SUN Cheng-Ming, ZHOU Xiao-Ying, CHEN Feng, ZHANG Wei, WANG Xiao-Dong, PENG Qi, GUO Yue, GAO Jian-Qin, HU Mao-Long, FU San-Xiong, ZHANG Jie-Fu. Functional analysis and prediction of long non-coding RNA (lncRNA) in the regulation of branch angle in Brassica napus L. [J]. Acta Agronomica Sinica, 2025, 51(3): 559-567.
[2] XU Lin-Shan, GAO Geng-Dong, WANG Yu, WANG Jia-Xing, YANG Ji-Zhao, WU Ya-Rui, ZHANG Xiao-Han, CHANG Ying, LI Zhen, XIE Xiong-Ze, GONG De-Ping, WANG Jing, GE Xian-Hong. Analysis of expression patterns of laccase gene family members in Brassica napus and their association with stem fracture resistance [J]. Acta Agronomica Sinica, 2025, 51(1): 134-148.
[3] ZHONG Yuan, ZHU Tian-Yu, DAI Cheng, MA Chao-Zhi. Developing and resistance assessing of phosphite-tolerant herbicide transgenic Brassica napus L. [J]. Acta Agronomica Sinica, 2024, 50(5): 1158-1171.
[4] CAO Song, YAO Min, REN Rui, JIA Yuan, XIANG Xing-Ru, LI Wen, HE Xin, LIU Zhong-Song, GUAN Chun-Yun, QIAN Lun-Wen, XIONG Xing-Hua. A combination of genome-wide association and transcriptome analysis reveal candidate genes affecting seed oil accumulation in Brassica napus [J]. Acta Agronomica Sinica, 2024, 50(5): 1136-1146.
[5] ZHOU Xiang-Yu, XU Jin-Song, XIE Ling-Li, XU Ben-Bo, ZHANG Xue-Kun. Physiological mechanisms in response to waterlogging during seedling stage of Brassica napus L. [J]. Acta Agronomica Sinica, 2024, 50(4): 1015-1029.
[6] LI Yang-Yang, WU Dan, XU Jun-Hong, CHEN Zhuo-Yong, XU Xin-Yuan, XU Jin-Pan, TANG Zhong-Lin, ZHANG Ya-Ru, ZHU Li, YAN Zhuo-Li, ZHOU Qing-Yuan, LI Jia-Na, LIU Lie-Zhao, TANG Zhang-Lin. Identification of candidate genes associated with drought tolerance based on QTL and transcriptome sequencing in Brassica napus L. [J]. Acta Agronomica Sinica, 2024, 50(4): 820-835.
[7] TAN Dan, CHEN Jia-Ting, GAO Yu, ZHANG Xiao-Jun, LI Xin, YAN Gui-Yun, LI Rui, CHEN Fang, CHANG Li-Fang, ZHANG Shu-Wei, GUO Hui-Juan, CHANG Zhi-Jian, QIAO Lin-Yi. Discovery of auxin pathway genes involving spike type and association analysis between TaARF23-A and spikelet number in wheat [J]. Acta Agronomica Sinica, 2024, 50(2): 506-513.
[8] FU Jia-Qi, LI Shi-Kuan, TAN Meng-Hui, LUO Fang, ZHANG Chuan-Ling, LIU Ling-Yue, LU Qian, GU Yong-Zhe. Soybean GmRSM1 promotes apical hook disappearance by regulating PIN gene expression [J]. Acta Agronomica Sinica, 2024, 50(11): 2731-2741.
[9] YANG Chuang, WANG Ling, QUAN Cheng-Tao, YU Liang-Qian, DAI Cheng, GUO Liang, FU Ting-Dong, MA Chao-Zhi. Relative expression profiles of genes response to salt stress and constructions of gene co-expression networks in Brassica napus L. [J]. Acta Agronomica Sinica, 2024, 50(1): 237-250.
[10] SONG Yi, LI Jing, GU He-He, LU Zhi-Feng, LIAO Shi-Peng, LI Xiao-Kun, CONG Ri-Huan, REN Tao, LU Jian-Wei. Effects of application of nitrogen on seed yield and quality of winter oilseed rape (Brassica napus L.) [J]. Acta Agronomica Sinica, 2023, 49(7): 2002-2011.
[11] TANG Yu-Feng, YAO Min, HE Xin, GUAN Mei, LIU Zhong-Song, GUAN Chun-Yun, QIAN Lun-Wen. Genome-wide identification and functional analysis of SGR gene family in Brassica napus L. [J]. Acta Agronomica Sinica, 2023, 49(7): 1829-1842.
[12] YANG Yi-Dan, HE Du, LIU Jing, ZHANG Yan, CHEN Fei-Zhi, WU Yan-Fei, DU Xue-Zhu. Application of host-induced gene silencing interfering with Sclerotinia sclerotiorum pathogenic gene OAH in Brassica napus resistance to Sclerotinia sclerotiorum [J]. Acta Agronomica Sinica, 2023, 49(6): 1542-1550.
[13] HE Yong-Ming, ZHANG Fang. Study of regulating effect of auxin on floret opening in rice [J]. Acta Agronomica Sinica, 2023, 49(6): 1690-1698.
[14] LI Bang, LIU Chun-Juan, GUO Jun-Jie, WU Yu-Xin, DENG Zhi-Cheng, ZHANG Min, CUI Tong, LIU Chang, ZHOU Yu-Fei. Effects of exogenous tryptophan on root elongation of sorghum seedlings under low nitrogen stress [J]. Acta Agronomica Sinica, 2023, 49(5): 1372-1385.
[15] YANG Tai-Hua, YANG Fu-Quan, GAO Geng-Dong, YIN Shuai, JIN Qing-Dong, XU Lin-Shan, KUAI Jie, WANG Bo, XU Zheng-Hua, GE Xian-Hong, WANG Jing, ZHOU Guang-Sheng. Preliminary exploration of the role of LncRNA in the ecotype differentiation of Brassica napus L. [J]. Acta Agronomica Sinica, 2023, 49(5): 1197-1210.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!