Welcome to Acta Agronomica Sinica,

Acta Agron Sin ›› 2012, Vol. 38 ›› Issue (05): 791-799.doi: 10.3724/SP.J.1006.2012.00791

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Quantification of Fusarium oxysporum f. sp. phaseoli Detected by Real-time Quantitative PCR in Different Common Beans Cultivars

XUE Ren-Feng1, ZHU Zhen-Dong1,*, HUANG Yan1,2,WANG Xiao-Ming1,WANG Lan-Fen1,WANG Shu-Min1,*   

  1. 1 Institute of Crop Science, Chinese Academy of Agricultural Sciences / National Key Facility for Crop Gene Resources and Genetic Improvement,Beijing 100081, China; 2 College of Life Science and Technology, Hebei Normal University of Science & Technology, Changli 066600, China
  • Received:2011-11-14 Revised:2012-01-19 Online:2012-05-12 Published:2012-03-05

Abstract: Fusarium wilt, caused by Fusarium oxysporum f. sp. phaseoli, is one of the most devastating vascular diseases of common bean. A efficient way to prevent and control the disease is to use resistant cultivars, so it is necessary to develop a rapid accurate method for detecting the pathogens. In this study, we developed a real-time quantitative polymerase chain reaction (qRT-PCR) protocol that quantified F. oxysporum f. sp. phaseoli DNA to a minimum of 1 pg in the plant roots and stems. Moreover, the qRT-PCR protocol asymptomatically distinguished resistant level of different bean cultivars challenged by the wilt pathogen FOP-DM01 at 6 d post inoculation. The result indicated FOP-DM01 DNA quantifications in the roots and stems of susceptible BRB-130 and A0640-1 were significantly higher than those in resistant 260205 and Heiyundou, which absolutely matched with the phenotypic identification. The use of this protocol for fast, reliable, and cost-effective quantification of F. oxysporum f. sp. phaseoli in asymptomatic tissues at early stages of the infection process is of great value for common bean breeding and studies of phytopathology and epidemiology.

Key words: Common bean, Fusarium wilt, Real time-PCR, Quantitative analysis

[1]Broughton W J, Hernandez G, Blair M, Beebe S, Gepts P, Vanderleyden J. Beans (Phaseolus spp.)—model food legumes. Plant Soil, 2003, 252: 55?128

[2]Buruchara R A, Camacho L. Common bean reaction to Fusarium oxysporum f. sp. phaseoli, the cause of severe vascular wilt in Central Africa. J Phytopathol, 2000, 148: 39?45

[3]Brouwer M, Lievens B, Hemelrijck W, Ackerveken G, Cammue B, Thomma B P H J. Quantification of disease progression of several microbial pathogens on Arabidopsis thaliana using real-time fluorescence PCR. FEMS Microbiol Lett, 2003, 228: 241?248

[4]Thomma B P H J, Tadesse Y S H, Jacobs M, Broekaert W F. Disturbed correlation between fungal biomass and β-glucuro¬nidase activity in infections of Arabidopsis thaliana with transgenic Alternaria brassicicola. Plant Sci, 1999, 148: 31?36

[5]Hoffman T, Schmidt J S, Zheng X, Bent A F. Isolation of ethylene-insensitive soybean mutants that are altered in pathogen susceptibility and gene-for-gene disease resistance. Plant Physiol, 1999, 119: 935?950

[6]Dan H, Ali-Khan S T, Robb J. Use of quantitative PCR diagnostics to identify tolerance and resistance to Verticillium dahliae in potato. Plant Dis, 2001, 85: 700?705

[7]Pegg G F, Brady B L. Verticillium wilts. Wallingford: CABI International, 2002

[8]Schena L, Nigro F, Ippolito A, Gallitelli D. Real-time quantitative PCR: a new technology to detect and study phytopathogenic and antagonistic fungi. Eur J Plant Pathol, 2004, 110: 893?908

[9]Böhm J, Hahn A, Schubert R, Bahnweg G, Adler N, Nechwatal J, Oehlmann R, Obszwald W. Real-time Quantitative PCR: DNA determination in isolated spores of the mycorrhizal fungus Glomus mosseae and monitoring of Phytophthora infestans and Phytophthora citricola in their respective host plants. J Phytopathol, 1999, 147: 409?416

[10]Mccartney H A, Foster S J, Fraaije B A, Ward E. Molecular diagnostics for fungal plant pathogens. Pest Manag Sci, 2003, 59: 129?142

