Acta Agronomica Sinica ›› 2025, Vol. 51 ›› Issue (7): 1736-1746.doi: 10.3724/SP.J.1006.2025.44141
• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles Next Articles
YIN Yu-Meng1**(), WANG Yan-Nan1**(
), KANG Zhi-He1, QIAO Shou-Chen1, BIAN Qian-Qian1, LI Ya-Wei1, CAO Guo-Zheng1, ZHAO Guo-Rui1, XU Dan-Dan2, YANG Yu-Feng1,*(
)
[1] |
王雁楠, 陈金金, 卞倩倩, 胡琳琳, 张莉, 尹雨萌, 乔守晨, 曹郭郑, 康志河, 赵国瑞, 等. 转录组与代谢组联合分析揭示遮阴胁迫下甘薯的代谢响应途径. 作物学报, 2023, 49: 1785-1798.
doi: 10.3724/SP.J.1006.2023.24137 |
Wang Y N, Chen J J, Bian Q Q, Hu L L, Zhang L, Yin Y M, Qiao S C, Cao G Z, Kang Z H, Zhao G R, et al. Integrated analysis of transcriptome and metabolome reveals the metabolic response pathways of sweetpotato under shade stress. Acta Agron Sin, 2023, 49: 1785-1798 (in Chinese with English abstract). | |
[2] |
王欣, 李强, 曹清河, 马代夫. 中国甘薯产业和种业发展现状与未来展望. 中国农业科学, 2021, 54: 483-492.
doi: 10.3864/j.issn.0578-1752.2021.03.003 |
Wang X, Li Q, Cao Q H, Ma D F. Current status and future prospective of sweetpotato production and seed industry in China. Sci Agric Sin, 2021, 54: 483-492 (in Chinese with English abstract).
doi: 10.3864/j.issn.0578-1752.2021.03.003 |
|
[3] | Yan H, Ma M, Ahmad M Q, Arisha M H, Tang W, Li C, Zhang Y G, Kou M, Wang X, Gao R F, et al. High-density single nucleotide polymorphisms genetic map construction and quantitative trait locus mapping of color-related traits of purple sweet potato [Ipomoea batatas (L.) Lam.]. Front Plant Sci, 2022, 12: 797041. |
[4] | Drapal M, Rossel G, Heider B, Fraser P D. Metabolic diversity in sweet potato (Ipomoea batatas, Lam.) leaves and storage roots. Hortic Res, 2019, 6: 2. |
[5] | Khoo H E, Azlan A, Tang S T, Lim S M. Anthocyanidins and anthocyanins: colored pigments as food, pharmaceutical ingredients, and the potential health benefits. Food Nutr Res, 2017, 61: 1361779. |
[6] | Holton T A, Cornish E C. Genetics and biochemistry of anthocyanin biosynthesis. Plant Cell, 1995, 7: 1071-1083. |
[7] |
Sunil L, Shetty N P. Biosynthesis and regulation of anthocyanin pathway genes. Appl Microbiol Biotechnol, 2022, 106: 1783-1798.
doi: 10.1007/s00253-022-11835-z pmid: 35171341 |
[8] | Honda C, Kotoda N, Wada M, Kondo S, Kobayashi S, Soejima J, Zhang Z L, Tsuda T, Moriguchi T. Anthocyanin biosynthetic genes are coordinately expressed during red coloration in apple skin. Plant Physiol Biochem, 2002, 40: 955-962. |
[9] |
Petroni K, Tonelli C. Recent advances on the regulation of anthocyanin synthesis in reproductive organs. Plant Sci, 2011, 181: 219-229.
doi: 10.1016/j.plantsci.2011.05.009 pmid: 21763532 |
[10] | 刘泽.花青素还原酶调控绿豆芽下胚轴花青苷积累的机理. 南京农业大学硕士学位论文, 江苏南京, 2022. |
Liu Z. Mechanism of Anthocyanin Reductase Regulation of Anthocyanin Accumulation in Mung Bean Hypocotyl. MS Thesis of Nanjing Agricultural University, Nanjing, Jiangsu, China, 2022 (in Chinese with English abstract). | |
[11] | Goodman C D, Casati P, Walbot V. A multidrug resistance-associated protein involved in anthocyanin transport in Zea mays. Plant Cell, 2004, 16: 1812-1826. |
[12] |
Zhao J. Flavonoid transport mechanisms: how to go, and with whom. Trends Plant Sci, 2015, 20: 576-585.
