Acta Agron Sin ›› 2012, Vol. 38 ›› Issue (01): 23-35.doi: 10.3724/SP.J.1006.2012.00023
• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles Next Articles
GUO Tao**,HUANG Xuan**,HUANG Yong-Xiang,LIU Yong-Zhu,ZHANG Jian-Guo,CHEN Zhi-Qiang*,WANG Hui*
[1]Gustafsson A. The plastid development in various types of chlorophyll mutations. Hereditas, 1942, 28: 483-492 [2]Tanya G F, Staehelin L A. Partial blocks in the early steps of the chlorophyll synthesis pathway: a common feature of chlorophyll b-deficient mutants. Physiol Plant, 1996, 97: 311-320 [3]Wu D-X(吴殿星), Shu Q-Y(舒庆尧), Xia Y-W(夏英武), Liu G-F(刘贵付). 60Co gamma-ray induced temperature-regulatory leaf color albino mutated gene expression mutant line in rice (Oryza sativa L.). Sci Agric Sin (中国农业科学), 1997, 30(3): 95-95 (in Chinese with English abstract) [4]Zhao Y, Wang M L, Zhang Y Z, Du L F, Pan T. A chlorophyll-reduced seedling mutant in oilseed rape, Brassica napus, for utilization in F1 hybrid production. Plant Breed, 2000, 119: 131-135 [5]Gan S, Amasino R M. Inhibition of leaf senescence by autoregulated production of cytokinin. Science, 1995, 270: 1986-1988 [6]Fambrini M, Castagna A, Vecchia F D. Characterization of a pigment-deficient mutant of sunflower (Helianthus annuus L.) with abnormal chloroplast biogenesis, reduced PS II activity and low endogenous level of abscisic acid. Plant Sci, 2004, 167: 79-89 [7]Parks B M, Quail P H. Phytochrome-deficient hy1 and hy2 long hypocotyls mutants of Arabidopsis are defective in phytochrome chromophore biosynthesis. Plant Cell, 1991, 3: 1177-1186 [8]Singh U P, Prithiviraj B, Sarma B K. Development of Erysiphe pisi (powdery mildew) on normal and albino mutants of pea (Pisum sativum L.). J Phytopathol, 2000, 148: 591-595 [9]Xing S, Miao J, Li S, Qin G, Tang S, Li H, Gu H, Qu L J. Disruption of the 1-deoxy-D-xylulose-5-phosphate reductoisomerase (DXR) gene results in albino, dwarf and defects in trichome initiation and stomata closure in Arabidopsis. Cell Res, 2010, 20: 688-700 [10]Schwartz S H, Qin X, Zeevaart J A. Elucidation of the indirect pathway of abscisic acid biosynthesis by mutants, genes and enzymes. Plant Physiol, 2003, 131: 1591-1601 [11]Agrawal G K, Yamazak I M, Kobayash I M. Screening of the rice viviparous mutants generated by endogenous retrotransposon Tos17 insertion tagging of a zeaxanthin epoxidase gene and a novel OsTATC gene. Plant Physiol, 2001, 125: 1248-1257 [12]Beale S I. Green genes gleaned. Trends Plant Sci, 2005, 10: 301-312 [13]Morita R, Sato Y, Masuda Y, Nishimura M, Kusaba M. Defect in non-yellow coloring 3, an alpha/beta hydrolase-fold family protein, causes a stay-green phenotype during leaf senescence in rice. Plant J, 2009, 59: 940-952 [14]Terry M J, Kendrick R E. Feedback inhibition of chlorophyll synthesis in the phytochrome chromophore-deficient aurea and yellow-green-2 mutants of tomato. Plant Physiol, 1999, 119: 143-152 [15]Chen G, Bi Y R, Li N. EGY1 encodes a membrane-associated and ATP-independent metalloprotease that is required for chloroplast development. Plant J, 2005, 41: 364-375 [16]Kushnir S, Babiychuk E, Storozhenko S, Davey M W, Papenbrock J, Rycke R D, Engler G, Stephan U W, Lange H, Kispal G, Lill R, Van M M. A mutation of the mitochondrial