Welcome to Acta Agronomica Sinica,

Acta Agron Sin ›› 2007, Vol. 33 ›› Issue (12): 1960-1967.

• ORIGINAL PAPERS • Previous Articles     Next Articles

Effect of Shading on Grain Quality at Different Stages from Flowering to Maturity in Maize

JIA Shi-Fang12,DONG Shu-Ting1*, WANG Kong-Jun1, ZHANG Ji-Wang1,LI Cong-Feng1   

  1. 1 State Key Laboratory of Crop Biology/Agronomy College, Shandong Agricultural University, Tai’an 271018, Shandong; 2 Institute of Chemical and Biological Technology, Taiyuan University of Science of Technology, Taiyuan 030021, Shanxi, China
  • Received:2007-01-15 Revised:1900-01-01 Online:2007-12-12 Published:2007-12-12
  • Contact: DONG Shu-Ting

Abstract: Light deficiency from pollination to maturity is a common problem in summer maize (Zea mays L.) production in Huang-Huai-Hai-River region in China. Some researches on rice (Oryza sativa L.), wheat (Triticum aestivum L.), and soybean [Glycine max (L.) Merr.] have reported that light deficiency limited carbohydrate accumulation, and result in protein content increase in grain. However, the conclusion on maize is uncertain due to rare studies. To investigate the effects of low light intensity at different stages after pollination on grain quality and the activities of key enzymes of starch and protein syntheses, we conducted a field experiment by shading treatment in 2005–2006 with two maize cultivars, Feiyu 3 (high starch content) and Taiyu 2 (low starch content). The black fabric net was used for making light defiency with 45% sunlight transmission. The shading periods were 1–14 (S1), 15–28 (S2), and 29–42 (S3) days after pollination (DAP), respectively. Only medium position grains of the ear were sampled at 7, 14, 21, 28, 35, and 42 DAP to determinate the enzyme activities. Grain yield and quality parameters were measured after maturity. Compared with the control (no shading treatment, S0), the S1, S2, and S3 treatments showed obvious difference in grain quality and activities of tested enzymes, and the two cultivars had similar results. The grain yield, test weight, and starch content in the three shading treatments were significantly lower than those in control, while the water content, protein content and oil content were relatively higher. The grain nutrition quality indexes such as four protein component contents, glutenin/gliadin ratio, amylopectin /amylose ratio, sub-oleic acid content, flax acid content, un-saturated fatty acid content and sub-oleic acid/Oleic acid ratio increased by shading, these suggesting shading improved the grain nutrition quality. However, the grain starch RVA eigenvalues such as peak viscosity (PV), hot viscosity (HV) and breakdown (BD) decreased by shading, resulting in the decline of cooking and eating quality. The activities of the tested enzymes were significantly reduced by shading treatment, in which the activities of adenosine diphosphate glucose pyrophosphorylase (ADPG), uridine diphosphate glucose pyrophosphorylase (UDPG), soluble starch synthases (SSS), and granule bounded starch synthases (GBSS) were significantly and positively correlated with grain starch content, test weight, peak viscosity, and breakdown. The activities of glutamine synthase (GS) and glutamate synthase (GOGAT) were significantly and positively correlated with grain protein content and Glu/Gli ratio. Among three shading treatments, the commodity quality (test weight and water content) of maize grain was affected mostly by S1, moderately by S2, and least by S3, respectively. However, the effect of S2 treatment on grain nutrition quality was more decisive as compared with those of S1 and S3. This result suggested that the early and middle terms from flowering to maturity are the key stage for the impact of shading on grain qualities, with little effect for the light condition at the later stage from flowering to maturity stage.