doi: 10.1016/j.tplants.2015.06.007 pmid: 26205169 |
[13] | Marrs K A, Alfenito M R, Lloyd A M, Walbot V. A glutathione S-transferase involved in vacuolar transfer encoded by the maize gene Bronze-2. Nature, 1995, 375: 397-400. |
[14] |
Alfenito M R, Souer E, Goodman C D, Buell R, Mol J, Koes R, Walbot V. Functional complementation of anthocyanin sequestration in the vacuole by widely divergent glutathione S-transferases. Plant Cell, 1998, 10: 1135-1149.
doi: 10.1105/tpc.10.7.1135 pmid: 9668133 |
[15] |
Kitamura S, Shikazono N, Tanaka A. TRANSPARENT TESTA 19 is involved in the accumulation of both anthocyanins and proanthocyanidins in Arabidopsis. Plant J, 2004, 37: 104-114.
doi: 10.1046/j.1365-313x.2003.01943.x pmid: 14675436 |
[16] | Conn S, Curtin C, Bézier A, Franco C, Zhang W. Purification, molecular cloning, and characterization of glutathione S-transferases (GSTs) from pigmented Vitis vinifera L. cell suspension cultures as putative anthocyanin transport proteins. J Exp Bot, 2008, 59: 3621-3634. |
[17] | Hu B, Zhao J T, Lai B, Qin Y H, Wang H C, Hu G B. LcGST4 is an anthocyanin-related glutathione S-transferase gene in Litchi chinensis Sonn. Plant Cell Rep, 2016, 35: 831-843. |
[18] | 刘禹姗, 陈丽, 邓宇, 蔡莉, 李亚东, 孙海悦. 越橘谷胱甘肽巯基转移酶基因的克隆及表达. 吉林农业大学学报, 2017, 39: 423-431. |
Liu Y S, Chen L, Deng Y, Cai L, Li Y D, Sun H Y. Cloning and expression analysis of glutathione S-transferase gene in blueberry. J Jilin Agric Univ, 2017, 39: 423-431 (in Chinese with English abstract). | |
[19] | Zhang Y Y, Zhang Z N, Guo S J, Qu P Y, Liu J P, Cheng C Z. Characterization of blueberry glutathione S-transferase (GST) genes and functional analysis of VcGSTF8 reveal the role of ‘MYB/bHLH-GSTF’ module in anthocyanin accumulation. Ind Crops Prod, 2024, 218: 119006. |
[20] | Qiu L K, Chen K, Pan J, Ma Z Y, Zhang J J, Wang J, Cheng T R, Zheng T C, Pan H T, Zhang Q X. Genome-wide analysis of glutathione S-transferase genes in four Prunus species and the function of PmGSTF2, activated by PmMYBa1, in regulating anthocyanin accumulation in Int J Biol Macromol. Int J Biol Macromol, 2024, 281: 136506. |
[21] | Jiang S H, Chen M, He N B, Chen X L, Wang N, Sun Q G, Zhang T L, Xu H F, Fang H C, Wang Y C, et al. MdGSTF6, activated by MdMYB1, plays an essential role in anthocyanin accumulation in apple. Hortic Res, 2019, 6: 40. |
[22] | Shao D N, Li Y J, Zhu Q H, Zhang X Y, Liu F, Xue F, Sun J. GhGSTF12, a glutathione S-transferase gene, is essential for anthocyanin accumulation in cotton (Gossypium hirsutum L.). Plant Sci, 2021, 305: 110827. |
[23] | Kou M, Liu Y J, Li Z Y, Zhang Y G, Tang W, Yan H, Wang X, Chen X G, Su Z X, Arisha M H, et al. A novel glutathione S-transferase gene from sweetpotato, IbGSTF4, is involved in anthocyanin sequestration. Plant Physiol Biochem, 2019, 135: 395-403. |
[24] | Gill S S, Tuteja N. Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol Biochem, 2010, 48: 909-930. |
[25] | Dong T T, Han R P, Yu J W, Zhu M K, Zhang Y, Gong Y, Li Z Y. Anthocyanins accumulation and molecular analysis of correlated genes by metabolome and transcriptome in green and purple asparaguses (Asparagus officinalis L.). Food Chem, 2019, 271: 18-28. |
