Welcome to Acta Agronomica Sinica,

Acta Agron Sin ›› 2006, Vol. 32 ›› Issue (12): 1788-1795.

• ORIGINAL PAPERS • Previous Articles     Next Articles

Resistance to Fusarium Head Blight and Deoxynivalenol Accumulation and Allele Variation of Related SSR Markers in Wheat

ZHANG Kai-Ming12,MA Hong-Xiang1*,LU Wei-Zhong1,CAI Zhi-Xiang1,CHEN Huai-Gu2,YUAN Sheng3   

  1. 1 Institute of Biotechnology, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, Jiangsu; 2 Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, Jiangsu; 3College of Life Science, Nanjing Normal University, Nanjing 210097, Jiangsu, China
  • Received:2005-12-30 Revised:1900-01-01 Online:2006-12-12 Published:2006-12-12
  • Contact: MA Hong-Xiang

Abstract:

Fusarium head blight (FHB), caused by Fusarium graminearum Schwabe, is an important wheat disease world-wide. Negative effects of the disease include not only reduction of grain yield quality, but also contamination with deoxynivalenol (DON) resulting in potential toxicity to human and livestock. Developing the cultivars with FHB resistance is an effective measure to control the disease. Ten cultivars selected from the breeding program for FHB resistance in China were employed in the study for evaluating the resistance to FHB and DON accumulation by using different isolates and inoculation methods. In comparing with susceptible control Ningmai 6 and Annong 8455, the ten cultivars were classified to three groups with different resistance to FHB, including high resistant group (Wangshuibai, Sumai 3, Nobeokoubozu and Fan 60096), moderate resistant group (Fanshanxiaomai, Wenzhouhongheshang, Shinchunaga, Yangmai 158 and Zhen 7459) and susceptible cultivar (Frontana). The DON contents of all of them except Frontana were lower than 3 mg/kg. There were significant correlations between different isolates and inoculation methods for the scabbed spikelet rate and DON content. The scabbed spikelet rate was also significantly correlated to DON content in the same isolate and inoculation method. The selective cultivars were genotyped with SSR markers linked to FHB resistance QTL on chromosomes 2D, 3B, 4B, 5A and 6B identified previously. The SSR markers except GWM133 from 4B chromosome had PIC values of 0.14 to 0.85 and detected 2 to 8 alleles among 13 cultivars. The haplotype showed the same allele of related SSR on chromosome 3B was shared by Nobeokabouzu and Wangshuibai. Yangmai 158 and Shinchunaga had similar SSR alleles to Wuhan 1 on chromosomes 2D and 4B, respectively. Most alleles from Fanshanxiaomai were the same as those from Sumai 3 or Wangshuibai. Most alleles of SSR related to QTL on 2D from Fan 60096 were similar to those from Wuhan 1. However, only one or two alleles in Zhenmai 7459 and Wengzhouhongheshang were the same as those of reported SSR markers associated with FHB resistance. The resistances in such cultivars are most likely derived from independent origin instead of Sumai 3, Wangshuibai and Wuhan 1.

Key words: Triticum aestivum L., Fusarium head blight, Deoxynivalenol (DON), SSR

CLC Number: 

