Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2025, Vol. 51 ›› Issue (7): 1747-1756.doi: 10.3724/SP.J.1006.2025.44221

• CROP GENETICS & BREEDING · GERMPLASM RESOURCES · MOLECULAR GENETICS • Previous Articles     Next Articles

QTL mapping and candidate gene screening for branch number in soybean

HU Meng,SHA Dan,ZHANG Sheng-Rui,GU Yong-Zhe,ZHANG Shi-Bi,LI Jing,SUN Jun-Ming*,QIU Li-Juan*,LI Bin*   

  1. The State Key Laboratory of Crop Gene Resources and Breeding / National Engineering Research Center for Crop Molecular Breeding / Key Laboratory of Soybean Biology (Beijing), Ministry of Agriculture and Rural Affairs / Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
  • Received:2024-12-31 Revised:2025-04-27 Accepted:2025-04-27 Online:2025-07-12 Published:2025-05-09
  • Supported by:
    This study was supported by the Biological Breeding-National Science and Technology Major Project (2023ZD0403701), and the Agricultural Science and Technology Innovation Project of the Chinese Academy of Agricultural Sciences.

Abstract:

Soybean (Glycine max L.) is a vital crop widely used in both the food and feed industries. Branch number is a key agronomic trait that significantly influences soybean yield. In this study, we employed a recombinant inbred line (RIL) F2:7-8 population derived from a cross between the low-branching cultivar Zhonghuang 35 and the high-branching cultivar Zhonghuang 13. A high-density genetic linkage map constructed from resequencing-based genotypic data was used to identify quantitative trait loci (QTLs) associated with branch number across five different planting environments, using the inclusive composite interval mapping (ICIM) method implemented in QTL IciMapping software. A total of six QTLs related to branch number were detected on chromosomes 2, 6, 18, and 19. Among them, qVBN02-1, located on chromosome 2, was consistently identified in two environments and accounted for an average of 16.07% of the phenotypic variation, indicating that it is a novel, stable, and major QTL for branch number. This QTL spans a genetic interval of 0.3 cM, corresponding to a physical distance of 261.37 kb and encompassing 29 annotated genes. By analyzing missense single nucleotide polymorphisms (SNPs) between the two parental lines within this region, we identified 22 potential candidate genes. Gene Ontology (GO) annotation revealed that these genes are involved in various biological processes critical to plant growth and development. This study not only provides valuable molecular markers for improving soybean plant architecture but also lays a foundation for the fine mapping and functional characterization of genes regulating branch number in soybean.

Key words: soybean (Glycine max L.), branch number, recombinant inbred lines (RILs), QTL mapping, candidate genes

[1] Agyenim-Boateng K G, Zhang S R, Zhang S B, Khattak A N, Shaibu A, Abdelghany A M, Qi J, Azam M, Ma C Y, Feng Y, et al. The nutritional composition of the vegetable soybean (Maodou) and its potential in combatting malnutrition. Front Nutr, 2023, 9: 1034115. 

[2] Liu K S. Soybeans: Chemistry, Technology, and Utilization. Boston: Springer, 1997. pp 381–383, 401–406, 499–504.

[3] Liu S L, Zhang M, Feng F, Tian Z X. Toward a “green revolution” for soybean. Mol Plant, 2020, 13: 688–697. 

[4] Wang Y, Jiao Y L. Axillary meristem initiation-a way to branch out. Curr Opin Plant Biol, 2018, 41: 61–66. 

[5] 巩鹏涛, 李迪. 植物分枝发育的遗传控制. 分子植物育种, 2005, 3: 151162.

Gong P T, Li D. Genetic control of plant shoot branching. Mol Plant Breed, 2005, 3: 151–162 (in Chinese with English abstract).

[6] Domagalska M A, Leyser O. Signal integration in the control of shoot branching. Nat Rev Mol Cell Biol, 2011, 12: 211–221. 

[7] Teichmann T, Muhr M. Shaping plant architecture. Front Plant Sci, 2015, 6: 233. 

[8] Bell E M, Lin W C, Husbands A Y, Yu L F, Jaganatha V, Jablonska B, Mangeon A, Neff M M, Girke T, Springer P S. Arabidopsis lateral organ boundaries negatively regulates brassinosteroid accumulation to limit growth in organ boundaries. Proc Natl Acad Sci USA, 2012, 109: 21146–21151. 