[26] | Nakabayashi R, Mori T, Saito K. Alternation of flavonoid accumulation under drought stress in Arabidopsis thaliana. Plant Signal Behav, 2014, 9: e29518. |
[27] | Xu Z H, Mahmood K, Rothstein S J. ROS induces anthocyanin production via late biosynthetic genes and anthocyanin deficiency confers the hypersensitivity to ROS-generating stresses in Arabidopsis. Plant Cell Physiol, 2017, 58: 1364-1377. |
[28] | Wang J, Li D L, Peng Y X, Cai M H, Liang Z, Yuan Z P, Du X M, Wang J H, Schnable P S, Gu R L, et al. The anthocyanin accumulation related ZmBZ1, facilitates seedling salinity stress tolerance via ROS scavenging. Int J Mol Sci, 2022, 23: 16123. |
[29] | Hu Y F, Zhao H Y, Xue L Y, Nie N, Zhang H, Zhao N, He S Z, Liu Q C, Gao S P, Zhai H. IbMYC2 contributes to salt and drought stress tolerance via modulating anthocyanin accumulation and ROS- scavenging system in sweet potato. Int J Mol Sci, 2024, 25: 2096. |
[30] | Yang Y F, Shi D Y, Wang Y N, Zhang L, Chen X G, Yang X P, Xiong H Z, Bhattarai G, Ravelombola W, Olaoye D, et al. Transcript profiling for regulation of sweet potato skin color in Sushu 8 and its mutant Zhengshu 20. Plant Physiol Biochem, 2020, 148: 1-9. |
[31] |
Strasser R, Bondili J S, Schoberer J, Svoboda B, Liebminger E, Glössl J, Altmann F, Steinkellner H, Mach L. Enzymatic properties and subcellular localization of Arabidopsis β-N- acetylhexosaminidases. Plant Physiol, 2007, 145: 5-16.
doi: 10.1104/pp.107.101162 pmid: 17644627 |
[32] | 张铅, 禹阳, 刘帅, 贾赵东, 马佩勇, 金昊秀, 郭尚洙, 边小峰. 一种高效的甘薯遗传转化方法. 江苏师范大学学报(自然科学版), 2023, 41(2): 18-23. |
Zhang Q, Yu Y, Liu S, Jia Z D, Ma P Y, Jin H X, Guo S Z, Bian X F. An efficient method for sweetpotato genetic transformation. J Jiangsu Norm Univ (Nat Sci Edn), 2023, 41(2): 18-23 (in Chinese with English abstract). | |
[33] | 任志彤. 过表达IbCbEFP和IbSnRK1基因甘薯植株的特性鉴定及分子机理分析. 中国农业大学博士学位论文,北京, 2018. |
Ren Z T.C Characteristic Identification and Molecular Mechanism of Sweetpotato (Ipomoea batatas (L.) Lam.) Plants Overexpressing IbCbEFP and IbSnRKl. PhD Dissertation of China Agricultural University, Beijing, China, 2018 (in Chinese with English abstract). | |
[34] | 王学奎, 黄见良. 植物生理生化实验原理与技术(第3版). 北京: 高等教育出版社, 2015. pp 131-133. |
Wang X K, Huang J L. Principles and Techniques of Plant Physiological Biochemical Experiment, 3rd edn. Beijing: Higher Education Press, 2015. pp 131-133 (in Chinese). | |
[35] | Wang H X, Yang J, Zhang M, Fan W J, Firon N, Pattanaik S, Yuan L, Zhang P. Altered phenylpropanoid metabolism in the maize lc-expressed sweet potato (Ipomoea batatas) affects storage root development. Sci Rep, 2016, 6: 18645. |
[36] | 张亚真, 张芬, 王丽鸳, 韦康, 成浩. 植物谷胱甘肽转移酶在类黄酮累积中的作用. 植物生理学报, 2015, 51: 1815-1820. |
Zhang Y Z, Zhang F, Wang L Y, Wei K, Cheng H. Plant glutathione S-transferases: roles in flavonoid accumulation. Plant Physiol J, 2015, 51: 1815-1820 (in Chinese with English abstract). | |
[37] |
Sylvestre-Gonon E, Law S R, Schwartz M, Robe K, Keech O, Didierjean C, Dubos C, Rouhier N, Hecker A. Functional, structural and biochemical features of plant serinyl-glutathione transferases. Front Plant Sci, 2019, 10: 608.
