Welcome to Acta Agronomica Sinica,

Acta Agron Sin ›› 2009, Vol. 35 ›› Issue (8): 1425-1431.doi: 10.3724/SP.J.1006.2009.01425

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Molecular Mapping of Powdery Mildew Resistance Gene in Wheat Cultivar Jimai 22

YIN Gui-Hong1,2,3, LI Gen-Ying4, HE Zhong-Hu2,5, LIU Jian-Jun4, WANG Hui1, and XIA Xian-Chun2,*   

  1. 1 College of Agronomy, Northwest A&F University, Yangling 712100, China; 2 Institute of Crop Sciences / National Wheat Improvement Center/ National Key Facility for Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences, Beijing 100081, China; 3 Zhoukou Academy of Agricultural Sciences, Zhoukou 466001, China; 4 Crop Research Institute, Shandong Academy of Agricultural Sciences, Jinan 250100, China; 5 CIMMYT China Office, Beijing 100081, China
  • Received:2009-03-13 Revised:2009-04-24 Online:2009-08-12 Published:2009-06-10
  • Contact: XIA Xian-Chun, E-mail: xiaxianchun@caas.net.cn; Tel: 010-82108610

Abstract:

Wheatpowdery mildew, caused by Blumeria graminis f. sp. tritici, is one of the most important diseases of wheat (Triticum aestivum L.) worldwide. Breeding resistant wheat cultivars is the most economical and effective approach to control the disease. Jimai 22, a newly released wheat cultivar with high yield, broad adaptability, and good quality, is related to broad-sprectrum resistance to the isolates of B. graminis f. sp. tritici at both seedling and adult plant stages. To map the resistance gene of Jimai 22 on wheat chromosome, we used a highly virulent isolate E20 to screen the F2 plants and F2:3 lines derived from the cross of Jimai 22/Chinese Spring. Genetic analysis indicated that Jimai 22 carried a single dominant genefor resistance to powdery mildew, designated PmJM22 tentatively. Using bulked segregant analysis (BSA) with SSR and STS markers, PmJM22 was located to chromosome 2BL. Linkage analysis indicated that the resistance gene was linked to four SSR and five EST markers, with genetic distances from 7.7 (Xwmc149) to 31.3 cM (Xbarc101).Based on the origins, chromosome locations, and reaction patterns, PmJM22 is different from all the known powdery mildew resistance genes Pm6, Pm26, Pm33, and Mlzec1 on chromosome 2BL.

Key words: Common Wheat, Powdery mildew, Resistance gene, Molecular markers

[1]Liang S S, Suenaga K, He Z H, Wang Z L, Liu H Y, Wang D S, Singh R P, Sourdille P, Xia X C. Quantitative trait loci mapping for adult-plant resistance to powdery mildew in bread wheat. Phytopathology, 2006, 96: 784-789

[2]National Agro-Tech Extension and Service Center (全国农业技术推广服务中心). Prediction of the outbreak of significant disease and pest for crops in national scale in 2004. China Plant Prot (中国植保导刊), 2004, (3): 21-22 (in Chinese)

[3]Zhang Y-J(张跃进), Wang J-Q(王建强), Jiang Y-Y(姜玉英), Xia B(夏冰). Prediction of the outbreak of disease and pest for crops in national scale in 2005. China Plant Prot (中国植保导刊), 2005, (4): 28-30 (in Chinese)

[4]Zhang Y-J(张跃进), Wang J-Q(王建强), Jiang Y-Y(姜玉英), Feng X-D(冯晓东), Xia B(夏冰). Prediction of the outbreak of disease and pest for crops in national scale in 2006. China Plant Prot (中国植保导刊), 2006, (4): 5-8 (in Chinese)

[5]Zhang Y-J(张跃进), Wang J-Q(王建强), Jiang Y-Y(姜玉英), Feng X-D(冯晓东), Xia B(夏冰), Liu Y(刘宇), Zeng J(曾娟). Prediction of the outbreak of disease and pest for crops in national scale in 2007. China Plant Prot (中国植保导刊), 2007, (2): 32-35 (in Chinese)