[9] Finlayson S A. Arabidopsis Teosinte Branched1-like 1 regulates axillary bud outgrowth and is homologous to monocot Teosinte Branched1. Plant Cell Physiol, 2007, 48: 667–677. 

[10] Wang J, Tian C H, Zhang C, Shi B H, Cao X W, Zhang T Q, Zhao Z, Wang J W, Jiao Y L. Cytokinin signaling activates WUSCHEL expression during axillary meristem initiation. Plant Cell, 2017, 29: 1373–1387. 

[11] Choi M S, Woo M O, Koh E B, Lee J, Ham T H, Seo H S, Koh H J. Teosinte Branched 1 modulates tillering in rice plants. Plant Cell Rep, 2012, 31: 57–65. 

[12] Jiao Y Q, Wang Y H, Xue D W, Wang J, Yan M X, Liu G F, Dong G J, Zeng D L, Lu Z F, Zhu X D, et al. Regulation of OsSPL14 by OsmiR156 defines ideal plant architecture in rice. Nat Genet, 2010, 42: 541–544. 

[13] Li X, Qian Q, Fu Z, Wang Y, Xiong G, Zeng D, Wang X, Liu X, Teng S, Hiroshi F, et al. Control of tillering in rice. Nature, 2003, 422: 618–621. 

[14] Lu Z F, Shao G N, Xiong J S, Jiao Y Q, Wang J, Liu G F, Meng X B, Liang Y, Xiong G S, Wang Y H, et al. MONOCULM 3, an ortholog of WUSCHEL in rice, is required for tiller bud formation. J Genet Genomics, 2015, 42: 71–78. 

[15] Miura K, Ikeda M, Matsubara A, Song X J, Ito M, Asano K, Matsuoka M, Kitano H, Ashikari M. OsSPL14 promotes panicle branching and higher grain productivity in rice. Nat Genet, 2010, 42: 545–549. 

[16] Tanaka W, Ohmori Y, Ushijima T, Matsusaka H, Matsushita T, Kumamaru T, Kawano S, Hirano H Y. Axillary meristem formation in rice requires the WUSCHEL ortholog TILLERS ABSENT1. Plant Cell, 2015, 27: 1173–1184. 

[17] Zhang L, Yu H, Ma B, Liu G F, Wang J J, Wang J M, Gao R C, Li J J, Liu J Y, Xu J, et al. A natural tandem array alleviates epigenetic repression of IPA1 and leads to superior yielding rice. Nat Commun, 2017, 8: 14789.

[18] Dong C H, Zhang L C, Zhang Q, Yang Y X, Li D P, Xie Z C, Cui G Q, Chen Y Y, Wu L F, Li Z, et al. Tiller Number1 encodes an ankyrin repeat protein that controls tillering in bread wheat. Nat Commun, 2023, 14: 836. 

[19] Zhou F, Lin Q B, Zhu L H, Ren Y L, Zhou K N, Shabek N, Wu F Q, Mao H B, Dong W, Gan L, et al. D14-SCFD3-dependent degradation of D53 regulates strigolactone signalling. Nature, 2013, 504: 406–410. 

[20] Liu Y T, Wu G X, Zhao Y P, Wang H H, Dai Z Y, Xue W C, Yang J, Wei H B, Shen R X, Wang H Y. DWARF53 interacts with transcription factors UB2/UB3/TSH4 to regulate maize tillering and tassel branching. Plant Physiol, 2021, 187: 947–962.

[21] Yao D, Liu Z Z, Zhang J, Liu S Y, Qu J, Guan S Y, Pan L D, Wang D, Liu J W, Wang P W. Analysis of quantitative trait loci for main plant traits in soybean. Genet Mol Res, 2015, 14: 6101–6109. 

[22] Shim S, Kim M Y, Ha J, Lee Y H, Lee S H. Identification of QTLs for branching in soybean (Glycine max (L.) Merrill). Euphytica, 2017, 213: 225. 

[23] Bao A L, Chen H F, Chen L M, Chen S L, Hao Q N, Guo W, Qiu D Z, Shan Z H, Yang Z L, Yuan S L, et al. CRISPR/Cas9-mediated targeted mutagenesis of GmSPL9 genes alters plant architecture in soybean. BMC Plant Biol, 2019, 19: 131. 

