Welcome to Acta Agronomica Sinica,

Acta Agron Sin ›› 2010, Vol. 36 ›› Issue (11): 1820-1831.doi: 10.3724/SP.J.1006.2010.01820

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Analysis of Genetic Structure and Genetic Relationships of Partial Maize Inbred Lines in China

WU Cheng-Lai,ZHANG Qian-Qian,DONG Bing-Xue,ZHANG Chun-Qing*   

  1. State Key Laboratory of Crop Biology / College of Agriculture, Shandong Agricultural University, Tai’an 271018, China
  • Received:2010-02-03 Revised:2010-06-29 Online:2010-11-12 Published:2010-08-30
  • About author:ZHANG Chun-Qing, E-mail: cqzhang@sdau.edu.cn, Tel: 05388242682

Abstract: Knowledge about the population structure and relationships within and among maize inbred lines was important to improvement and utilization of maize inbred line. Distance-based cluster and model-based cluster methods were used to analyze the genetic structure and relationship of 97 maize inbred lines used in China with 112 microsatellite (simple sequence repeat, SSR) markers, evenly distributed over 10 chromosomes. Results showed that model-based cluster method was more suitable for maize inbred line clustering than distance-based cluster method, because the former could define the group of inbred lines more effectively than the latter. All inbred lines were grouped into four groups by model-based cluster method: Reid, Lüda red cob (LRC), PB and Tangsipingtou (SPT). According to the result of genetic structure component (Q-value), numerous inbred lines in each group were overlapped in genetic component with the other groups. Reid group kept minimum Nei’s genetic distance with LRC group, had most distant genetic relationship with SPT group. The results of genetic relationships among groups indicated that the four groups could be simplified into three (A: Reid, LRC; B: PB; C: SPT) or two (A: Reid, LRC, PB; B: SPT) potential heterotic groups. The defined population and the genetic component analysis of inbred lines provided the basis for improving the efficiency of hybrid breeding.

Key words: Maize, Inbred line, SSR, Genetic relationship, Genetic structure

[1]Wu J-F(吴景锋). A review on the germplasm bases of the main corn hybrids in china. Sci Agric Sin (中国农业科学), 1983, 16(2): 1-8 (in Chinese with English abstract)
[2]Zeng S-X(曾三省). The maize germplasm base of hybfids in china. Sci Agric Sin (中国农业科学), 1990, 23(4): 1-9 (in Chinese with English abstract)
[3]Wang Y-B(王懿波), Wang Z-H(王振华), Wang Y-P(王永普), Zhang X(张新), Lu L-X(陆利行). Studies on the heterosis utilizing models of main maize germplasms in China. Sci Agric Sin (中国农业科学), 1997, 30(4): 16-24 (in Chinese with English abstract)
[4]Wang Y-B(王懿波), Wang Z-H(王振华), Wang Y-P(王永普), Zhang X(张新), Lu L-X(陆利行). Division, utilization and the improvement of main germplasm heterosis of maize in China. Acta Agric Boreali-Sin (华北农学报), 1998, 13 (1): 74-80 (in Chinese with English abstract)
[5]Lan F-S(兰发盛), Teng Y-C(腾耀聪), Li D-B(李德宾), Zhang B(张彪), Tian S-J(田守均), Lu Q-Y(卢乔云). A preliminary study on heterotic groups among maize inbreds and it’s utilization. J Sichuan Agric Univ (四川农业大学学报), 1993, 11(1): 64-69 (in Chinese with English abstract)