[11]Mumford R A, Walsh K, Barker I, Boonham N. Detection of potato mop top virus and tobacco rattle virus using a multiplex real-time fluorescent reverse-transcription polymerase chain reaction assay. Phytopathology, 2000, 90: 448?453

[12]Schaad N W, Frederick R D, Shaw J, Schneider W L, Hickson R, Petrillo M D, Luster D G. Advances in molecular-based diagnostics in meeting crop biosecurity and phytosanitary issues. Annu Rev Phytopathol, 2003, 41: 305?324

[13]Vandemark G J, Barker B M. Quantifying Phytophthora medicaginis in susceptible and resistant alfalfa with a real-time fluorescent PCR assay. J Phytopathol, 2003, 151: 577?583

[14]Morrison T B, Weis J J, Wittwer C T. Quantification of low-copy transcripts by continuous SYBR Green I monitoring during amplification. Biotechniques, 1998, 24: 954?962

[15]Winton L M, Manter D K, Stone J K, Hansen E M. Comparison of biochemical, molecular, and visual methods to quantify Phaeocryptopus gaeumannii in Douglas-Fir foliage. Phytopathology, 2003, 93: 121?126

[16]Alves-Santos F M, Ramos B, García-Sánchez M A, Eslava A P, Díaz-Mínguez J M. A DNA-based procedure for in planta detection of Fusarium oxysporum f. sp. phaseoli. Phytopathology, 2002, 92: 237?244

[17]de Vega-Bartol J J, Martín-Dominguez R, Ramos B, García- ¬Sánchez M A, Díaz-Mínguez J M. New virulence groups in Fusarium oxysporum f. sp. phaseoli: the expression of the gene coding for the transcription factor ftf1 correlates with virulence. Phytopathology, 2011, 101: 470?479

[18]Ramos B, Alves-Santos F M, García-Sánchez M A, Martín- ¬Rodrigues N, Eslava A P, Díaz-Mínguez J M. The gene coding for a new transcription factor (ftf1) of Fusarium oxysporum is only expressed during infection of common bean. Fungal Genet Biol, 2007, 44: 864?876

[19]Xue R-F(薛仁风), Zhu Z-D(朱振东), Wang X-M(王晓鸣), Wang L-F(王兰芬), Wu X-F(武小菲), Wang S-M(王述民). Cloning and expression analysis of the Fusarium wilt resistance-related gene PvCaM1 in common bean (Phaseolus vulgaris L.). Acta Agron Sin (作物学报), 2011, 38(4): 606????

[20]Silvar C, Díaz J, Merino F. Real-time polymerase chain reaction quantification of Phytophthora capsici in different pepper genotypes. Phytopathology, 2005, 95: 1423?1429

[21]Adams P S. Data analysis and reporting. In: Tevfik Dorak M eds. Real time-PCR. New York: Taylor & Francis Group, 2006. pp 39?61

[22]Higuchi R, Fockler C, Dollinger G, Watson R. Kinetic PCR analysis: real-time monitoring of DNA amplification reactions. Nat Biotechnol, 1993, 11: 1026?1030

[23]Wang S-M(王述民), Zhang Y-Z(张亚芝), Wei S-H(魏淑红). Descriptors and Data Standard for Common Bean (Phaseolus vulgaris L.)(普通菜豆种质资源描述规范和数据标准). Beijing: China Agricultural Press, 2006. p 64 (in Chinese)

[24]Institute S. SAS 9.1.3 intelligence platform: single-user installation guide. SAS Institute Cary, NC, 2005

[25]Pastor C, Abawi G S. Reactions of selected bean germplasm to infection by Fusarium oxysporum f. sp. phaseoli. Plant Dis, 1987, 71: 990?993

[26]Salgado M O, Schwartz H F, Brick M A. Inheritance of resistance to a Colorado race of Fusarium oxysporum f. sp. phaseoli in common beans. Plant Dis, 1995, 79: 279?281

[27]Du Y-G(杜永刚), Li C(李昶). The occurrence and comprehensive control of common bean wilt. Jilin Veg (吉林蔬菜), 2008, (4): 89 (in Chinese)

[28]Miklas P N, Kelly J D, Beebe S E, Blair M W. Common bean breeding for resistance against biotic and abiotic stresses: from classical to MAS breeding. Euphytica, 2006, 147: 105?131