[6]Zhang Y-J(张跃进), Wang J-Q(王建强), Jiang Y-Y(姜玉英), Feng X-D(冯晓东), Xia B(夏冰), Liu Y(刘宇), Zeng J(曾娟). Prediction of the outbreak of disease and pest for crops in national scale in 2008. China Plant Prot (中国植保导刊), 2008, (3): 38-40 (in Chinese)

[7]McIntosh R A, Yamazaki Y, Dubcovsky J, Rogers J,Morris C, Somers D J, Appels R,Devos KM. Catalogue of gene symbols for wheat. In: Appels R, Eastwood R, Lagudah E, Langridge P, Mackay M, McIntyre L, Sharp P, eds. Proc 11th Intl Wheat Genet Symp. Sydney, Australia: Sydney University Press, 2008
[8] Hu T-Z(胡铁柱), Li H-J(李洪杰), Liu Z-J(刘子记), Xie C-J(谢超杰), Zhou Y-L(周益林), Duan X-Y(段霞瑜), Jia X(贾旭), You M-S(尤明山), Yang Z-M(杨作民), Sun Q-X(孙其信), Liu Z-Y(刘志勇). Identification and molecular mapping of the powdery mildew resistance gene in wheat cultivar Yumai 66. Acta Agron Sin (作物学报), 2008, 34(4): 545-550 (in Chinese with English abstract)
[9] Huang X Q, Röder M S. Molecular mapping of powdery mildew resistance genes in wheat: A review. Euphytica, 2004, 137: 203-223
[10]Miranda L M, Murphy J P, Marshall D, Leath S. Pm34: A new powdery mildew resistance gene transferred from Aegilops tauschii Coss. to common wheat (Triticum aestivum L.). Theor Appl Genet, 2006, 113: 1497-1504
[11]Miranda L M, Murphy J P, Marshall D, Cowger C, Leath S. Chromosomal location of Pm35, a novel Aegilops tauschii derived powdery mildew resistance gene introgressed into common wheat (Triticum aestivum L.). Theor Appl Genet, 2007, 114: 1451-1456
[12]Antonio Blanco, Gadaleta A, Cenci A, Carluccio A V, Abdelbacki A M M, Simeone R. Molecular mapping of the novel powdery mildew resistance gene Pm36 introgressed from Triticum turgidum var. dicoccoides in durum wheat. Theor Appl Genet,2008, 117: 135-142
[13]Perugini L D, Murphy J P, Marshall D, Brown-Guedira G. Pm37, a new broadly effective powdery mildew resistance gene from Triticum timopheevii. Theor Appl Genet, 2008, 116: 417-425
[14]Lillemo M, Asalf B, Singh R P, Huerta-Espino J, Chen X M, He Z H, Bjørnstad Å. The adult plant rust resistance loci Lr34/Yr18 and Lr46/Yr29 are important determinants of partial resistance to powderymildew in bread wheat line Saar. Theor Appl Genet,2008, 116: 1155-1166
[15]Hu T-Z(胡铁柱), Li H-J(李洪杰), Xie C-J(谢超杰), You M-S(尤明山), Yang Z-M(杨作民), Sun Q-X(孙其信), Liu Z-Y(刘志勇). Molecular mapping and chromosomal location of the powdery mildew resistance gene in wheat cultivar Tangmai 4. Acta Agron Sin (作物学报), 2008, 34(7): 1193-1198 (in Chinese with English abstract)
[16]Li H-S(李豪圣), Liu J-J(刘建军), Song J-M(宋建民), Liu A-F(刘爱峰), Cheng D-G(程敦公), Zhao Z-D(赵振东). Wheat cultivar Jimai 22 with high yield, stable productivity, good disease resistance and wide adaptability. J Triticeae Crops (麦类作物学报), 2007, 27(4): 744 (in Chinese)