[6]Chen Y-H(陈彦惠), Liu X-Z(刘新芝), Peng Z-B(彭泽斌), Zhang C-Z(张传贞), Gao S-L(高素玲), Chen Y-Q(陈秋元). Classification of heterosis populations and the construction of heterosis models for maize inbred lines. Acta Agric Univ Henanensis (河南农业大学学报), 1995, 29(4): 341-347 (in Chinese with English abstract)
[7]Li M-S(李明顺), Zhang S-H(张世煌), Li X-H(李新海), Pan G-T(潘光堂), Bai L(白丽), Peng Z-B(彭泽斌). Study on heterotic groups among maize inbred lines based on SCA. Sci Agric Sin (中国农业科学), 2002, 35(6): 600-605 (in Chinese with English abstract)
[8]Smith J S C, Chin E C L, Shu H, Smith O S, Wall S J, Senior M L, Mitchell S E, Kresovich S, Ziegle J. An evaluation of the utility of SSR loci as molecular markers in maize (Zea mays L.): comparisons with data from RFLPS and pedigree. Theor Appl Genet, 1997, 95: 163-173
[9]Senior M L, Murphy J P, Goodman M M, Stuber C W. Utility of SSRs for determining genetic similarities and relationships in maize using an agarosegel system. Crop Sci, 1998, 38: 1088-1098
[10]Li X-H(李新海), Fu J-H(傅骏骅), Zhang S-H (张世煌), Yuan L-X(袁力行), Li M-S(李明顺). Genetic variation of inbred lines of maize detected by SSR markers. Sci Agric Sin (中国农业科学), 2000, 33(2): 1-9 (in Chinese with English abstract)
[11]Li X-H(李新海), Yuan L-X(袁力行), Li X-H(李晓辉), Zhang S-H(张世煌), Li M-S(李明顺), Li W-H(李文华) . Heterotic grouping of 70 maize inbred lines by SSR markers. Sci Agric Sin (中国农业科学), 2003, 36(6): 622-627 (in Chinese with English abstract)
[12]Li Y, Du J, Wang T, Shi Y, Song Y, Jia J. Genetic diversity and relationships among Chinese maize inbred lines revealed by SSR markers. Maydica, 2002, 47: 93-101
[13]Lu H, Bernardo R. Molecular marker diversity among current and historical maize inbreds. Theor Appl Genet, 2001, 103: 613-617
[14]Yuan L-X(袁力行), Fu J-H(傅骏骅), Warburton L M, Li X-H(李新海), Zhang S-H (张世煌), Khairallah M, Liu X-Z(刘新芝), Peng Z-B(彭泽斌), Li L-C(李连城). Comparison of genetic diversity in maize inbreds based on RFLP, SSR, AFLP and RAPD markers. Acta Genet Sin (遗传学报), 2000, 27(8): 725-733 (in Chinese with English abstract).
[15]Yuan L-X(袁力行), Fu J-H(傅骏骅), Zhang S-H (张世煌), Liu X-Z(刘新芝), Peng Z-B(彭泽斌), Li X-H(李新海). Heterotic grouping of maize inbred lines using RFLP and SSR markers. Acta Agron Sin (作物学报), 2001, 27(2): 149-156 (in Chinese with English abstract)
[16]Fan X-M (番兴明), Zhang S-H (张世煌), Tan J (谭静), Li M-S(李明顺), Li X-H(李新海). Heterotic grouping of quality protein maize inbreds divided by SSR Markers. Acta Agron Sin (作物学报), 2003, 29(l): 105-110 (in Chinese with English abstract)
[17]Reif J C, Melchinger A E, Xia X C. Genetic distance based on simple sequence repeats and heterosis in tropical maize population. Crop Sci, 2003, 43: 1275-1282
[18]Rajab C, Abdolahadi H, Mohammad R G, Marilyn L W, Reza T A, Abolghasem M S. Use of SSR data to determine relationships and potential heterotic groupings within medium to late maturing Iranian maize inbred lines. Field Crops Res, 2006, 95: 212-222
[19]Enoki H, Sato H, Koinuma K. SSR analysis of genetic diversity among maize inbred lines adapted to cold regions of Japan. Theor Appl Genet, 2002, 104: 1270-1277
