Welcome to Acta Agronomica Sinica,

Acta Agron Sin ›› 2013, Vol. 39 ›› Issue (07): 1155-1163.doi: 10.3724/SP.J.1006.2013.01155

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Identification of Wild Segments Associated with Stem Termination, Pod Color and Seed Coat Color in Soybean

WANG Wu-Bin,HE Qing-Yuan,YANG Hong-Yan,XIANG Shi-Hua,XING Guang-Nan,ZHAO Tuan-Jie*,GAI Jun-Yi*   

  1. Soybean Research Institute / National Center for Soybean Improvement / MOA Key Laboratory for Biology and Genetic Improvement of Soybean (General) / National Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
  • Received:2012-08-21 Revised:2013-03-11 Online:2013-07-12 Published:2013-04-23
  • Contact: 赵团结, tjzhao@njau.edu.cn; 盖钧镒, E-mail: sri@njau.edu.cn E-mail:soybeanwang@163.com

Abstract:

Stem termination (ST), pod color (PC) and seed coat color (SCC) are important morphological traits, which are related to evolution in soybean. By using a wild soybean (Glycinne soja Sieb et Zucc.) chromosome segment substitution line (CSSL) population, designated as SojaCSSLP1 composed of 151 lines, one ST, three PC and two SCC wild segments/alleles were detected based on the comparison of different CSSL groups with a same phenotype on the respective trait. Among them, five wild alleles/segments identified in this study were corresponding to Dt1, L2, L1, G and em, respectively, which indicated that there existed allele differentiation happened between wild and cultivated soybean as well as between cultivated soybeans on these loci/segments and that the genes/segments involved with domestication and evolution. The wild segment of Satt273 for PC might be a novel gene/segment, which needed further verification. The identification of the genes/segments provide basic materials for cloning the wild alleles, studying the wild allele function and recombination of the wild alleles/segments.

Key words: Wild soybean, Chromosome segment substitution line, Stem termination, Pod color, Seed coat color

[1]Specht J E, Chase K, Macrander M, Graef G L, Chung J, Markwell J P, Germann M, Orf J H, Lark K G. Soybean response to water: a QTL analysis of drought tolerance. Crop Sci, 2001, 41: 493–509



[2]Lee S H, Bailey M A, Mian M A R, Shipe E R, Ashley D A, Parrott W A, Hussey R S, Boerma H R. Identification of quantitative trait loci for plant height, lodging, and maturity in a soybean population segregating for growth habit. Theor Appl Genet, 1996, 92: 516–523



[3]Orf J H, Chase K, Jarvik T, Mansur L, M, Cregan P B, Adler F R, Lark K G. Genetics of soybean agronomic traits: I. Comparison of three related recombinant inbred populations. Crop Sci, 1999, 39: 1652–1656



[4]Specht J E, Chase K, Macrander M, Graef G L, Chung J, Markwell J P, Germann M, Orf J H, Lark K G. Soybean response to water: a QTL analysis of drought tolerance. Crop Sci, 2001, 41: 493–509



[5]Hyten D L, Pantalone V R, Sams C E, Saxton A M, Landau-Ellis D, Stefaniak T R, Schmidt M E. Seed quality QTL in a prominent soybean population. Theor Appl Genet, 2004, 109: 552–561



[6]Mian M A R, Bailey M A, Tamulonis J P, Shipe E R, Carter T E, Parrott W A, Ashley D A, Hussey R S, Boerma H R. Molecular markers associated with seed weight in two soybean populations. Theor Appl Genet, 1996, 93: 1011–1016



[7]Bernard R L. Two genes affecting stem termination in soybeans. Crop Sci, 1972, 12: 235–239



[8]Song Q J, Marek L F, Shoemaker R C, Lark K G, Concibido V C, Delannay X, Specht J E, Cregan P B. A new integrated genetic linkage map of the soybean. Theor Appl Genet, 2004, 109: 122–128



[9]Liu B, Watanabe S, Uchiyama T, Kong F, Kanazawa A, Xia Z, Nagamatsu A, Arai M, Yamada T, Kitamura K. The soybean stem growth habit gene Dt1 is an ortholog of Arabidopsis TERMINAL FLOWER1[W][OA]. Plant Physiol, 2010, 153: 198–210



[10]Tian Z, Wang X, Lee R, Li Y, Specht J E, Nelson R L, McClean P E, Qiu L, Ma J. Artificial selection for determinate growth habit in soybean. Proc Natl Acad Sci USA, 2010, 107: 8563–8568



[11]Bernard R L. The inheritance of pod color in soybeans. J Hered, 1967, 58: 165–168



[12]Hou F F, Thseng F S. Studies on the flooding tolerance of soybean seed: varietal differences. Euphytica, 1991, 57: 169–173