[24] Sun Z X, Su C, Yun J X, Jiang Q, Wang L X, Wang Y N, Cao D, Zhao F, Zhao Q S, Zhang M C, et al. Genetic improvement of the shoot architecture and yield in soya bean plants via the manipulation of GmmiR156b. Plant Biotechnol J, 2019, 17: 50–62.

[25] Guo W, Chen L M, Chen H F, Yang H L, You Q B, Bao A L, Chen S L, Hao Q N, Huang Y, Qiu D Z, et al. Overexpression of GmWRI1b in soybean stably improves plant architecture and associated yield parameters, and increases total seed oil production under field conditions. Plant Biotechnol J, 2020, 18: 1639–1641. 

[26] Liang Q J, Chen L Y, Yang X, Yang H, Liu S L, Kou K, Fan L, Zhang Z F, Duan Z B, Yuan Y Q, et al. Natural variation of Dt2 determines branching in soybean. Nat Commun, 2022, 13: 6429. 

[27] Meng L, Li H H, Zhang L Y, Wang J K. QTL IciMapping: Integrated software for genetic linkage map construction and quantitative trait locus mapping in biparental populations. Crop J, 2015, 3: 269–283.

[28] 刘亭萱, 谷勇哲, 张之昊, 王俊, 孙君明, 邱丽娟. 基于高密度遗传图谱定位大豆蛋白质含量相关的QTL. 作物学报, 2023, 49: 15321541.
Liu T X, Gu Y Z, Zhang Z H, Wang J, Sun J M, Qiu L J. Mapping soybean protein QTLs based on high-density genetic map. Acta Agron Sin, 2023, 49: 1532–1541 (in Chinese with English abstract).

[29] van Ooijen J W. JoinMap® 4, Software for the Calculation of Genetic Linkage Maps in Experimental Populations. Wageningen, Netherlands: Kyazma, 2006.

[30] Li S S, Wang J K, Zhang L Y. Inclusive composite interval mapping of QTL by environment interactions in biparental populations. PLoS One, 2015, 10: e0132414. 

[31] Li H H, Ye G Y, Wang J K. A modified algorithm for the improvement of composite interval mapping. Genetics, 2007, 175: 361–374. 

[32] Cingolani P, Platts A, Wang L L, Coon M, Nguyen T, Wang L, Land S J, Lu X Y, Ruden D M. A program for annotating and predicting the effects of single nucleotide polymorphisms, SnpEff: SNPs in the genome of Drosophila melanogaster strain w1118; Iso-2; Iso-3. Fly, 2012, 6: 80–92. 

[33] Sayama T, Hwang T, Yamazaki H, Yamaguchi N, Komatsu K, Takahashi M, Suzuki C, Miyoshi T, Tanaka Y, Xia Z J, et al. Mapping and comparison of quantitative trait loci for soybean branching phenotype in two locations. Breed Sci, 2010, 60: 380–389. 

[34] Bernard R L. Two genes affecting stem termination in Soybeans. Crop Sci, 1972, 12: 235–239. 

[35] Tian Z X, Wang X B, Lee R A, Li Y H, Specht J E, Nelson R L, McClean P E, Qiu L J, Ma J X. Artificial selection for determinate growth habit in soybean. Proc Natl Acad Sci USA, 2010, 107: 8563–8568. 

[36] Ping J Q, Liu Y F, Sun L J, Zhao M X, Li Y H, She M Y, Sui Y, Lin F, Liu X D, Tang Z X, et al. Dt2 is a gain-of-function MADS-domain factor gene that specifies semideterminacy in soybean. Plant Cell, 2014, 26: 2831–2842. 

[37] Zhang D J, Wang X T, Li S, Wang C F, Gosney M J, Mickelbart M V, Ma J X. A post-domestication mutation, Dt2, triggers systemic modification of divergent and convergent pathways modulating multiple agronomic traits in soybean. Mol Plant, 2019, 12: 1366–1382.