[20]Li L-H(李丽华), Wei X(魏昕), Pan G-T(潘光堂), Tang B-J(唐保军), Ding Y(丁勇), Zhao F-X(赵发欣). Genetic diversity analysis among new maize inbred lines revealed by SSR. J Maize Sci (玉米科学), 2009, 17(4): 24-28 (in Chinese with English abstract)
[21]Pritchard J K, Stephens M, Donnelly P. Inference of population structure using multilocus genotype data. Genetics, 2000, 155: 945-959
[22]Sun Y-W(孙友位), Li M-S(李明顺), Zhang D-G(张德贵), Xiao M-J(肖木辑), Zhang S-H (张世煌). Determine genetic diversity among 85 maize inbred lines using SSR markers. J Maize Sci (玉米科学), 2007, 15(6): 19-26 (in Chinese with English abstract)
[23]Xie C X, Warburton M, Li M S, Li X H, Xiao M J, Hao Z F, Zhao Q, Zhang S H. An analysis of population structure and linkage disequilibrium using multilocus data in 187 maize inbred lines. Mol Breed, 2008, 21: 407-418
[24]Saghai-Maroof M A, Soliman K, Jorgensen R A, Allard R W. Ribosomal DNA spacer length polymorphism in barley: Mendelian inheritance, chromosomal location and population dynamics. Proc Natl Acad Sci USA, 1984, 81: 8014-8018
[25]Jochen C, Reif J C, Hamrit S, Heckenberger M, Schipprack W, Maurer H P, Bohn M, Melchinger A E. Genetic structure and diversity of European flint maize populations determined with SSR analyses of individuals and bulks. Theor Appl Genet, 2005, 111: 906-913
[26]Rohlf F J. NTSYS: Numerical Taxonomy and Multivariate Analysis System, Version 2.1. New York: State University of New York, 2000
[27]Pritchard J K, Wen W. Documentation for STRUCTURE Software: Version 2. 2003, http: //pritch.bsd.uchicago.edu
[28]Zhang J(张军), Zhao T-J(赵团结), Gai J-Y(盖钧镒). Analysis of genetic structure differentiation of released soybean cultivar population and specificity of subpopulations in China. Sci Agric Sin (中国农业科学), 2009, 42(6): 1901-1910 (in Chinese with English abstract)
[29]Evanno G, Regnaut S, Goudet J. Detecting the number of cluster of individuals using the software structure: A simulation study. Mol Ecol, 2005, 14: 2611-2620
[30]Yeh F C, Yang R C. POPGENE Version 1. 31, available at http://www.ualberta.ca/fyeh/popgene, 1999
[31]Falush D, Wirth T, Linz B, Pritchard J K, Stephens M. Traces of human migrations in Helicobacter pylori populations. Science, 2003, 299: 1582-1585
[32]Chen H-J(陈红菊), Yue Y-S(岳永生), Fan X-Z(樊新忠), Zhang C-S(张传生), Du L-X(杜立新). A Comparative Study of Genetic Distance and Clustering Analysis among Shandong Indigenous Chicken Breeds. Acta Veterinaria et Zootechnica Sinica (畜牧兽医学报), 2004, 35(1): 33-36 (in Chinese with English abstract)
[33]Zong X-X(宗绪晓), Guan J-P(关建平), Gu J(顾竟), Wang H-F(王海飞), Ma Y(马钰). Differentiation on population structure and genetic diversity of pea core collections separately constituted from Chinese landraces and international genetic resources. Journal of Plant Genetic Resources (植物遗传资源学报), 2009, 10(3): 347-353 (in Chinese with English abstract)
[34]Verónica V L, Poggio L, Confalonie V A. Microsatellite variation in maize landraces from Northwestern Argentina: genetic diversity, population structure and racial affiliations. Theor Appl Genet 2009, 119: 1053-1067
