Acta Agron Sin ›› 2010, Vol. 36 ›› Issue (06): 905-910.doi: 10.3724/SP.J.1006.2010.00905
• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles Next Articles
HAN Li-Chao, JIANG Wei, YANG Shou-Ping, YU De-Ti, GAI Jun-Yi
[1] Bachem C W B, Van Der Hoeven R S, De Bruijn S M, Vreugdenhil D, Zabeau M, Visser R G F. Visualization of differential gene expression using a novel method of RNA fingerprinting based on AFLP: Analysis of gene expression during potato tuber development. Plant J, 1996, 9: 745-753[2] Habu Y, Fukada-Tanaka S, Hisatomi Y, Iida S. Amplified restriction fragment length polymorphism-based mRNA fingerprinting using a single restriction enzyme that recognizes a 4-bp sequence. Biochem Biophys Res Commun,1997, 234: 516-521[3] Van Der Biezen E A, Juwana H, Parker J E, Jones J D G. cDNA-AFLP display for the isolation of Peronospora parasitica genes expressed during infection in Arabidopsis thaliana. Mol Plant-Microbe Interac, 2000, 13: 895-898 [4] Qin L, Overmars H, Helder J, Popeijus H, Van Der Voort J R, Groenink W, Van Koert P, Schots A, Bakker J, Smant G. An efficient cDNA-AFLP-based strategy for the identification of putative pathogenicity factors from the potato cyst nematode Globodera rostochiensis. Mol Plant-Microbe Interac,2000, 13: 830-836[5] Ling X-Y凌杏元), Zhou P-J周培疆), Huang Q-Y黄青阳), Guan H-X关和新), Zhu Y-G朱英国). Isolation and sequence analysis of a mitochondrial DNA fragment associated with CMS in Hong Lian type rice. Acta Biol Exp Sin (实验生物学报), 2000, 33(2): 151-155 (in Chinese with English abstract)((((([6] Wu M-S(吴敏生), Gao Z-H(高志环), Dai J-R(戴景瑞). Studies on differential gene expression of maize (Zea mays L.) by means of cDNA- AFLP technique. Acta Agron Sin (作物学报), 2001, 27(3): 339-342 (in Chinese with English abstract)[7] Wang Y-Q(王永勤), Cao J-S(曹家树), Fu Q-G(符庆功), Yu X-L(余小林), Ye W-Z(叶纨芝), Xiang X(向珣). Differential expression analysis of genic male sterility A/B lines by cDNA-AFLP in Chinese cabbage-pak-choi (Brassica campestris ssp. chinensis Makino). Sci Agric Sin (中国农业科学), 2003, 36(5): 557-560 (in Chinese with English abstract)[8] Lü S-H(吕山花), Meng Z(孟征). Gene duplication and functional diversification in the MADS-box gene family. Chin Bull Bot (植物学通报), 2007, 24(1): 60-70 (in Chinese with English abstract)[9] Parenicova L, De Folter S, Kieffer M, Horner D S, Favalli C, Busscher J, Cook H E, Ingram R M, Kater M M, Davies B, Angenent G C, Colombo L. Molecular and phylogenetic analyses of the complete MADS-box transcription factor family in Arabidopsis: New openings to the MADS world. Plant Cell, 2003, 15: 1538-1551[10] Nam J, Kim J, Lee S, An G, Ma H, Nei M. Type I MADS-box genes have experienced faster birth-and-death evolution than type II MADS-box genes in angiosperms. Proc Nat Acad Sci USA, 2004, 101: 1910-1915[11] Michaels S D, Ditta G, Gustafson-Brown C, Pelaz S, Yanofsky M, Amasino R M. AGL24 acts as a promoter of flowering in Arabidopsis and is positively regulated by vernalization. Plant J, 2003, 33: 867-874[12] Battaglia R, Brambilla V, Colombo L, Stuitje A R, Kater M M. Functional analysis of MADS-box genes controlling ovule development in Arabidopsis using the ethanol-inducible alc gene-expression system. Mech Dev, 2006, 123: 267-276[13] Wang X-L(汪潇琳), Chen Y-P(陈艳萍), Yu D-Y(喻德跃). Expression of the MADS-box gene GmAGL15 in seed development of soybean. Acta