ABC transporter Sta1 leads to dwarfism and chlorosis in the Arabidopsis mutant starik. Plant Cell, 2001, 13: 89-100 [17]Shu Q-Y(舒庆尧), Wu D-X(吴殿星), Xia Y-W(夏英武), Liu G-F(刘贵付). Study on greenism characteristics of greenable albino mutation line W25 of rice (Oryza sativa L.). J Zhejiang Agric Univ (浙江农业大学学报), 1996, 22(2): 219-220 (in Chinese with English abstract). [18]Zhao H-J(赵海军), Wu D-X(吴殿型), Shu Q-Y(舒庆尧), Shen S-Q(沈圣泉), Ma C-X(马传喜). Breeding and characteristics of photo-thermo sensitive genic male sterile rice Yutu S Labeled with green-revertible albino leaf marker. Chin J Rice Sci (中国水稻科学), 2004, 18(6): 515-521 (in Chinese with an English abstract) [19]Zhang Y(张毅), Lü J(吕俊), Li Y-F(李云峰), Yang K(杨昆), Shen F-C(沈福成), Zhang Q-L(张巧玲), Peng Q-L(彭其莲), Zhou Y-L(周亚林), He G-H(何光华). Effects of green-revertible albino gene on the agronomy traits and appearance quality in rice. Acta Agron Sin (作物学报), 2008, 34(2): 284-289 (in Chinese with an English abstract) [20]Guo S-W(郭士伟), Wang Y-F(王永飞), Ma S-M(马三梅), Li X(李霞), Gao D-Y(高东迎). Genetic analysis and fine mapping of a green-revertible albino leaf mutant in rice. Chin J Rice Sci (中国水稻科学), 2011, 25(1): 95-98 (in Chinese with an English abstract) [21]Shen S-Q(沈圣泉), Shu Q-Y(舒庆尧), Bao J-S(包劲松), Wu D-X(吴殿星), Cui H-R(崔海瑞), Xia Y-W(夏英武). Development of a greenable leaf colour mutant Baifeng A and its application in hybrid rice production. Chin J Rice Sci (中国水稻科学), 2004, 18(1): 34-38 (in Chinese with English abstract) [22]Wu W(吴伟), Liu X(刘鑫), Shu X-L(舒小丽), Shu Q-Y(舒庆尧), Xia Y-W(夏英武), Wu D-X(吴殿星). Two-line hybrid rice mail sterile line ‘NHR111S’ with a marker of green-revertible albino leaves. J Nucl Agric Sci (核农学报), 2006, 20(2): 103-105 (in Chinese with English abstract) [23]Li R-Q(李瑞清), Wu L-Q(武立权), Shu Q-Y(舒庆尧), Zhao H-J(赵海军), Wu D-X(吴殿星), Wang R-F(王荣富). Characterization of a new green-revertible mutant G9 of rice. J Nucl Agric Sci (核农学报), 2010, 24(5): 881-886 (in Chinese with English abstract) [24]Fang X-T(房贤涛), Ma H-L(马洪丽), Zhao F-Y(赵福源), Zhang Q-Q(章清杞), Zhang S-B(张书标). Studied on the breeding application of six photo-thermo-sensitive genic male sterile line mutants with greenable albino leaf. Chin Agric Sci Bull (中国农学通报), 2011, 27(1): 45-51 (in Chinese with English abstract) [25]Liu G-F(刘贵付), Shu Q-Y(舒庆尧), Xia Y-W(夏英武). Utilization of Greenable albino mutation lines of thermosensitive genic male sterile rice (Oryza sativa L. ssp indica). J Nucl Agric Sci (核农学报), 1996, 10(3): 129-132 (in Chinese with English abstract) [26]Chen T, Zhang Y, Zhao L, Zhu Z, Lin J, Zhang S, Wang C. Physiological character and gene mapping in a new green- revertible albino mutant in rice. J Genet Genomics, 2007, 34: 331-338 [27]Chen T, Zhang Y, Zhao L, Zhu Z, Lin J, Zhang S, Wang C. Fine mapping and candidate gene analysis of a green-revertible albino gene gra(t) in rice. J Genet Genomics, 2009, 36: 117-123 [28]Xia J C, Wang Y P, Ma B T, Yin Z Q, Hao M, Kong D W, Li S G. Ultrastructure and gene mapping of the Albino mutant al12 in rice (Oryza sativa L.). Acta Genet Sin, 2006, 33: 1112-1119 [29]Ueguchi M, Fujisawa Y, Kobayashi M, Ashikari M, Iwasaki Y. Rice dwarf mutant d1, which is defective in the a subunit of the heterotrimeric G protein, affects gibberellin signal transduction. Proc