[17]Wang Z L, Li L H, He Z H, Duan X Y, Zhou Y L, Chen X M, Lillemo M, Singh R P, Wang H, Xia X C. Seedling and adult plant resistance to powdery mildew in Chinese bread wheat cultivars and lines. Plant Dis, 2005, 89: 457-463
[18]Saghai-Maroof M A, Soliman K M, Jorgensen R A, Allard R W. Ribosomal DNA spacer-length polymorphisms in barley: Mendelian inheritance, chromosomal locations and population dynamics. Proc Natl Acad Sci USA, 1984, 81: 8014-8018
[19]Michelmore R W, Paran I, Kesseli R V. Identification of markers linked to disease-resistance genes by bulked segregant analysis: a rapid method to detect markers in specific genomic regions by using segregating population. Proc Natl Acad Sci USA, 1991, 88: 9828-9832
[20]Somers D J, Isaac P, Edwards K. A high-density microsatellite consensus map for bread wheat (Triticum aestivum L.). Theor Appl Genet, 2004, 109: 1105-1114
[21]Song Q J, Shi J R, Singh S, Fickus E W, Costa J M, Lewis J, Gill B S, Ward R, Cregan P B. Development and mapping of microsatellite (SSR) markers in wheat. Theor Appl Genet, 2005, 110: 550-560
[22]Conley E J, Nduati V, Gonzalez-Hernandez J L, Mesfin A, Trudeau-Spanjers M, Chao S, Lazo G R, Hummel D D, Anderson O D, Qi L L, Gill B S, Echalier B, Linkiewicz A M, Dubcovsky J, Akhunov E D, Dvo?ák J, Peng J H, Lapitan N L V, Pathan M S, Nguyen H T, Ma X F, Miftahudin, Gustafson J P, Greene R A, Sorrells M E, Hossain K G, Kalavacharla V, Kianian S F, Sidhu D, Dilbirligi M, Gill K S, Choi D W, Fenton R D, Close T J, McGuire P E, Qualset C O, Anderson J A. A 2600-locus chromosome bin map of wheat homoeologous group 2 reveals interstitial gene-rich islands and colinearity with rice. Genetics, 2004, 168: 625-637
[23]Sourdille P, Singh S, Cadalen T, Browm-Guedira G L, Gay G, Qi L L, Gill B S, Dufour P, Murigneux A, Bernard M. Microsatellite-based deletion bin system for the establishment of genetic-physical map relationships in wheat (Triticum aestivum L.). Funct Integr Genomics, 2004, 4: 12-25
[24]Mohler V, Zeller F J, Wenzel G, Hsam S L K. Chromosomal location of genes for resistance to powdery mildew in common wheat (Triticum aestivum L. em Thell.): 9. Gene MlZec1 from the Triticum dicoccoides-derived wheat line Zecoi-1. Euphytica, 2005, 142: 161-167
[25]Xiang Q-J(向齐君), Sheng B-Q(盛宝钦), Duan X-Y(段霞瑜), Zhou Y-L(周益林). The analysis of effective wheat powdery mildew resistance genes of some wheat breeding lines. Acta Agron Sin (作物学报), 1996, 22(6): 741-744 (in Chinese with English abstract)
[26]Wu X-P (武英鹏), Yuan Z-Y(原宗英), Li Y-F(李艳芳). Monitoring of the virulence of Erysiphe graminis f. sp. Tritici in different ecological areas of Shanxi Province. Chin J Eco-Agric (中国农业生态学报), 2005, 13(2): 62-64 (in Chinese with English abstract)
[27]Cao S-Q(曹世勤), Guo J-G(郭建国), Luo H-S(骆惠生), Jin M-A(金明安), Jia Q-Z(贾秋珍), Jin S-L(金社林). Selection of resistance sources to powdery mildew on wheat in Gansu and set-up of their gene banks. Plant Prot (植物保护), 2008, 34(1): 49-52(in Chinese with English abstract)
[28]Li Q(李强), Wang B-T(王保通), Wu X-Y(吴兴元), Duan S-K(段双科), Wang F(王芳). Analysis on resistant genes and new-breeding wheat cultivars (lines) for resistance to powdery mildew in Shaanxi Province. Acta Phytophylacica Sin (植物保护学报), 2008, 35(5): 438-442(in Chinese with English abstract)