[29]Bates J A, Taylor E, Kenyon D M, Thomas J E. The application of real-time PCR to the identification, detection and quantification of Pyrenophora species in barley seed. Mol Plant Pathol, 2001, 2: 49?57

[30]Filion M, St-Arnaud M, Jabaji-Hare S H. Quantification of Fusarium solani f. sp. phaseoli in mycorrhizal bean plants and surrounding mycorrhizosphere soil using real-time polymerase chain reaction and direct isolations on selective media. Phytopathology, 2003, 93: 229?235

[31]Pasquali M, Acquadro A, Balmas V, Migheli Q, Lodovica Gullino M, Garibaldi A. Development of PCR primers for a new Fusarium oxysporum pathogenic on Paris daisy (Argyranthemum frutescens L.). Eur J Plant Pathol, 2004, 110: 7?11

[32]Pasquali M, Marena L, Fiora E, Piatti P, Gullino M L, Garibaldi A. Real-time polymerase chain reaction for identification of a highly pathogenic group of Fusarium oxysporum f. sp. chrysanthemi on Argyranthemum frutescens L. J Plant Pathol, 2004, 86: 53?59

[33]Abd-Elsalam K A, Asran-Amal A, Schnieder F, Migheli Q, Verreet J. Molecular detection of Fusarium oxysporum f. sp. vasinfectum in cotton roots by PCR and real-time PCR assay. J Plant Dis Protect, 2006, 113: 14?19

[34]Zhang Z, Zhang J, Wang Y, Zheng X. Molecular detection of Fusarium oxysporum f. sp. niveum and Mycosphaerella melonis in infected plant tissues and soil. FEMS Microbiol Lett, 2005, 249: 39?47

[35]Pasquali M, Piatti P, Gullino M L, Garibaldi A. Development of a real-time polymerase chain reaction for the detection of Fusarium oxysporum f. sp. basilici from Basil seed and roots. J Phytopathol, 2006, 154: 632?636

[36]Pasquali M, Dematheis F, Gullino M L, Garibaldi A. Identification of race 1 of Fusarium oxysporum f. sp. lactucae on lettuce by inter-retrotransposon sequence-characterized amplified region technique. Phytopathology, 2007, 97: 987?996

[37]Jiménez-Fernández D, Montes-Borrego M, Jiménez-Díaz R M, Navas-Cortés J A, Landa B B. In planta and soil quantification of Fusarium oxysporum f. sp. ciceris and evaluation of Fusarium wilt resistance in chickpea with a newly developed quantitative polymerase chain reaction assay. Phytopathology, 2011, 101: 250?262

[38]Inami K, Yoshioka C, Hirano Y, Kawabe M, Tsushima S, Teraoka T, Arie T. Real-time PCR for differential determination of the tomato wilt fungus, Fusarium oxysporum f. sp. lycopersici, and its races. J Gen Plant Pathol, 2010, 76: 116?121

[39]Ririe K M, Rasmussen R P, Wittwer C T. Product differentiation by analysis of DNA melting curves during the polymerase chain reaction. Anal Biochem, 1997, 245: 154?160

[40]Brick M A B, Schwartz P F, Ogg H F, Otto J B, Fall K, Gilbert A L. Reaction to three races of Fusarium wilt in the core collection. Crop Sci, 2006, 46: 1245?1252