[35]Qin J(秦君), Li Y-H(李英慧), Liu Z-X(刘章雄), Luan W-J(栾维江), Yan Z(闫哲), Guan R-X(关荣霞), Zhang M-C(张孟臣), Chang R-Z(常汝镇), Li G-M(李广敏), Ma C-Y(马峙英), Qiu L-J(邱丽娟). Genetic structure and diversity of soybean germplasm in Heilongjiang, China. Acta Agron Sin (作物学报), 2009, 35(2): 228-238 (in Chinese with English abstract)
[36]Zheng D-H(郑大浩), Li Y-R(李艳茹), Jin F-X(金锋学), Jiang J-J(蒋基建). Pedigree and germplasm base of inbreds of the Lancaster heterotic group of maize in China. Sci Agric Sin (中国农业科学), 2002, 35(7): 750-757 (in Chinese with English abstract)
[37]Xiao M-J(肖木辑), Li M-S(李明顺), Sun Y-W(孙有位), Li X-H(李新海), Zhang S-H(张世煌). Genetic diversity revealed by SSR among maize inbred lines used predominantly in Liaoning province. J Maize Sci (玉米科学), 2006, 14(1): 33-36 (in Chinese with English abstract)
[38]Lei K-R(雷开荣), Wu H(吴红), Chen W-J(陈文俊), Lin Q(林清), Chen X(陈旭), Jiang Z-C(蒋志诚). Analysis of genetic structure of selected lines from temperate Zone×Tropical Zone maize by SSR marker. Chin Agric Sci Bull (中国农学通报), 2008, 24(12): 86-91 (in Chinese with English abstract)
[39]Li H-Y(李会勇), Wang L-F(王利锋), Tang B-J(唐保军), Cheng Z-Q(程泽强), Wang Z-H(王振华), Tie S-G(铁双贵). Research on the genetic structure and heterosis of Zhengdan958. J Maize Sci (玉米科学), 2009, 17(1): 28-31 (in Chinese with English abstract)
[40]Ding Z-H(丁照华), Wu H-F(吴洪飞), Liu Z-X(刘治先), Wang L-M(汪黎明), Meng Z-D(孟昭东), Yang F(杨菲), Zhang F-J(张发军). Germplasm analysis of main corn hybrids approved in Shandong Province. Shandong Agric Sci (山东农业科学), 2008, (6): 31-34 (in Chinese with English abstract)
[41]Li C-H(李春辉), Cai Z (才卓), Li F-R(李凤任), Lu Y-W(卢亚文), Liu Y-C (柳迎春). The effect of Tangsipingtou on maize breeding in Jilin province. J Maize Sci (玉米科学), 2008, 16(6): 11-14 (in Chinese with English abstract)
[42]Li D-H(李登海), Mao L-H(毛丽华), Yang J-S(杨今胜), Liu J-G(柳京国), Zhang Y-H(张永慧). Breeding process and utilization of excellent maize inbred line 478. J Laiyang Agric Coll (莱阳农学院学报), 2005, 22(3): 159-164 (in Chinese with English abstract)
[43]Zhang S-H(张世煌), Peng Z-B (彭泽斌), Li X-H(李新海). Heterosis and germplasm enhancement, improvement and development of maize. Sci Agric Sin (中国农业科学), 2000, 33(suppl): 34-39 (in Chinese with English abstract)
[1] XIAO Ying-Ni, YU Yong-Tao, XIE Li-Hua, QI Xi-Tao, LI Chun-Yan, WEN Tian-Xiang, LI Gao-Ke, HU Jian-Guang. Genetic diversity analysis of Chinese fresh corn hybrids using SNP Chips [J]. Acta Agronomica Sinica, 2022, 48(6): 1301-1311.
[2] WANG Dan, ZHOU Bao-Yuan, MA Wei, GE Jun-Zhu, DING Zai-Song, LI Cong-Feng, ZHAO Ming. Characteristics of the annual distribution and utilization of climate resource for double maize cropping system in the middle reaches of Yangtze River [J]. Acta Agronomica Sinica, 2022, 48(6): 1437-1450.
[3] YANG Huan, ZHOU Ying, CHEN Ping, DU Qing, ZHENG Ben-Chuan, PU Tian, WEN Jing, YANG Wen-Yu, YONG Tai-Wen. Effects of nutrient uptake and utilization on yield of maize-legume strip intercropping system [J]. Acta Agronomica Sinica, 2022, 48(6): 1476-1487.
[4] CHEN Jing, REN Bai-Zhao, ZHAO Bin, LIU Peng, ZHANG Ji-Wang. Regulation of leaf-spraying glycine betaine on yield formation and antioxidation of summer maize sowed in different dates [J]. Acta Agronomica Sinica, 2022, 48(6): 1502-1515.