doi: 10.3389/fpls.2019.00608 pmid: 31191562 |
[38] | Zhao Y W, Wang C K, Huang X Y, Hu D G. Genome-wide analysis of the glutathione S-transferase (GST) genes and functional identification of MdGSTU12 reveals the involvement in the regulation of anthocyanin accumulation in apple. Genes, 2021, 12: 1733. |
[39] | 王璐, 戴思兰, 金雪花, 黄河, 洪艳. 植物花青素苷转运机制的研究进展. 生物工程学报, 2014, 30: 848-863. |
Wang L, Dai S L, Jin X H, Huang H, Hong Y. Advances in plant anthocyanin transport mechanism. Chin J Biotechnol, 2014, 30: 848-863 (in Chinese with English abstract). | |
[40] | Jiang H W, Liu M J, Chen I C, Huang C H, Chao L Y, Hsieh H L. A glutathione S-transferase regulated by light and hormones participates in the modulation of Arabidopsis seedling development. Plant Physiol, 2010, 154: 1646-1658. |
[41] | 谢开珍, 刘佳琪, 任磊, 张婷婷, 王爱民. 甘薯苯丙烷类代谢及其酶基因研究进展. 植物学研究, 2019, 8: 355-365. |
Xie K Z, Liu J Q, Ren L, Zhang T T, Wang A M. Advances in phenylaprapanoid metabolism and its enzyme genes in sweet potato. Bot Res, 2019, 8: 355-365 (in Chinese with English abstract). | |
[42] |
Nakabayashi R, Saito K. Integrated metabolomics for abiotic stress responses in plants. Curr Opin Plant Biol, 2015, 24: 10-16.
doi: 10.1016/j.pbi.2015.01.003 pmid: 25618839 |
[43] | Mittler R, Zandalinas S I, Fichman Y, Van Breusegem F. Reactive oxygen species signalling in plant stress responses. Nat Rev Mol Cell Biol, 2022, 23: 663-679. |
[44] |
Thirumalaikumar V P, Devkar V, Mehterov N, Ali S, Ozgur R, Turkan I, Mueller-Roeber B, Balazadeh S. NAC transcription factor JUNGBRUNNEN1 enhances drought tolerance in tomato. Plant Biotechnol J, 2018, 16: 354-366.
doi: 10.1111/pbi.12776 pmid: 28640975 |
[45] | Qi Q, Dong Y Y, Liang Y L, Li K Z, Xu H N, Sun X D. Overexpression of SlMDHAR in transgenic tobacco increased salt stress tolerance involving S-nitrosylation regulation. Plant Sci, 2020, 299: 110609. |
[46] | Aleem M, Riaz A, Raza Q, Aleem M, Aslam M, Kong K K, Atif R M, Kashif M, Bhat J A, Zhao T J. Genome-wide characterization and functional analysis of class III peroxidase gene family in soybean reveal regulatory roles of GsPOD40 in drought tolerance. Genomics, 2022, 114: 45-60. |
[1] | XIA Qi, GUO Ying, WANG Kun-Mei, WANG Si-Yi, JU Jian-Ye, PENG Ya-Wen, LIU Zhong-Song, XIA Shi-Tou. Correlation between salicylic acid and anthocyanins accumulation in seeds of different varieties in Brassica napus [J]. Acta Agronomica Sinica, 2025, 51(5): 1189-1197. |
[2] | JIN Xin-Xin, SONG Ya-Hui, SU Qiao, YANG Yong-Qing, LI Yu-Rong, WANG Jin. Identification and comprehensive evaluation of drought resistance in high oleic acid Jihua peanut varieties [J]. Acta Agronomica Sinica, 2025, 51(3): 797-811. |
[3] | HUO Ru-Xue, GE Xiang-Han, SHI Jia, LI Xue-Rui, DAI Sheng-Jie, LIU Zhen-Ning, LI Zong-Yun. Functional analysis of the sweetpotato histidine kinase protein IbHK5 in response to drought and salt stresses [J]. Acta Agronomica Sinica, 2025, 51(3): 650-666. |
[4] | WANG Yu-Xin, CHEN Tian-Yu, ZHAI Hong, ZHANG Huan, GAO Shao-Pei, HE Shao-Zhen, ZHAO Ning, LIU Qing-Chang. Cloning and characterization of drought tolerance function of kinase gene IbHT1 in sweetpotato [J]. Acta Agronomica Sinica, 2025, 51(2): 301-311. |