[41]Ribeiro R L D, Hagedorn D J. Screening for resistance to and pathogenic specialization of Fusarium oxysporum f. sp. phaseoli, the causal agent of bean yellows. Phytopathology, 1979, 69: 272?276
[1] Ren-Feng XUE, Li WANG, Ming FENG, Wei-De GE. Identification and Expression Analysis of Likely Orthologs of Tobacco Salicylic Acid Binding Protein 2 in Common Beans [J]. Acta Agronomica Sinica, 2018, 44(05): 642-649.
[2] Lan-Fen WANG, Jing WU, Zhao-Li WANG, Ji-Bao CHEN, Li YU, Qiang WANG, Shu-Min WANG. Adaptability and Phenotypic Variations of Agronomic Traits in Common Bean Germplasm Resources in Different Environments [J]. Acta Agronomica Sinica, 2018, 44(03): 357-368.
[3] HUANG Qi-Xiu,QU Yan-Ying,YAO Zheng-Pei,LI Meng-Yu,CHEN Quan-Jia*. Correlation between Resistance to Fusarium Wilt and Expression of Flavonoid Metabolism Related Genes in Gossypium barbadense L. [J]. Acta Agron Sin, 2017, 43(12): 1791-1801.
[4] GENG Qing-He,WANG Lan-Fen,WU Jing,WANG Shu-Min. QTL Mapping for Seed Size and Shape in Common Bean [J]. Acta Agron Sin, 2017, 43(08): 1149-1160.
[5] XIAO Yong-Gui,Susanne DREISIGACKER,Claudia NU?EZ-RíOS,HU Wei-Guo,XIA Xian-Chun,HE Zhong-Hu. dsDNA Fluorescent Quantification and Genotyping in Common Wheat by FLUOstar System [J]. Acta Agron Sin, 2017, 43(07): 947-953.
[6] HAN Ze-Gang,ZHAO Zeng-Qiang,LI Hui-Hui,ZHANG Xi,LI Xiao-Ling,ZHANG Wei. Expression Profiling Analysis between Resistant and Susceptible Cotton Cultivars (Gossypium hirsutum L.) in Response to Fusarium Wilt [J]. Acta Agron Sin, 2015, 41(08): 1201-1211.
[7] LI Long,WANG Lan-Fen,WU Jing,JING Rui-Lian,WANG Shu-Min*. Identification of Drought Resistence at Seedlings Stage in Common Bean (Phaseolus vulgaris L.) Varieties [J]. Acta Agron Sin, 2015, 41(06): 963-971.
[8] HAN Ze-Gang,ZHAO Zeng-Qiang,HE Lan-Lan,CHAI Meng-Liang,LI Hui-Hui,ZHANG Wei. Expression Changes of Transcription Factors in Susceptible and Resistant Upland Cotton Cultivars (Gossypium hirsutum L.) in Response to Fusarium wilt [J]. Acta Agron Sin, 2015, 41(02): 228-239.
[9] CHEN Ming-Li,WANG Lan-Fen,WU Jing,ZHANG Xiao-Yan,YANG Guang-Dong,WANG Shu-Min. Development of Genomic SSR Markers in Common Bean and Their Transferability in Cowpea and Adzuki Bean [J]. Acta Agron Sin, 2014, 40(05): 924-933.
[10] LI Long,WANG Lan-Fen,WU Jing,JING Rui-Lian,WANG Shu-Min. Physiological Characteristics of Drought Resistance in Common Bean (Phaseolus vulgaris L.) [J]. Acta Agron Sin, 2014, 40(04): 702-710.
[11] WANG Zhi-Gang,GAO Ju-Lin,ZHANG Bao-Lin,LUO Rui-Lin,YANG Heng-Shan,SUN Ji-Ying,YU Xiao-Fang,SU Zhi-Jun,HU Shu-Ping. Productivity Performance of High-Yield Spring Maize and Approaches to Increase Grain Yield (above 15 t ha-1) in Irrigated Plain of Inner Mongolia [J]. Acta Agron Sin, 2012, 38(07): 1318-1327.
[12] XUE Ren-Feng,ZHU Zhen-Dong,WANG Xiao-Ming,WANG Lan-Fen,WU Xiao-Fei,WANG Shu-Min. Cloning and Expression Analysis of Fusarium Wilt Resistance-related Gene PvCaM1 in Common Bean (Phaseolus vulgaris L.) [J]. Acta Agron Sin, 2012, 38(04): 606-613.
[13] CHEN Meng-Li, WANG Lan-Fen, WANG Xiao-Ming, ZHANG Xiao-Yan, WANG Shu-Min. Mapping of Gene Conferring Resistance to Anthracnose in Common Bean (Phaseolus vulgaris L.) by Molecular Makers [J]. Acta Agron Sin, 2011, 37(12): 2130-2135.
[14] GU Dong-Xiang,TANG Liang,CAO Wei-Xing,ZHU Yan. Quantitative Analysis on Root Morphological Characteristics Based on Image Analysis Method in Rice [J]. Acta Agron Sin, 2010, 36(05): 810-817.
[15] WANG Kun;WANG Xiao-Ming;ZHU Zhen-Dong;ZHAO Xiao-Yan;WANG Shu-Min. Mapping of a Novel Anthracnose Resistance Gene Using SSR Markers in Common Bean(Phaseolus vulgaris L.) [J]. Acta Agron Sin, 2009, 35(3): 432-437.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!