Welcome to Acta Agronomica Sinica,

Acta Agron Sin ›› 2011, Vol. 37 ›› Issue (01): 74-78.doi: 10.3724/SP.J.1006.2011.00074

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Transferability Analysis of Cassava EST-SSR and Genomic-SSR Markers in Jatropha and Rubber Tree

WEN Ming-Fu,CHEN Xin,WANG Hai-Yan,LU Cheng,WANG Wen-Quan*   

  1. Institute of Tropical Bioscience & Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
  • Received:2010-05-04 Revised:2010-08-01 Online:2011-01-12 Published:2010-10-09
  • Contact: WANG Wen-Quan,E-mail:wquanw@hainan.net,Tel:0898-66894533

Abstract: Euphorbiaceae family includes abundant economic species, such as rubber tree, cassava, castor bean and Jatropha. Cassava (Manihot esculenta Crantz) ranks in the sixth food crop in the world. In China, cassava is also an important tropical economic crop. The genomic-SSRs derived from cassava genome, and EST-SSRs derived from expressed sequence tags (ESTs). In this study, the transferability of 419 pairs of EST-SSR primer and 182 pairs of genomic-SSR primer from cassava was tested in five Jatropha lines and two rubber tree lines. The result showed that the transferability rate of cassava EST-SSR in Jatropha and rubber tree was 55.85% and 38.90%, and the transferability rate of cassava genomic-SSR in Jatropha and rubber tree was 37.36% and 26.37%, respectively. The transferability EST-SSR was higher for cssava than for genomic-SSR. Meanwhile, the transferability of cassava EST-SSR and genomic-SSR was higher in Jatropha than in rubber tree. These results suggested that the cassava SSR can be used for comparative mapping, gene tagging and QTL mapping among cassava, Jatropha and rubber tree.