[5] SHAN Lu-Ying, LI Jun, LI Liang, ZHANG Li, WANG Hao-Qian, GAO Jia-Qi, WU Gang, WU Yu-Hua, ZHANG Xiu-Jie. Development of genetically modified maize (Zea mays L.) NK603 matrix reference materials [J]. Acta Agronomica Sinica, 2022, 48(5): 1059-1070.
[6] XU Jing, GAO Jing-Yang, LI Cheng-Cheng, SONG Yun-Xia, DONG Chao-Pei, WANG Zhao, LI Yun-Meng, LUAN Yi-Fan, CHEN Jia-Fa, ZHOU Zi-Jian, WU Jian-Yu. Overexpression of ZmCIPKHT enhances heat tolerance in plant [J]. Acta Agronomica Sinica, 2022, 48(4): 851-859.
[7] LIU Lei, ZHAN Wei-Min, DING Wu-Si, LIU Tong, CUI Lian-Hua, JIANG Liang-Liang, ZHANG Yan-Pei, YANG Jian-Ping. Genetic analysis and molecular characterization of dwarf mutant gad39 in maize [J]. Acta Agronomica Sinica, 2022, 48(4): 886-895.
[8] CHEN Xiao-Hong, LIN Yuan-Xiang, WANG Qian, DING Min, WANG Hai-Gang, CHEN Ling, GAO Zhi-Jun, WANG Rui-Yun, QIAO Zhi-Jun. Development of DNA molecular ID card in hog millet germplasm based on high motif SSR [J]. Acta Agronomica Sinica, 2022, 48(4): 908-919.
[9] ZHANG Xia, YU Zhuo, JIN Xing-Hong, YU Xiao-Xia, LI Jing-Wei, LI Jia-Qi. Development and characterization analysis of potato SSR primers and the amplification research in colored potato materials [J]. Acta Agronomica Sinica, 2022, 48(4): 920-929.
[10] YAN Yu-Ting, SONG Qiu-Lai, YAN Chao, LIU Shuang, ZHANG Yu-Hui, TIAN Jing-Fen, DENG Yu-Xuan, MA Chun-Mei. Nitrogen accumulation and nitrogen substitution effect of maize under straw returning with continuous cropping [J]. Acta Agronomica Sinica, 2022, 48(4): 962-974.
[11] XU Ning-Kun, LI Bing, CHEN Xiao-Yan, WEI Ya-Kang, LIU Zi-Long, XUE Yong-Kang, CHEN Hong-Yu, WANG Gui-Feng. Genetic analysis and molecular characterization of a novel maize Bt2 gene mutant [J]. Acta Agronomica Sinica, 2022, 48(3): 572-579.
[12] SONG Shi-Qin, YANG Qing-Long, WANG Dan, LYU Yan-Jie, XU Wen-Hua, WEI Wen-Wen, LIU Xiao-Dan, YAO Fan-Yun, CAO Yu-Jun, WANG Yong-Jun, WANG Li-Chun. Relationship between seed morphology, storage substance and chilling tolerance during germination of dominant maize hybrids in Northeast China [J]. Acta Agronomica Sinica, 2022, 48(3): 726-738.
[13] QU Jian-Zhou, FENG Wen-Hao, ZHANG Xing-Hua, XU Shu-Tu, XUE Ji-Quan. Dissecting the genetic architecture of maize kernel size based on genome-wide association study [J]. Acta Agronomica Sinica, 2022, 48(2): 304-319.
[14] YAN Yan, ZHANG Yu-Shi, LIU Chu-Rong, REN Dan-Yang, LIU Hong-Run, LIU Xue-Qing, ZHANG Ming-Cai, LI Zhao-Hu. Variety matching and resource use efficiency of the winter wheat-summer maize “double late” cropping system [J]. Acta Agronomica Sinica, 2022, 48(2): 423-436.
[15] ZHANG Qian, HAN Ben-Gao, ZHANG Bo, SHENG Kai, LI Lan-Tao, WANG Yi-Lun. Reduced application and different combined applications of loss-control urea on summer maize yield and fertilizer efficiency improvement [J]. Acta Agronomica Sinica, 2022, 48(1): 180-192.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!