Natl Acad Sci USA, 2000, 97: 11639-11643 [30]Lanahan M B, Ho T H. Slender barley: A constitutive gibberellin-response mutant. Planta, 1988, 175: 107-114 [31]Dobrev P I, Kaminek M. Fast and efficient separation of cytokinins from auxin and abscisic acid and their purification using mixed-mode solid-phase extraction. J Chromatogr A, 2002, 950: 21-29 [32]Murray M G, Thompson W F. Rapid isolation of high molecular weight plant DNA. Nucl Acids Res, 1980, 8: 4321-4325 [33]Shen Y J, Jiang H, Jin J P, Zhang Z B, Xi B, He Y Y, Wang G, Wang C, Qian L, Li X, Yu Q B, Liu H J, Chen D H, Gao J H, Huang H, Shi T L, Yang Z N. Development of genome-wide DNA polymorphism database for map-based cloning of rice genes. Plant Physiol, 2004, 135: 1198-1205 [34]Michelmore R W, Paran I, Kesseli R V. Identification of markers linked to disease-resistance genes by bulked segregation analysis: a rapid method to detect markers in specific genomic regions by using segregation population. Proc Natl Acad Sci USA, 1991, 88: 9828-9832 [35]Takeda K. Internode elongation and dwarfism in some gramineous plants. Gamma Field Sym, 1977, 17: 1-18 [36]Wang G, Römheld V, Li C, Bangerth F. Involvement of auxin and CKs in boron deficiency induced changes in apicak dominance of pea plants. J Plant Physiol, 2006, 163: 591-600 [37]Ekamber K P, Kumar M. Hormonal regulation of tiller dynamics in differentially-tillering rice cultivars. Plant Growth Regul, 2007, 53: 215-223 [38]Wilhelm R. Growth retardants: Effects on gibberellin biosynthesis and other metabolic pathways. Annu Rev Plant Physiol Plant Mol Biol, 2000, 51: 501-531 [39]Fujioka S, Yokota T. Biosynthesis and metabolism of brassinosteroids. Annu Rev Plant Biol, 2003, 54: 137-164 [40]Mitsunaga S, Tashiro T, Yamaguchi J. Identification and characterization of gibberellins-insensitive mutants selected from among dwarf mutants of rice. Theor Appl Genet, 1994, 87: 705-712 [41]Morita R, Sato Y, Masuda Y, Nishimura M, Kusaba M. Defect in non-yellow coloring 3, an alpha/beta hydrolase-fold family protein, causes a stay-green phenotype during leaf senescence in rice. Plant J, 2009, 59: 940-52 [42]Meskauskiene R, Nater M, Goslings D, Kessler F, Camp R, Klaus K. FLU: A negative regulator of chlorophyll biosynthesis in Arabidopsis thaliana. Proc Natl Acad Sci U S A, 2001, 98: 12826-12831 [43]Jeon J S, Lee S, Jung K H, Jun S H, Jeong D H, Lee J, Kim C, Jang S, Yang K, Nam J, An K, Han M J, Sung R J, Choi H S, Yu J H, Choi J H, Cho S Y, Cha S S, Kim S I, An G. T-DNA insertional mutagenesis for functional genomics in rice. Plant J, 2000, 22: 561-570 [44]Miyao A, Tanaka K, Murata K, Sawaki H, Takeda S, Abe K, Shinozuka Y, Onosato K, Hirochika H. Target site specificity of the Tos17 retrotransposon shows a preference for insertion within genes and against insertion in retrotransposon-rich regions of the genome. Plant Cell, 2003, 15: 1771-80 [45]Monde R A, Zito F, Olive J, Wollman F A, Stern D B. Post-transcriptional defects in tobacco chloroplast mutants lacking the cytochrome b6/f complex. Plant J, 2000, 21(1):61-72 [46]Kumar A M, Soll D. Antisense HEMA1 RNA expression inhibits heme and chlorophyll biosynthesis in Arabidopsis thaliana. Plant Physiol, 2000, 122: 49-55 [47]Xu Y Y, Jia J F, Wang