[1] YANG Hai-Yang, WU Lin-Xuan, LI Bo-Wen, SHI Han-Feng, YUAN Xi-Long, LIU Jin-Zhao, CAI Hai-Rong, CHEN Shi-Yi, GUO Tao, WANG Hui. OsWRI3, identified based on QTL mapping, regulates seed shattering in rice [J]. Acta Agronomica Sinica, 2025, 51(7): 1712-1724.
[2] ZHAO Chao-Nan, WANG Jin-Feng, ZHANG Yu, ZHANG Li, LI Rui-Qi, WANG Peng-Fei, LI Ge-Zi, ZHANG Hong-Jun, YU Bo, KANG Guo-Zhang. Genome-wide association study for the identification and characterization of nitrogen efficiency-related genes in wheat [J]. Acta Agronomica Sinica, 2025, 51(7): 1801-1813.
[3] SHAO Shun-Wei, CHEN Zhuo, LAN Zhen-Dong, CAI Xing-Kui, ZOU Hua-Fen, LI Chen-Xi, TANG Jing-Hua, ZHU Xi, ZHANG Yu, DONG Jian-Ke, JIN Hui, SONG Bo-Tao. QTL mapping of tuber eye depth based on BSA-seq technique [J]. Acta Agronomica Sinica, 2025, 51(7): 1725-1735.
[4] ZHANG Jin-Ze, ZHOU Qing-Guo, XIAO Li-Jing, JIN Hai-Run, OU-YANG Qing-Jing, LONG Xu, YAN Zhong-Bin, TIAN En-Tang. QTL mapping and candidate gene analysis of glucosinolate content in various tissues of Brassica juncea [J]. Acta Agronomica Sinica, 2025, 51(5): 1166-1177.
[5] LIN Wei-Jin, GUO Ze-Jia, LIU Hao, LI Hai-Fen, WANG Run-Feng, HUANG Lu, YU Qian-Xia, CHEN Xiao-Ping, HONG Yan-Bin, LI Shao-Xiong, LU Qing. QTL mapping and candidate gene analysis of peanut pod yield-related traits [J]. Acta Agronomica Sinica, 2025, 51(4): 969-981.
[6] XU Jian-Xia, DING Yan-Qing, CAO Ning, CHENG Bin, GAO Xu, LI Wen-Zhen, ZHANG Li-Yi. Genome-wide association analysis and prediction of candidate genes for plant height and internode number in Chinese sorghum [J]. Acta Agronomica Sinica, 2025, 51(3): 568-585.
[7] YONG Rui, HU Wen-Jing, WU Di, WANG Zun-Jie, LI Dong-Sheng, ZHAO Die, YOU Jun-Chao, XIAO Yong-Gui, WANG Chun-Ping. Identification and validation of quantitative trait loci for grain number per spike showing pleiotropic effect on thousand grain weight in bread wheat (Triticum aestivum L.) [J]. Acta Agronomica Sinica, 2025, 51(2): 312-323.
[8] GUO Shu-Hui, PAN Zhuan-Xia, ZHAO Zhan-Sheng, YANG Liu-Liu, HUANG-FU Zhang-Long, GUO Bao-Sheng, HU Xiao-Li, LU Ya-Dan, DING Xiao, WU Cui-Cui, LAN Gang, LYU Bei-Bei, TAN Feng-Ping, LI Peng-Bo. Genetic analysis of a major fiber length locus on chromosome D11 of upland cotton [J]. Acta Agronomica Sinica, 2025, 51(2): 383-394.
[9] YANG Jing-Fa, YU Xin-Lian, YAO You-Hua, YAO Xiao-Hua, WANG Lei, WU Kun-Lun, LI Xin. QTL mapping of tiller angle in qingke (Hordeum vulgare L.) [J]. Acta Agronomica Sinica, 2025, 51(1): 260-272.
[10] YE Liang, ZHU Ye-Lin, PEI Lin-Jing, ZHANG Si-Ying, ZUO Xue-Qian, LI Zheng-Zhen, LIU Fang, TAN Jing. Screening candidate resistance genes to ear rot caused by Fusarium verticillioides in maize by combined GWAS and transcriptome analysis [J]. Acta Agronomica Sinica, 2024, 50(9): 2279-2296.
[11] HAN Li, TANG Sheng-Sheng, LI Jia, HU Hai-Bin, LIU Long-Long, WU Bin. Construction of SNP high-density genetic map and localization of QTL for β-glucan content in oats [J]. Acta Agronomica Sinica, 2024, 50(7): 1710-1718.