Agron Sin (作物学报), 2008, 34(2): 330-332 (in Chinese with English abstract)[14] Alvarez-Buylla E R, Liljegren S J, Pelaz S, Gold S E, Burgeff C, Ditta G S, Vergara-Silva F, Yanofsky M F. MADS-box gene evolution beyond flowers: Expression in pollen, endosperm, guard cells, roots and trichomes. Plant J, 2000, 24: 457-466[15] Bai Y N, Gai J Y. Development of a new cytoplasmic-nuclear male-sterility line of soybean and inheritance of its male-fertility restorability. Plant Breed, 2006, 125: 85-88[16] Bachem C W B, Oomen R J F J, Visser R G F. Transcript imaging with cDNA-AFLP: A step-by-step protocol. Plant Mol Biol Rep, 1998, 16: 157-173[17] Coen E S, Meyerowitz E M. The war of the whorls: Genetic interactions controlling flower development. Nature, 1991, 353: 31-37[18] Ferrario S, Immink R G H, Shchennikova A, Busscher-Lange J, Angenent G C. The MADS box gene FBP2 is required for SEPALLATA function in petunia. Plant Cell, 2003, 15: 914-925[19] TheiBen G, Saedler H. Floral quartets. Nature, 2001, 409: 469-471[20] Hu R-B(胡瑞波), Fan C-M(范成明), Li H-Y(李宏宇), Lin C-T(林辰涛), Fu Y-F(傅永福). Analysis of MIKC-type MADS-box genes in soybean (Glycine max). Mol Plant Breed (分子植物育种), 2009, 7(3): 429-436 (in Chinese with English abstract)[21] Bowman J L, Smyth D R, Meyerowitz E M. Genes directing flower development in Arabidopsis. Plant Cell,1989, 1: 37-52[22] Murai K, Takumi S, Koga H, Ogihara Y. Pistillody, homeotic transformation of stamens into pistil-like structures, caused by nuclear- cytoplasm interaction in wheat. Plant J, 2002, 29: 169-181[23] Meguro A, Takumi S, Ogihara Y, Murai K. WAG, a wheat AGAMOUS homolog, is associated with development of pistil-like stamens in alloplasmic wheats. Sex Plant Reprod, 2003, 15: 221-230[24] Hama E, Takumi S, Ogihara Y, Murai K. Pistillody is caused by alterations to the class-B MADS-box gene expression pattern in alloplasmic wheats. Planta, 2004, 218: 712-720[25] Sun Q-P(孙清萍), Wang L(汪莉), Yi P(易平), Zhu Y-G(朱英国). Expression analysis of MADS-box gene family on uni-nucleate and bi-nucleate stage anthers on HL-CMS system. Wuhan Bot Res (武汉植物学研究), 2002, 20(5): 325-328 (in Chinese with English abstract)[26] Yuan Z-Q(袁自强), Qian X-Y(钱晓茵), Liu J(刘军), Liu J-D(刘建东), Qian M(钱旻), Yang J-S(杨金水). cDNA cloning and analysis of two MADS-box genes in rice. Prog Nat Sci (自然科学进展), 2000, 10(2): 129-134 (in Chinese)[27] Zhou L-L(周琳璘), Song G-Q(宋国琦), Li H-Y(李红燕), Hu Y-G(胡银岗), He B-R(何蓓如). A MADS-box transcription factor related to fertility conversion in male sterile wheat lines. Acta Agron Sin (作物学报), 2008, 34(4): 598-604 (in Chinese with English abstract) |
[1] | CHEN Ling-Ling, LI Zhan, LIU Ting-Xuan, GU Yong-Zhe, SONG Jian, WANG Jun, QIU Li-Juan. Genome wide association analysis of petiole angle based on 783 soybean resources (Glycine max L.) [J]. Acta Agronomica Sinica, 2022, 48(6): 1333-1345. |
[2] | YANG Huan, ZHOU Ying, CHEN Ping, DU Qing, ZHENG Ben-Chuan, PU Tian, WEN Jing, YANG Wen-Yu, YONG Tai-Wen. Effects of nutrient uptake and utilization on yield of maize-legume strip intercropping system [J]. Acta Agronomica Sinica, 2022, 48(6): 1476-1487. |
[3] | YU Chun-Miao, ZHANG Yong, WANG Hao-Rang, YANG Xing-Yong, DONG Quan-Zhong, XUE Hong, ZHANG Ming-Ming, LI Wei-Wei, WANG Lei, HU Kai-Feng, GU Yong-Zhe, QIU Li-Juan. Construction of a high density genetic map between cultivated and semi-wild soybeans and identification of QTLs for plant height [J]. Acta Agronomica Sinica, 2022, 48(5): 1091-1102. |