[5] | LIU Zhen, CHEN Li-Min, LI Zhi-Tao, ZHU Jin-Yong, WANG Wei-Lu, QI Zhe-Ying, YAO Pan-Feng, BI Zhen-Zhen, SUN Chao, BAI Jiang-Ping, LIU Yu-Hui. Genome-wide identification and expression analysis of ARM gene family in potato (Solanum tuberosum L.) [J]. Acta Agronomica Sinica, 2024, 50(6): 1451-1466. |
[6] | ZHU Xiao-Ya, ZHANG Qiang-Qiang, ZHAO Peng, LIU Ming, WANG Jing, JIN Rong, YU Yong-Chao, TANG Zhong-Hou. Transcriptome and metabolomic analysis of foliar spraying of Salvia miltiorrhiza carbon dots to alleviate low phosphorus stress in sweetpotato [J]. Acta Agronomica Sinica, 2024, 50(2): 383-393. |
[7] | WU Li-Fen, XIA Chuan, ZHANG Li-Chao, KONG Xiu-Ying, CHEN Jing-Tang, LIU Xu. Functional analysis of TaEMF2 in regulating wheat heading date [J]. Acta Agronomica Sinica, 2024, 50(12): 2940-2949. |
[8] | RONG Yu-Xuan, HUI Liu-Yang, WANG Pei-Qi, SUN Si-Min, ZHANG Xian-Long, YUAN Dao-Jun, YANG Xi-Yan. Identification of the CLE gene family in Gossypium hirsutum and functional analysis of the drought resistance of GhCLE13 [J]. Acta Agronomica Sinica, 2024, 50(12): 2925-2939. |
[9] | WANG Ying-Heng, CUI Li-Li, CAI Qiu-Hua, LIN Qiang, WU Fang-Xi, CHEN Fei-He, XIE Hong-Guang, ZHU Yong-Sheng, CHEN Li-Ping, XIE Hua-An, ZHANG Jian-Fu. Metabolome and transcriptome analysis reveal molecular response to drought stress in indica rice Fuxiangzhan [J]. Acta Agronomica Sinica, 2024, 50(12): 2998-3012. |
[10] | SU Yi-Jun, ZHAO Lu-Kuan, TANG Fen, DAI Xi-Bin, SUN Ya-Wei, ZHOU Zhi-Lin, LIU Ya-Ju, CAO Qing-He. Genetic diversity and population structure analysis of 378 introduced sweetpotato germplasm collections [J]. Acta Agronomica Sinica, 2023, 49(9): 2582-2593. |
[11] | JIA Rui-Xue, CHEN Yi-Hang, ZHANG Rong, TANG Chao-Chen, WANG Zhang-Ying. Simultaneous determination of 13 carotenoids in sweetpotato by Ultra- Performance Liquid Chromatography [J]. Acta Agronomica Sinica, 2023, 49(8): 2259-2274. |
[12] | WANG Yan-Nan, CHEN Jin-Jin, BIAN Qian-Qian, HU Lin-Lin, ZHANG Li, YIN Yu-Meng, QIAO Shou-Chen, CAO Guo-Zheng, KANG Zhi-He, ZHAO Guo-Rui, YANG Guo-Hong, YANG Yu-Feng. Integrated analysis of transcriptome and metabolome reveals the metabolic response pathways of sweetpotato under shade stress [J]. Acta Agronomica Sinica, 2023, 49(7): 1785-1798. |
[13] | ZHU Xu-Dong, YANG Lan-Feng, CHEN Yuan-Yuan, HOU Ze-Hao, LUO Yi-Rou, XIONG Ze-Hao, FANG Zheng-Wu. Biological functional analysis of common buckwheat (Fagopyrum esculentum) FeSGT1 gene in enhancing drought stress resistance [J]. Acta Agronomica Sinica, 2023, 49(6): 1573-1583. |
[14] | CHEN Yi-Hang, TANG Chao-Chen, ZHANG Xiong-Jian, YAO Zhu-Fang, JIANG Bing-Zhi, WANG Zhang-Ying. Construction of core collection of sweetpotato based on phenotypic traits and SSR markers [J]. Acta Agronomica Sinica, 2023, 49(5): 1249-1261. |
[15] | LIU Ming, FAN Wen-Jing, ZHAO Peng, JIN Rong, ZHANG Qiang-Qiang, ZHU Xiao-Ya, WANG Jing, LI Qiang. Genotypes screening and comprehensive evaluation of sweetpotato tolerant to low potassium stress at seedling stage [J]. Acta Agronomica Sinica, 2023, 49(4): 926-937. |
|