[12] BI Jun-Ge, ZENG Zhan-Kui, LI Qiong, HONG Zhuang-Zhuang, YAN Qun-Xiang, ZHAO Yue, WANG Chun-Ping. QTL mapping and KASP marker development of grain quality-relating traits in two wheat RIL populations [J]. Acta Agronomica Sinica, 2024, 50(7): 1669-1683.
[13] QIN Na, YE Zhen-Yan, ZHU Can-Can, FU Sen-Jie, DAI Shu-Tao, SONG Ying-Hui, JING Ya, WANG Chun-Yi, LI Jun-Xia. QTL mapping for flavonoid content and seed color in foxtail millet [J]. Acta Agronomica Sinica, 2024, 50(7): 1719-1727.
[14] ZHENG Xue-Qing, WANG Xing-Rong, ZHANG Yan-Jun, GONG Dian-Ming, QIU Fa-Zhan. Mapping of QTL for ear-related traits and prediction of key candidate genes in maize [J]. Acta Agronomica Sinica, 2024, 50(6): 1435-1450.
[15] MIAO Long, SHU Kuo, LI Juan, HUANG Ru, WANG Ye-Xing, Soltani Muhammad YOUSOF, XU Jing-Hao, WU Chuan-Lei, LI Jia-Jia, WANG Xiao-Bo, QIU Li-Juan. Identification and gene mapping of soybean mutant Mrstz in root-stem transition zone [J]. Acta Agronomica Sinica, 2024, 50(5): 1091-1103.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Li Shaoqing, Li Yangsheng, Wu Fushun, Liao Jianglin, Li Damo. Optimum Fertilization and Its Corresponding Mechanism under Complete Submergence at Booting Stage in Rice[J]. Acta Agronomica Sinica, 2002, 28(01): 115 -120 .
[2] Wang Lanzhen;Mi Guohua;Chen Fanjun;Zhang Fusuo. Response to Phosphorus Deficiency of Two Winter Wheat Cultivars with Different Yield Components[J]. Acta Agron Sin, 2003, 29(06): 867 -870 .
[3] YANG Jian-Chang;ZHANG Jian-Hua;WANG Zhi-Qin;ZH0U Qing-Sen. Changes in Contents of Polyamines in the Flag Leaf and Their Relationship with Drought-resistance of Rice Cultivars under Water Deficiency Stress[J]. Acta Agron Sin, 2004, 30(11): 1069 -1075 .
[4] Yan Mei;Yang Guangsheng;Fu Tingdong;Yan Hongyan. Studies on the Ecotypical Male Sterile-fertile Line of Brassica napus L.Ⅲ. Sensitivity to Temperature of 8-8112AB and Its Inheritance[J]. Acta Agron Sin, 2003, 29(03): 330 -335 .
[5] Wang Yongsheng;Wang Jing;Duan Jingya;Wang Jinfa;Liu Liangshi. Isolation and Genetic Research of a Dwarf Tiilering Mutant Rice[J]. Acta Agron Sin, 2002, 28(02): 235 -239 .
[6] WANG Li-Yan;ZHAO Ke-Fu. Some Physiological Response of Zea mays under Salt-stress[J]. Acta Agron Sin, 2005, 31(02): 264 -268 .
[7] TIAN Meng-Liang;HUNAG Yu-Bi;TAN Gong-Xie;LIU Yong-Jian;RONG Ting-Zhao. Sequence Polymorphism of waxy Genes in Landraces of Waxy Maize from Southwest China[J]. Acta Agron Sin, 2008, 34(05): 729 -736 .
[8] HU Xi-Yuan;LI Jian-Ping;SONG Xi-Fang. Efficiency of Spatial Statistical Analysis in Superior Genotype Selection of Plant Breeding[J]. Acta Agron Sin, 2008, 34(03): 412 -417 .
[9] WANG Yan;QIU Li-Ming;XIE Wen-Juan;HUANG Wei;YE Feng;ZHANG Fu-Chun;MA Ji. Cold Tolerance of Transgenic Tobacco Carrying Gene Encoding Insect Antifreeze Protein[J]. Acta Agron Sin, 2008, 34(03): 397 -402 .
[10] ZHENG Xi;WU Jian-Guo;LOU Xiang-Yang;XU Hai-Ming;SHI Chun-Hai. Mapping and Analysis of QTLs on Maternal and Endosperm Genomes for Histidine and Arginine in Rice (Oryza sativa L.) across Environments[J]. Acta Agron Sin, 2008, 34(03): 369 -375 .