B, Niu B T. Changes in isoenzymes and amino acids in forage and germination of the first post-flight generation of seeds of three legume species after space-flight. Grass Forage Sci, 1999, 54: 371-375 [48]Gomez-Roldan V, Fermas S, Brewer P B, Puech-Pagès V, Dun E A, Pillot J P, Letisse F, Matusova R, Danoun S, Portais J C, Bouwmeester H, Bécard G, Beveridge C A, Rameau C, Rochange S F. Strigolactone inhibition of shoot branching. Nature, 2008, 455: 189-194 [49]Umehara M, Hanada A, Yoshida S, Akiyama K, Arite T, Takeda-Kamiya N, Magome H, Kamiya Y, Shirasu K, Yoneyama K, Kyozuka J, Yamaguchi S. Inhibition of shoot branching by new terpenoid plant hormones. Nature, 2008, 455: 195-200 [50]Xie X, Yoneyama K, Yoneyama K. The strigolactone story. Annu Rev Phytopathol. 2010, 48: 93-117 [51]Beveridge C A, Kyozuka J. New genes in the strigolactone-related shoot branching pathway. Curr Opin Plant Biol, 2010, 13: 34-39 [52]Bartley G E, Scolnik P A. Plant carotenoids: pigments for photoprotection, visual attraction, and human health. Plant Cell, 1995, 7: 1027-1038 [53]Tracewell C A, Vrettos J S, Bautista J A, Frank H A, Brudvig G W. Carotenoid photooxidation in photosystem II. Arch Biochem Biophys, 2001, 385: 61-69 [54]Wu D, Wright DA, Wetzel C, Voytas DF, Rodermel S. The IMMUTANS variegation locus of Arabidopsis defines a mitochondrial alternative oxidase homolog that functions during early chloroplast biogenesis. Plant Cell, 1999, 11: 43-55 [55]Carol P, Stevenson D, Bisanz C, Breitenbach J, Sandmann G, Mache R, Coupland G, Kuntz M. Mutations in the Arabidopsis gene IMMUTANS cause a variegated phenotype by inactivating a chloroplast terminal oxidase associated with phytoene desaturation. Plant Cell, 1999, 11: 57-68 [56]Aluru M, Yu F, Fu A, Rodermel S. Arabidopsis variegation mutants: new insights into chloroplast biogenesis. J Exp Bot, 2006, 57: 1871-1881 [57]Aluru M R, Rodermel S R. Control of chloroplast redox by the IMMUTANS terminal oxidase. Physiol Plant, 2004, 120: 4-11 [58]Josse E, Simkin A J, Gaffe J, Labourne A, Kuntz M, Carol P. A plastid terminal oxidase associated with carotenoid desaturation during chromoplast differentiation. Plant Physiol, 2000, 123: 1427-1436 [59]Akiyama K, Matsuzaki K, Hayashi H. Plant sesquiterpenes induce hyphal branching in arbuscular mycorrhizal fungi. Nature, 2005, 435: 824-827 [60]Domagalska M A, Leyser O. Signal integration in the control of shoot branching. Nat Rev Mol Cell Biol, 2011, 12: 211-221 [61]Arnon D I, Allen M B, Whatley F R. Photosynthesis by Isolated Chloroplasts. Nature, 1954, 174: 394-396 |
[1] | WANG Hao-Rang, ZHANG Yong, YU Chun-Miao, DONG Quan-Zhong, LI Wei-Wei, HU Kai-Feng, ZHANG Ming-Ming, XUE Hong, YANG Meng-Ping, SONG Ji-Ling, WANG Lei, YANG Xing-Yong, QIU Li-Juan. Fine mapping of yellow-green leaf gene (ygl2) in soybean (Glycine max L.) [J]. Acta Agronomica Sinica, 2022, 48(4): 791-800. |
[2] | TIAN Biao, DING Shi-Lin, LIU Chao-Lei, RUAN Ban-Pu, JIANG Hong-Zhen, GUO Rui, DONG Guo-Jun, HU Guang-Lian, GUO Long-Biao, QIAN Qian, GAO Zhen-Yu. Genetic analysis of seedling root traits and fine mapping of the QTL qLRL4 for the longest root length in rice [J]. Acta Agronomica Sinica, 2021, 47(10): 1863-1873. |