Key words: Maize, Quality, Shading, Flowering to maturity stage

[1] WANG Dan, ZHOU Bao-Yuan, MA Wei, GE Jun-Zhu, DING Zai-Song, LI Cong-Feng, ZHAO Ming. Characteristics of the annual distribution and utilization of climate resource for double maize cropping system in the middle reaches of Yangtze River [J]. Acta Agronomica Sinica, 2022, 48(6): 1437-1450.
[2] YANG Huan, ZHOU Ying, CHEN Ping, DU Qing, ZHENG Ben-Chuan, PU Tian, WEN Jing, YANG Wen-Yu, YONG Tai-Wen. Effects of nutrient uptake and utilization on yield of maize-legume strip intercropping system [J]. Acta Agronomica Sinica, 2022, 48(6): 1476-1487.
[3] CHEN Jing, REN Bai-Zhao, ZHAO Bin, LIU Peng, ZHANG Ji-Wang. Regulation of leaf-spraying glycine betaine on yield formation and antioxidation of summer maize sowed in different dates [J]. Acta Agronomica Sinica, 2022, 48(6): 1502-1515.
[4] SHAN Lu-Ying, LI Jun, LI Liang, ZHANG Li, WANG Hao-Qian, GAO Jia-Qi, WU Gang, WU Yu-Hua, ZHANG Xiu-Jie. Development of genetically modified maize (Zea mays L.) NK603 matrix reference materials [J]. Acta Agronomica Sinica, 2022, 48(5): 1059-1070.
[5] LIU Jia-Xin, LAN Yu, XU Qian-Yu, LI Hong-Ye, ZHOU Xin-Yu, ZHAO Xuan, GAN Yi, LIU Hong-Bo, ZHENG Yue-Ping, ZHAN Yi-Hua, ZHANG Gang, ZHENG Zhi-Fu. Creation and identification of peanut germplasm tolerant to triazolopyrimidine herbicides [J]. Acta Agronomica Sinica, 2022, 48(4): 1027-1034.
[6] XU Jing, GAO Jing-Yang, LI Cheng-Cheng, SONG Yun-Xia, DONG Chao-Pei, WANG Zhao, LI Yun-Meng, LUAN Yi-Fan, CHEN Jia-Fa, ZHOU Zi-Jian, WU Jian-Yu. Overexpression of ZmCIPKHT enhances heat tolerance in plant [J]. Acta Agronomica Sinica, 2022, 48(4): 851-859.
[7] LIU Lei, ZHAN Wei-Min, DING Wu-Si, LIU Tong, CUI Lian-Hua, JIANG Liang-Liang, ZHANG Yan-Pei, YANG Jian-Ping. Genetic analysis and molecular characterization of dwarf mutant gad39 in maize [J]. Acta Agronomica Sinica, 2022, 48(4): 886-895.
[8] YAN Yu-Ting, SONG Qiu-Lai, YAN Chao, LIU Shuang, ZHANG Yu-Hui, TIAN Jing-Fen, DENG Yu-Xuan, MA Chun-Mei. Nitrogen accumulation and nitrogen substitution effect of maize under straw returning with continuous cropping [J]. Acta Agronomica Sinica, 2022, 48(4): 962-974.
[9] XU Ning-Kun, LI Bing, CHEN Xiao-Yan, WEI Ya-Kang, LIU Zi-Long, XUE Yong-Kang, CHEN Hong-Yu, WANG Gui-Feng. Genetic analysis and molecular characterization of a novel maize Bt2 gene mutant [J]. Acta Agronomica Sinica, 2022, 48(3): 572-579.
[10] CHEN Yun, LI Si-Yu, ZHU An, LIU Kun, ZHANG Ya-Jun, ZHANG Hao, GU Jun-Fei, ZHANG Wei-Yang, LIU Li-Jun, YANG Jian-Chang. Effects of seeding rates and panicle nitrogen fertilizer rates on grain yield and quality in good taste rice cultivars under direct sowing [J]. Acta Agronomica Sinica, 2022, 48(3): 656-666.
[11] LIU Yun-Jing, ZHENG Fei-Na, ZHANG Xiu, CHU Jin-Peng, YU Hai-Tao, DAI Xing-Long, HE Ming-Rong. Effects of wide range sowing on grain yield, quality, and nitrogen use of strong gluten wheat [J]. Acta Agronomica Sinica, 2022, 48(3): 716-725.
[12] SONG Shi-Qin, YANG Qing-Long, WANG Dan, LYU Yan-Jie, XU Wen-Hua, WEI Wen-Wen, LIU Xiao-Dan, YAO Fan-Yun, CAO Yu-Jun, WANG Yong-Jun, WANG Li-Chun. Relationship between seed morphology, storage substance and chilling tolerance during germination of dominant maize hybrids in Northeast China [J]. Acta Agronomica Sinica, 2022, 48(3): 726-738.
[13] QU Jian-Zhou, FENG Wen-Hao, ZHANG Xing-Hua, XU Shu-Tu, XUE Ji-Quan. Dissecting the genetic architecture of maize kernel size based on genome-wide association study [J]. Acta Agronomica Sinica, 2022, 48(2): 304-319.
[14] ZHANG Jun, ZHOU Dong-Dong, XU Ke, LI Bi-Zhong, LIU Zhong-Hong, ZHOU Nian-Bing, FANG Shu-Liang, ZHANG Yong-Jin, TANG Jie, AN Li-Zheng. Nitrogen fertilizer reduction and precise application model on mechanical transplanting japonica rice with good taste quality under straw returning in Huaibei Area [J]. Acta Agronomica Sinica, 2022, 48(2): 410-422.
[15] YAN Yan, ZHANG Yu-Shi, LIU Chu-Rong, REN Dan-Yang, LIU Hong-Run, LIU Xue-Qing, ZHANG Ming-Cai, LI Zhao-Hu. Variety matching and resource use efficiency of the winter wheat-summer maize “double late” cropping system [J]. Acta Agronomica Sinica, 2022, 48(2): 423-436.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!