[4] | LI A-Li, FENG Ya-Nan, LI Ping, ZHANG Dong-Sheng, ZONG Yu-Zheng, LIN Wen, HAO Xing-Yu. Transcriptome analysis of leaves responses to elevated CO2 concentration, drought and interaction conditions in soybean [Glycine max (Linn.) Merr.] [J]. Acta Agronomica Sinica, 2022, 48(5): 1103-1118. |
[5] | PENG Xi-Hong, CHEN Ping, DU Qing, YANG Xue-Li, REN Jun-Bo, ZHENG Ben-Chuan, LUO Kai, XIE Chen, LEI Lu, YONG Tai-Wen, YANG Wen-Yu. Effects of reduced nitrogen application on soil aeration and root nodule growth of relay strip intercropping soybean [J]. Acta Agronomica Sinica, 2022, 48(5): 1199-1209. |
[6] | WANG Hao-Rang, ZHANG Yong, YU Chun-Miao, DONG Quan-Zhong, LI Wei-Wei, HU Kai-Feng, ZHANG Ming-Ming, XUE Hong, YANG Meng-Ping, SONG Ji-Ling, WANG Lei, YANG Xing-Yong, QIU Li-Juan. Fine mapping of yellow-green leaf gene (ygl2) in soybean (Glycine max L.) [J]. Acta Agronomica Sinica, 2022, 48(4): 791-800. |
[7] | LI Rui-Dong, YIN Yang-Yang, SONG Wen-Wen, WU Ting-Ting, SUN Shi, HAN Tian-Fu, XU Cai-Long, WU Cun-Xiang, HU Shui-Xiu. Effects of close planting densities on assimilate accumulation and yield of soybean with different plant branching types [J]. Acta Agronomica Sinica, 2022, 48(4): 942-951. |
[8] | DU Hao, CHENG Yu-Han, LI Tai, HOU Zhi-Hong, LI Yong-Li, NAN Hai-Yang, DONG Li-Dong, LIU Bao-Hui, CHENG Qun. Improving seed number per pod of soybean by molecular breeding based on Ln locus [J]. Acta Agronomica Sinica, 2022, 48(3): 565-571. |
[9] | ZHOU Yue, ZHAO Zhi-Hua, ZHANG Hong-Ning, KONG You-Bin. Cloning and functional analysis of the promoter of purple acid phosphatase gene GmPAP14 in soybean [J]. Acta Agronomica Sinica, 2022, 48(3): 590-596. |
[10] | WANG Juan, ZHANG Yan-Wei, JIAO Zhu-Jin, LIU Pan-Pan, CHANG Wei. Identification of QTLs and candidate genes for 100-seed weight trait using PyBSASeq algorithm in soybean [J]. Acta Agronomica Sinica, 2022, 48(3): 635-643. |
[11] | ZHANG Guo-Wei, LI Kai, LI Si-Jia, WANG Xiao-Jing, YANG Chang-Qin, LIU Rui-Xian. Effects of sink-limiting treatments on leaf carbon metabolism in soybean [J]. Acta Agronomica Sinica, 2022, 48(2): 529-537. |
[12] | YU Tao-Bing, SHI Qi-Han, NIAN-Hai , LIAN Teng-Xiang. Effects of waterlogging on rhizosphere microorganisms communities of different soybean varieties [J]. Acta Agronomica Sinica, 2021, 47(9): 1690-1702. |
[13] | SONG Li-Jun, NIE Xiao-Yu, HE Lei-Lei, KUAI Jie, YANG Hua, GUO An-Guo, HUANG Jun-Sheng, FU Ting-Dong, WANG Bo, ZHOU Guang-Sheng. Screening and comprehensive evaluation of shade tolerance of forage soybean varieties [J]. Acta Agronomica Sinica, 2021, 47(9): 1741-1752. |
[14] | CAO Liang, DU Xin, YU Gao-Bo, JIN Xi-Jun, ZHANG Ming-Cong, REN Chun-Yuan, WANG Meng-Xue, ZHANG Yu-Xian. Regulation of carbon and nitrogen metabolism in leaf of soybean cultivar Suinong 26 at seed-filling stage under drought stress by exogenous melatonin [J]. Acta Agronomica Sinica, 2021, 47(9): 1779-1790. |
[15] | ZHANG Ming-Cong, HE Song-Yu, QIN Bin, WANG Meng-Xue, JIN Xi-Jun, REN Chun-Yuan, WU Yao-Kun, ZHANG Yu-Xian. Effects of exogenous melatonin on morphology, photosynthetic physiology, and yield of spring soybean variety Suinong 26 under drought stress [J]. Acta Agronomica Sinica, 2021, 47(9): 1791-1805. |
|