[3] | ZHOU Lian, LIU Chao-Xian, CHEN Qiu-Lan, WANG Wen-Qin, YAO Shun, ZHAO Zi-Kun, ZHU Si-Ying, HONG Xiang-De, XIONG Yu-Han, CAI Yi-Lin. Fine mapping and candidate gene analysis of maize defective kernel mutant dek54 [J]. Acta Agronomica Sinica, 2021, 47(10): 1903-1912. |
[4] | ZHANG Xue-Cui,ZHONG Chao,DUAN Can-Xing,SUN Su-Li,ZHU Zhen-Dong. Fine mapping of Phytophthora resistance gene RpsZheng in soybean cultivar Zheng 97196 [J]. Acta Agronomica Sinica, 2020, 46(7): 997-1005. |
[5] | REN Meng-Meng, ZHANG Hong-Wei, WANG Jian-Hua, WANG Guo-Ying, ZHENG Jun. Fine mapping of a major QTL qMES20-10 associated with deep-seeding tolerance in maize and analysis of differentially expressed genes [J]. Acta Agronomica Sinica, 2020, 46(7): 1016-1024. |
[6] | Li-Ping QIN,Er-Fei DONG,Yang BAI,Lian ZHOU,Lan-Yang REN,Ren-Feng ZHANG,Chao-Xian LIU,Yi-Lin CAI. Genetic analysis and molecular characterization of tasselseed mutant ts12 in maize [J]. Acta Agronomica Sinica, 2020, 46(5): 690-699. |
[7] | Xin-Ran SONG, Shu-Ting HU, Kai ZHANG, Ze-Jin CUI, Jian-Sheng LI, Xiao-Hong YANG, Guang-Hong BAI. Phenotypic analysis and fine mapping of dek101 in maize [J]. Acta Agronomica Sinica, 2020, 46(12): 1831-1838. |
[8] | SUN Qi, ZHAO Zhi-Chao, ZHANG Jin-Hui, ZHANG Feng, CHENG Zhi-Jun, ZOU De-Tang. Genetic analysis and fine mapping of a sheathed panicle mutant sui2 in rice (Oryza sativa L.) [J]. Acta Agronomica Sinica, 2020, 46(11): 1734-1742. |
[9] | Di JIN,Dong-Zhi WANG,Huan-Xue WANG,Run-Zhi LI,Shu-Lin CHEN,Wen-Long YANG,Ai-Min ZHANG,Dong-Cheng LIU,Ke-Hui ZHAN. Fine mapping and candidate gene analysis of awn inhibiting gene B2 in common wheat [J]. Acta Agronomica Sinica, 2019, 45(6): 807-817. |
[10] | Li-Na SHANG,Xin-Long CHEN,Sheng-Nan MI,Gang WEI,Ling WANG,Ya-Yi ZHANG,Ting LEI,Yong-Xin LIN,Lan-Jie HUANG,Mei-Dan ZHU,Nan WANG. Phenotypic identification and gene mapping of temperature-sensitive green- revertible albino mutant tsa2 in rice (Oryza sativa L.) [J]. Acta Agronomica Sinica, 2019, 45(5): 662-675. |
[11] | Zhong-Xiang LIU,Mei YANG,Peng-Cheng YIN,Yu-Qian ZHOU,Hai-Jun HE,Fa-Zhan QIU. Fine Mapping and Genetic Effect Analysis of a Major QTL qPH3.2 Associated with Plant Height in Maize (Zea mays L.) [J]. Acta Agronomica Sinica, 2018, 44(9): 1357-1366. |
[12] | Xiang-Yi XIAO,Xue-Tao SHI,Hao-Wen SHENG,Jin-Ling LIU,Ying-Hui XIAO. Fine Mapping and Candidate Gene Analysis of Rice Blast Resistance Gene Pi47 [J]. Acta Agronomica Sinica, 2018, 44(7): 977-987. |
[13] | Bao-Yu LIU, Jun-Hua LIU, Dan DU, Meng YAN, Li-Yuan ZHENG, Xue WU, Xian-Chun SANG, Chang-Wei ZHANG. Identification and Gene Mapping of a Lesion Mimic Mutant spl34 in Rice (Oryza sativa L.) [J]. Acta Agronomica Sinica, 2018, 44(03): 332-342. |
[14] | ZHANG Xiao-Qiong, WANG Xiao-Wen, TIAN Wei-Jiang, ZHANG Xiao-Bo, Sun Ying, LI Yang-Yang, Xie Jia, HE Guang-Hua,SANG Xian-Chun. LAZY1 Regulates the Development of Rice Leaf Angle through BR Pathway [J]. Acta Agron Sin, 2017, 43(12): 1767-1773. |
[15] | ZHONG Jie,WEN Pei-Zheng,SUN Zhi-Guang,XIAO Shi-Zhuo,HU Jin-Long,ZHANG Le,JIANG Ling,CHENG Xia-Nian,LIU Yu-Qiang,WAN Jian-Min. Identification of QTLs Conferring Small Brown Planthopper Resistance in Rice (Oryza sativa L.) Using MR1523/Suyunuo F2:3 Population [J]. Acta Agron Sin, 2017, 43(11): 1596-1602. |
|