[13]Takahashi R. Association of soybean genes I and T with low-temperature induced seed coat deterioration. Crop Sci, 1997, 37: 1755–1759



[14]Gai J-Y(盖钧镒), Plant Breeding (Species) (作物育种学各论), 2nd Edn. Beijing: China Agriculture Press, 2006. pp 235–236 (in Chinese)



[15]Song J(宋健), Guo Y(郭勇), Yu L-J(于丽杰), Qiu L-J(邱丽娟). Progress in genes related to seed-coat color in soybean. Hereditas (遗传), 2012, 34: 687–694 (in Chinese)



[16]Clough S J, Tuteja J H, Li M, Marek L F, Shoemaker R C, Vodkin L O. Features of a 103-kb gene-rich region in soybean include an inverted perfect repeat cluster of CHS genes comprising the I locus. Genome, 2004, 47: 819–831



[17]Toda K, Yang D, Yamanaka N, Watanabe S, Harada K, Takahashi R. A single-base deletion in soybean flavonoid 3’-hydroxylase gene is associated with gray pubescence color. Plant Mol Biol, 2002, 50: 187–196



[18]Eshed Y, Zamir D. An introgression line population of Lycopersicon pennellii in the cultivated tomato enables the identification and fine mapping of yield-associated QTL. Genetics, 1995, 141: 1147–1162



[19]Huang X Q, Cöster H, Ganal M W, Röder M S. Advanced backcross QTL analysis for the identification of quantitative trait loci alleles from wild relatives of wheat (Triticum aestivum L.). Theor Appl Genet, 2003, 106: 1379–1389



[20]Pillen K, Zacharias A, Léon J. Advanced backcross QTL analysis in barley (Hordeum vulgare L.). Theor Appl Genet, 2003, 107: 340–352



[21]Kubo T, Aida Y, Nakamura K, Tsunematsu H, Doi K, Yoshimura A. Reciprocal chromosome segment substitution series derived from japonica and indica cross of rice (Oryza sativa L.). Breed Sci, 2002, 52: 319–325



[22]Wan J-L(万建林), Zhai H-Q(翟虎渠), Wan J-M(万建民), Yasui H, Yoshimura A. Mapping QTL for traits associated with resistance to ferrous iron toxicity in rice (Oryza sativa L.), using japonica chromosome segment substitution lines. Acta Genet Sin (遗传学报), 2003, 30: 893–898



[23]Hao W(郝伟), Jin J(金健), Sun S-Y(孙世勇), Zhu M-Z(朱美珍), Lin H-X(林鸿宣). Construction of chromosome segment substitution lines carrying overlapping chromosome segments of the whole wild rice genome and identification of quantitative trait loci for rice quality. J Plant Physiol Mol Biol (植物生理与分子生物学学报), 2006, 32: 354–362 (in Chinese)



[24]Alpert K B, Tanksley S D. High-resolution mapping and isolation of a yeast artificial chromosome contig containing fw2.2: a major fruit weight quantitative trait locus in tomato. Proc Natl Acad Sci USA, 1996, 93: 15503–15507



[25]Yamamoto T, Lin H X, Sasaki T, Yano M. Identification of heading date quantitative trait locus Hd6 and characterization of its epistatic interactions with Hd2 in rice using advanced backcross progeny. Genetics, 2000, 154: 885–891



[26]Wang W B, He Q Y, Yang H Y, Xiang S H, Zhao T J, Gai J Y. Development of a chromosome segment substitution line population with wild soybean (Glycine soja Sieb. et Zucc.) as donor parent. Euphytica, 2013, 189: 293–307



[27]Qiu L-J(邱丽娟), Chang R-Z(常汝镇). Descriptors and Data Standard for Soybean (Glycine spp.) (大豆种质资源描述规范和数据标准). Beijing: China Agriculture Press, 2006. p 59 (in Chinese)



[28]McCouch S R, Cho Y G, Yano M, Paul E, Blinstrub M, Morishima H, Kinoshita T. Report on QTL nomenclature. Rice Genet Newslett, 1997, 14: 11–13



[29]Young N D, Tanksley S D. Restriction fragment length polymorphism maps and the concept of graphical genotypes. Theor Appl Genet, 1989, 77: 95–101



[30]Liu B, Fujita T, Yan Z H, Sakamoto S, Xu D, Abe J. QTL mapping of domestication-related traits in soybean (Glycine max). Ann Bot, 2007, 100: 1027–1038



[31]Maughan P J, Maroof M A S, Buss G R. Molecular-marker analysis of seed-weight: genomic locations, gene action, and evidence for orthologous evolution among three legume species. Theor Appl Genet, 1996, 93: 574–579



[32]Zhao R-B(赵荣兵), Wang Y-X(王永霞), Ding J-Q(丁俊强), Zhang X-C(张学才), Wu J-Y(吴建宇). Fine mapping of resistance gene Rscmv1 to maize dwarf mosaic virus. J Maize Sci (玉米科学), 2011, 19: 10–13 (in Chinese)