[29]Yang Z-M(杨作民), Tang B-R(唐伯让), Shen K-Q(沈克全), Xia X-C(夏先春). A strategic problem in wheat resistance breeding-building and utilization of sources of second-line resistance against rusts and mildew in China. Acta Agron Sin (作物学报), 1994, 20: 385-394 (in Chinese with English abstract)
[30]Zhang Z-H(张志华), Wang H-S(王洪森), Yan J(闫俊), Wu Z-X(武芝霞). Assessment and application of wheat resistant germplasm C39. Crop Germplasm Resour (作物品种资源), 1999, (4): 36-37 (in Chinese)
[31]Zheng D-S(郑殿升), Song C-H(宋春华), Liu S-C(刘三才), Chen M-Y(陈梦英), Wang X-M(王晓鸣), Dai F-C(戴法超), Liu X-M(刘旭明), Li Y-L (李怡琳). Germplasm enhancement of wheat on resistance to powdery mildew. Crop Germplasm Resour (作物品种资源), 1999, (4): 33-55 (in Chinese)
[32]Wu J-P(武计萍), Xu G-Y(许钢垣), Qiu S-Y(仇松英), Meng Z-P(孟兆平), Xue J-Z(薛金枝), Lu L-H(逯腊虎).Genetic resistance of wheat germplasm Linyuan 7069 and current application. J Triticeae Crops (麦类作物学报), 1997, 17(5): 16-18 (in Chinese) )
[33]Wang J-X(王剑雄), Zhang Q-H(张清海), Guo X-C(郭秀婵). Opinions for stripe rust and powdery mildew resistance and utilization value of wheat varieties from Britain. Acta Agric Univ Henanensis (河南农业大学学报), 1992, 26(2): 174-178 (in Chinese with English abstract)
[34]Yan G P, Chen X M, Line R F, Wellings C R. Resistance gene-analog polymorph-hism markers co-segregating with the Yr5 gene for resistance to wheat stripe rust. Theor Appl Genet, 2003, 106: 636-643
[35]Rong J K, Millet E, Manisterski J, Feldman M. A new powdery mildew resistance gene: introgression from wild emmer into common wheat and RFLP-based mapping. Euphytica, 2000, 115: 121-126
[36]Wang R(王瑞), Liu H-Y(刘红彦), Li H-L(李洪连), Wang J-M(王俊美), Yi Y-J(伊艳杰). Identification of PCR markers linked to wheat powdery mildew resistance gene Pm6. J Triticeae Crops (麦类作物学报), 2007, 27(3): 421-424 (in Chinese with English)
[37]Zhu Z D, Zhou R H, Kong X Y, Dong Y C, Jia J Z. Microsatellite markers linked to two powdery mildew resistance genes introgressed from Triticum carthlicum accession PS5 into common wheat. Genome, 2005, 48: 585-590
[38]Smith P H, Hadfield J, Hart N J, Koebner R M, Boyd L A. STS markers for the wheat yellow rust resistance gene Yr5 suggest a NBS-LRR-type resistance gene cluster. Genome, 2007,50: 259-265
[1] DENG Zhao, JIANG Nan, FU Chen-Jian, YAN Tian-Zhe, FU Xing-Xue, HU Xiao-Chun, QIN Peng, LIU Shan-Shan, WANG Kai, YANG Yuan-Zhu. Analysis of blast resistance genes in Longliangyou and Jingliangyou hybrid rice varieties [J]. Acta Agronomica Sinica, 2022, 48(5): 1071-1080.
[2] ZHU Zheng, WANG Tian-Xing-Zi, CHEN Yue, LIU Yu-Qing, YAN Gao-Wei, XU Shan, MA Jin-Jiao, DOU Shi-Juan, LI Li-Yun, LIU Guo-Zhen. Rice transcription factor WRKY68 plays a positive role in Xa21-mediated resistance to Xanthomonas oryzae pv. oryzae [J]. Acta Agronomica Sinica, 2022, 48(5): 1129-1140.
[3] SHI Yu-Qin, SUN Meng-Dan, CHEN Fan, CHENG Hong-Tao, HU Xue-Zhi, FU Li, HU Qiong, MEI De-Sheng, LI Chao. Genome editing of BnMLO6 gene by CRISPR/Cas9 for the improvement of disease resistance in Brassica napus L [J]. Acta Agronomica Sinica, 2022, 48(4): 801-811.