  • S512
[1] CHEN Xiao-Hong, LIN Yuan-Xiang, WANG Qian, DING Min, WANG Hai-Gang, CHEN Ling, GAO Zhi-Jun, WANG Rui-Yun, QIAO Zhi-Jun. Development of DNA molecular ID card in hog millet germplasm based on high motif SSR [J]. Acta Agronomica Sinica, 2022, 48(4): 908-919.
[2] ZHANG Xia, YU Zhuo, JIN Xing-Hong, YU Xiao-Xia, LI Jing-Wei, LI Jia-Qi. Development and characterization analysis of potato SSR primers and the amplification research in colored potato materials [J]. Acta Agronomica Sinica, 2022, 48(4): 920-929.
[3] WANG Yan-Yan, WANG Jun, LIU Guo-Xiang, ZHONG Qiu, ZHANG Hua-Shu, LUO Zheng-Zhen, CHEN Zhi-Hua, DAI Pei-Gang, TONG Ying, LI Yuan, JIANG Xun, ZHANG Xing-Wei, YANG Ai-Guo. Construction of SSR fingerprint database and genetic diversity analysis of cigar germplasm resources [J]. Acta Agronomica Sinica, 2021, 47(7): 1259-1274.
[4] HAN Bei, WANG Xu-Wen, LI Bao-Qi, YU Yu, TIAN Qin, YANG Xi-Yan. Association analysis of drought tolerance traits of upland cotton accessions (Gossypium hirsutum L.) [J]. Acta Agronomica Sinica, 2021, 47(3): 438-450.
[5] LIU Shao-Rong, YANG Yang, TIAN Hong-Li, YI Hong-Mei, WANG Lu, KANG Ding-Ming, FANG Ya-Ming, REN Jie, JIANG Bin, GE Jian-Rong, CHENG Guang-Lei, WANG Feng-Ge. Genetic diversity analysis of silage corn varieties based on agronomic and quality traits and SSR markers [J]. Acta Agronomica Sinica, 2021, 47(12): 2362-2370.
[6] GUO Yan-Chun, ZHANG Li-Lan, CHEN Si-Yuan, QI Jian-Min, FANG Ping-Ping, TAO Ai-Fen, ZHANG Lie-Mei, ZHANG Li-Wu. Establishment of DNA molecular fingerprint of applied core germplasm in jute (Corchorus spp.) [J]. Acta Agronomica Sinica, 2021, 47(1): 80-93.
[7] WANG Heng-Bo,QI Shu-Ting,CHEN Shu-Qi,GUO Jin-Long,QUE You-Xiong. Development and application of SSR loci in monoploid reference genome of sugarcane cultivar [J]. Acta Agronomica Sinica, 2020, 46(4): 631-642.
[8] Hong-Yan ZHANG,Tao YANG,Rong LIU,Fang JIN,Li-Ke ZHANG,Hai-Tian YU,Jin-Guo HU,Feng YANG,Dong WANG,Yu-Hua HE,Xu-Xiao ZONG. Assessment of genetic diversity by using EST-SSR markers in Lupinus [J]. Acta Agronomica Sinica, 2020, 46(3): 330-340.
[9] Li-Lan ZHANG, Lie-Mei ZHANG, Huan-Ying NIU, Yi XU, Yu LI, Jian-Min QI, Ai-Fen TAO, Ping-Ping FANG, Li-Wu ZHANG. Correlation between SSR markers and fiber yield related traits in jute (Corchorus spp.) [J]. Acta Agronomica Sinica, 2020, 46(12): 1905-1913.
[10] LIU Rong, WANG Fang, FANG Li, YANG Tao, ZHANG Hong-Yan, HUANG Yu-Ning, WANG Dong, JI Yi-Shan, XU Dong-Xu, LI Guan, GUO Rui-Jun, ZONG Xu-Xiao. An integrated high-density SSR genetic linkage map from two F2 population in Chinese pea [J]. Acta Agronomica Sinica, 2020, 46(10): 1496-1506.
[11] YE Wei-Jun,CHEN Sheng-Nan,YANG Yong,ZHANG Li-Ya,TIAN Dong-Feng,ZHANG Lei,ZHOU Bin. Development of SSR markers and genetic diversity analysis in mung bean [J]. Acta Agronomica Sinica, 2019, 45(8): 1176-1188.
[12] Zhi-Jun TONG,Yi-Han ZHANG,Xue-Jun CHEN,Jian-Min ZENG,Dun-Huang FANG,Bing-Guang XIAO. Mapping of quantitative trait loci conferring resistance to brown spot in cigar tobacco cultivar Beinhart1000-1 [J]. Acta Agronomica Sinica, 2019, 45(3): 477-482.
[13] CHEN Fang,QIAO Lin-Yi,LI Rui,LIU Cheng,LI Xin,GUO Hui-Juan,ZHANG Shu-Wei,CHANG Li-Fang,LI Dong-Fang,YAN Xiao-Tao,REN Yong-Kang,ZHANG Xiao-Jun,CHANG Zhi-Jian. Genetic analysis and chromosomal localization of powdery mildew resistance gene in wheat germplasm CH1357 [J]. Acta Agronomica Sinica, 2019, 45(10): 1503-1510.
[14] XUE Yan-Tao,LU Ping,SHI Meng-Sha,SUN Hao-Yue,LIU Min-Xuan,WANG Rui-Yun. Genetic diversity and population genetic structure of broomcorn millet accessions in Xinjiang and Gansu [J]. Acta Agronomica Sinica, 2019, 45(10): 1511-1521.
[15] Jia-Yu YAO,Li-Wu ZHANG,Jie ZHAO,Yi XU,Jian-Min QI,Lie-Mei ZHANG. Evaluation and characteristic analysis of SSRs from the whole genome of jute (Corchorus capsularis) [J]. Acta Agronomica Sinica, 2019, 45(1): 10-17.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!