Key words: Jatropha, Rubber tree, Transferability, EST-SSR, Genomic-SSR

[1]Qiu H-X(丘华兴). Flora of China (中国植物志), Vol. 44. Beijing: Science Press, 1996 (in Chinese)
[2]Chao S, Sharp P J, Worland A J, Warham E J, Koebner R M D, Gale M D. RFLP-based genetic maps of wheat homoeologous group 7 chromosomes. Theor Appl Genet, 1989, 78: 495–504
[3]Mackill D J, Zhang Z, Redona E D, Colowit P M. Level of polymorphism and genetic mapping of AFLP markers in rice. Genome, 1996, 39: 969–977
[4]Grattapaglia D, Sederoff R. Genetic linkage maps of Eucalyptus grandis and Eucalyptus urophylla using a pseudotestcross: Mapping strategy and RAPD markers. Genetics, 1994, 137, 1121–1137
[5]McCouch S R, Teytelman L, Xu Y, Lobos K B, Clare K, Walton M, Fu B, Maghirang R, Li Z, Xing Y, Zhang Q, Kono I, Yano M, Fjellstrom R, DeClerck G, Schneider D, Cartinhour S, Ware D, Stein L. Development and mapping of 2240 new SSR markers for rice (Oryza sativa L.). DNA Res, 2002, 9: 257–279
[6]Varshney R K, Sigmund R, Borner A, Korzun V, Stein N, Sorrells M E, Langridge P, Graner A. Interspeci?c transferability and comparative mapping of barley EST-SSR markers in wheat, rye and rice. Plant Sci, 2005, 168: 195–202
[7]Mba R E C, Stephenson P, Edwards K , Melzer S, Nkumbira J, Gullberg U, Apel K, Gale M, Tohme J, Fregene M. Simple sequence repeat (SSR) markers survey of the cassava (Manihot esculenta Crantz) genome: towards an SSR-based molecular genetic map of cassava. Theor Appl Genet, 2001, 102: 21–31
[8]Doyle J J, Doyle J L. A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochem Bull, 1987, 19: 11–15
[9]Thiel T, Michalek W, Varshney R K, Graner A. Exploiting EST database for the development and characterization of gene-derived SSR markers in barley (Hordeum vulgare L.). Theor Appl Genet, 2003, 106: 411–422
[10]Bory S, Silva D D, Risterucci A M, Grisoni M, Besse P, Duval M F. Development of microsatellite markers in cultivated vanilla: Polymorphism and transferability to other vanilla species. Sci Hort, 2008, 115: 420–425
[11]Wunsch A. Cross-transferable polymorphic SSR loci in Prunus species. Sci Hort, 2009, 120: 348–352
[12]Varshney R K, Kumar A, Balyan H S, Roy J K, Prasad M, Gupta P K. Characterization of microsatellites and development of chromosome speci?c STMS markers in bread wheat. Plant Mol Biol Rep, 2000, 18: 1–12
[13]Sourdille P, Tavaud M, Charmet G, Bernard M. Transferability of wheat microsatellites to diploid Triticeae species carrying the A, B and D genomes. Theor Appl Genet, 2001, 103: 346–352
[14]Tahan O, Geng Y P, Zeng L Y, Dong S S, Chen F, Chen J, Song Z P, Zhong Y. Assessment of genetic diversity and population structure of Chinese wild almond, Amygdalus nana, using EST- and genomic SSRs. Biochem Systematics Ecol, 2009, 37: 146–153
[15]Eujayl I, Sorrells M E, Baum M, Wolters P. Isolation of EST derived microsatellite markers for genotyping the A and B genomes of wheat. Theor Appl Genet, 2002, 104: 399–407
[16]Zhuang L-F(庄丽芳), Song L-X(宋立晓), Feng Y-G(冯祎高), Qian B-L(钱保俐), Xu H-B(徐海滨), Pei Z-Y(裴自友), Qi Z-J(亓增军). Development and chromosome mapping of new wheat EST-SSR markers and application for characterizing rye chromosomes added in wheat. Acta Agron Sin (作物学报) 2008, 34 (6): 926–933 (in Chinese with English abstract)
[17]Gao L F, Tang J F, Li H W, Jia J Z. Analysis of microsatellites in major crops assessed by computational and experimental approaches. Mol Breed, 2003, 12: 245–261
[18]Chen H M, Li L Z, Wei X Y, Li S S, Lei T D, Hu H Z, Wang H G, Zhang X S. Development, chromosome location and genetic mapping of EST-SSR markers in wheat. Chin Sci Bull, 2005, 50: 2328–2336
[19]Li L Z, Wang J J, Guo Y, Jiang F S, Xu Y F, Wang Y Y, Pan H T, Han G Z, Li R J, Li S S. Development of SSR markers from ESTs of gramineous species and their chromosome location on wheat. Prog Nat Sci, 2008, 18: 1485–1490
[1] Hong-Yan ZHANG,Tao YANG,Rong LIU,Fang JIN,Li-Ke ZHANG,Hai-Tian YU,Jin-Guo HU,Feng YANG,Dong WANG,Yu-Hua HE,Xu-Xiao ZONG. Assessment of genetic diversity by using EST-SSR markers in Lupinus [J]. Acta Agronomica Sinica, 2020, 46(3): 330-340.
[2] ZHANG Ti-Fu,QI Wi-Cong,GU Min-Feng,ZHANG Xiao-Lin,LI Tan,ZHAO Han. Exploration and Transferability Evaluation of EST-SSRs in Quinoa [J]. Acta Agron Sin, 2016, 42(04): 492-500.
[3] CHEN Ming-Li,WANG Lan-Fen,WU Jing,ZHANG Xiao-Yan,YANG Guang-Dong,WANG Shu-Min. Development of Genomic SSR Markers in Common Bean and Their Transferability in Cowpea and Adzuki Bean [J]. Acta Agron Sin, 2014, 40(05): 924-933.
[4] WANG Wei,WANG Chang-Biao,LIU Fang,CHEN Hao-Dong,WANG Lin,WANG Chun-Ying,ZHANG Xiang-Di,WANG Yu-Hong,WANG Kun-Bo. Development and Evaluation of New Non-Redundant EST-SSR Markers from Gossypium [J]. Acta Agron Sin, 2012, 38(08): 1443-1451.
[5] TANG Mei,CHEN Yu-Ning,REN Xiao-Ping,HUANG Li,ZHOU Xiao-Jing,YAN Hai-Yan,JIANG Hui-Hang. Genetic Diversity of Arachis Accessions Detected by EST-SSR from Cultivated Peanut (Arachis hypogaea L.) [J]. Acta Agron Sin, 2012, 38(07): 1221-1231.
[6] ZHONG Min, CHENG Xu-Zhen, WANG Li-Xia, WANG Su-Hua, WANG Xiao-Bao. Transferability of Mungbean Genomic-SSR Markers in Other Vigna Species [J]. Acta Agron Sin, 2012, 38(02): 223-230.
[7] QIAO Ting-Ting,MA Chun-Lei,ZHOU Yan-Hua,YAO Ming-Zhe,LIU Rao,CHEN Liang. EST-SSR Genetic Diversity and Population Structure of Tea Landraces and Developed Cultivars (Lines) in Zhejiang Province, China [J]. Acta Agron Sin, 2010, 36(05): 744-753.
[8] WANG Li-Xie,CHENG Xu-Zhen,WANG Su-Hua,LIU Chang-You,LIANG Hui. Transferability of SSR from Adzuki Bean to Mungbean [J]. Acta Agron Sin, 2009, 35(5): 816-820.
[9] LI Yan-Qiu,SU Zhi-Fang,WANG Li-Xin,JI Wei,YAO Ji,ZHAO Chang-Ping. Increasing Density of Wheat Genetic Linkage Map with Molecular Makers [J]. Acta Agron Sin, 2009, 35(5): 861-866.
[10] ZHUANG Li-Fang;SONG Li-Xiao;FENG Yi-Gao;QIAN Bao-Li;XU Hai-Bin;PEI Zi-You;QI Zeng-Jun. Development and Chromosome Mapping of 81 New Wheat EST-SSR Markers and Application for Characterizing Rye Chromosomes Added in Wheat [J]. Acta Agron Sin, 2008, 34(06): 926-933.
[11] ZHANG Peng; ZHANG Hai-Yang ; ; GUO Wang-Zhen; ZHENG Yong-Zhan; WEI Li-Bin; ZHANG Tian-Zhen. Genetic Diversity Analysis of Sesamum indicum L. Germplasms Using SRAP and EST-SSR Markers [J]. Acta Agron Sin, 2007, 33(10): 1696-1702.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!