[4] WANG Heng-Bo, CHEN Shu-Qi, GUO Jin-Long, QUE You-Xiong. Molecular detection of G1 marker for orange rust resistance and analysis of candidate resistance WAK gene in sugarcane [J]. Acta Agronomica Sinica, 2021, 47(4): 577-586.
[5] JIN Yi-Rong, LIU Jin-Dong, LIU Cai-Yun, JIA De-Xin, LIU Peng, WANG Ya-Mei. Genome-wide association study of nitrogen use efficiency related traits in common wheat (Triticum aestivum L.) [J]. Acta Agronomica Sinica, 2021, 47(3): 394-404.
[6] JIANG Wei, PAN Zhe-Chao, BAO Li-Xian, ZHOU Fu-Xian, LI Yan-Shan, SUI Qi-Jun, LI Xian-Ping. Genome-wide association analysis for late blight resistance of potato resources [J]. Acta Agronomica Sinica, 2021, 47(2): 245-261.
[7] ZHANG Rong-Yue, WANG Xiao-Yan, YANG Kun, SHAN Hong-Li, CANG Xiao-Yan, LI Jie, WANG Chang-Mi, YIN Jiong, LUO Zhi-Ming, LI Wen-Feng, HUANG Ying-Kun. Identification of brown rust resistance and molecular detection of Bru1 gene in new and main cultivated sugarcane varieties [J]. Acta Agronomica Sinica, 2021, 47(2): 376-382.
[8] ZHANG Huan, LUO Huai-Yong, LI Wei-Tao, GUO Jian-Bin, CHEN Wei-Gang, ZHOU Xiao-Jing, HUANG Li, LIU Nian, YAN Li-Ying, LEI Yong, LIAO Bo-Shou, JIANG Hui-Fang. Genome-wide identification of peanut resistance genes and their response to Ralstonia solanacearum infection [J]. Acta Agronomica Sinica, 2021, 47(12): 2314-2323.
[9] GUO Yan-Chun, ZHANG Li-Lan, CHEN Si-Yuan, QI Jian-Min, FANG Ping-Ping, TAO Ai-Fen, ZHANG Lie-Mei, ZHANG Li-Wu. Establishment of DNA molecular fingerprint of applied core germplasm in jute (Corchorus spp.) [J]. Acta Agronomica Sinica, 2021, 47(1): 80-93.
[10] WEN Jing, SHEN Yan-Qi, HAN Si-Ping, XING Yue-Xian, ZHANG Ye, WANG Zi-Yu, LI Shi-Jie, YANG Xiao-Hong, HAO Dong-Yun, ZHANG Yan. Exploration of specific gene(s) for ear rot resistance to Fusarium verticilloides in maize [J]. Acta Agronomica Sinica, 2020, 46(9): 1303-1311.
[11] ZHANG Xue-Cui,ZHONG Chao,DUAN Can-Xing,SUN Su-Li,ZHU Zhen-Dong. Fine mapping of Phytophthora resistance gene RpsZheng in soybean cultivar Zheng 97196 [J]. Acta Agronomica Sinica, 2020, 46(7): 997-1005.
[12] LI Qing-Cheng,HUANG Lei,LI Ya-Zhou,FAN Chao-Lan,XIE Die,ZHAO Lai-Bin,ZHANG Shu-Jie,CHEN Xue-Jiao,NING Shun-Zong,YUAN Zhong-Wei,ZHAN Lian-Quan,LIU Deng-Cai,HAO Ming. Genetic stability of wheat-rye 6RS/6AL translocation chromosome and its transmission through gametes [J]. Acta Agronomica Sinica, 2020, 46(4): 513-519.
[13] ZHANG Ping-Ping,YAO Jin-Bao,WANG Hua-Dun,SONG Gui-Cheng,JIANG Peng,ZHANG Peng,MA Hong-Xiang. Soft wheat quality traits in Jiangsu province and their relationship with cookie making quality [J]. Acta Agronomica Sinica, 2020, 46(4): 491-502.
[14] Di JIN,Dong-Zhi WANG,Huan-Xue WANG,Run-Zhi LI,Shu-Lin CHEN,Wen-Long YANG,Ai-Min ZHANG,Dong-Cheng LIU,Ke-Hui ZHAN. Fine mapping and candidate gene analysis of awn inhibiting gene B2 in common wheat [J]. Acta Agronomica Sinica, 2019, 45(6): 807-817.
[15] Wen-Yang XIANG,Yong-Qing YANG,Qiu-Yan REN,Tong-Tong JIN,Li-Qun WANG,Da-Gang WANG,Hai-Jian ZHI. Cloning and analysis of candidate gene resistant to SC3 in soybean [J]. Acta Agronomica Sinica, 2019, 45(12): 1822-1831.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!