[33]Zhao L(赵亮), Cai C-P(蔡彩平), Zhang T-Z(张天真), Guo W-Z(郭旺珍). Fine mapping of the red plant gene R1 in upland cotton (Gossypium hirsutum). Chin Sci Bull (科学通报), 2009, 54: 888–891 (in Chinese)



[34]Michelmore R W, Paran I, Kesseli R V. Identification of markers linked to disease-resistance genes by bulked segregant analysis: a rapid method to detect markers in specific genomic regions by using segregating populations. Proc Natl Acad Sci USA, 1991, 88: 9828–9832



[35]Zhang Q, Shen B Z, Dai X K, Mei M H, Saghai-Maroof M A, Li Z B. Using bulked extremes and recessive class to map genes for photoperiod-sensitive genic male-sterility in rice. Proc Natl Acad Sci USA, 1994, 91: 8675–8679



[36]Giovannoni J J, Wing R A, Ganal M W, Tanksley S D. Isolation of molecular markers from specific chromosomal intervals using DNA pools from existing mapping populations. Nucl Acids Res, 1991, 19: 6553–6558



[37]Martin G B, Williams J G, Tanksley S D. Rapid identification of markers linked to a Pseudomonas resistance gene in tomato by using random primers and near-isogenic lines. Proc Natl Acad Sci USA, 1991, 88: 2336–2340

[1] WANG Xiao-Lei, LI Wei-Xing, OU-YANG Lin-Juan, XU Jie, CHEN Xiao-Rong, BIAN Jian-Min, HU Li-Fang, PENG Xiao-Song, HE Xiao-Peng, FU Jun-Ru, ZHOU Da-Hu, HE Hao-Hua, SUN Xiao-Tang, ZHU Chang-Lan. QTL mapping for plant architecture in rice based on chromosome segment substitution lines [J]. Acta Agronomica Sinica, 2022, 48(5): 1141-1151.
[2] LUO Lan, LEI Li-Xia, LIU Jin, ZHANG Rui-Hua, JIN Gui-Xiu, CUI Di, LI Mao-Mao, MA Xiao-Ding, ZHAO Zheng-Wu, HAN Long-Zhi. Mapping QTLs for yield-related traits using chromosome segment substitution lines of Dongxiang common wild rice (Oryza rufipogon Griff.) and Nipponbare (Oryza sativa L.) [J]. Acta Agronomica Sinica, 2021, 47(7): 1391-1401.
[3] SHEN Wen-Qiang, ZHAO Bing-Bing, YU Guo-Ling, LI Feng-Fei, ZHU Xiao-Yan, MA Fu-Ying, LI Yun-Feng, HE Guang-Hua, ZHAO Fang-Ming. Identification of an excellent rice chromosome segment substitution line Z746 and QTL mapping and verification of important agronomic traits [J]. Acta Agronomica Sinica, 2021, 47(3): 451-461.
[4] WANG Xiao-Lei, LI Wei-Xing, ZENG Bo-Hong, SUN Xiao-Tang, OU-YANG Lin-Juan, CHEN Xiao-Rong, HE Hao-Hua, ZHU Chang-Lan. QTL detection and stability analysis of rice grain shape and thousand-grain weight based on chromosome segment substitution lines [J]. Acta Agronomica Sinica, 2020, 46(10): 1517-1525.
[5] WANG Da-Chuan,WANG Hui,MA Fu-Ying,DU Jie,ZHANG Jia-Yu,XU Guang-Yi,HE Guang-Hua,LI Yun-Feng,LING Ying-Hua,ZHAO Fang-Ming. Identification of rice chromosome segment substitution Line Z747 with increased grain number and QTL mapping for related traits [J]. Acta Agronomica Sinica, 2020, 46(01): 140-146.
[6] Ping ZHANG,Yi-Mei JIANG,Peng-Hui CAO,Fu-Lin ZHANG,Hong-Ming WU,Meng-Ying CAI,Shi-Jia LIU,Yun-Lu TIAN,Ling JIANG,Jian-Min WAN. Introducing qSS-9 Kas into Ningjing 4 by molecular marker-assisted selection to improve its seed storage ability [J]. Acta Agronomica Sinica, 2019, 45(3): 335-343.
[7] Guo-Qing CUI,Shi-Ming WANG,Fu-Ying MA,Hui WANG,Chao-Zhong XIANG,Yun-Feng LI,Guang-Hua HE,Chang-Wei ZHANG,Zheng-Lin YANG,Ying-Hua LING,Fang-Ming ZHAO. Identification of Rice Chromosome Segment Substitution Line Z1377 with Increased Plant Height and QTL Mapping for Agronomic Important Traits [J]. Acta Agronomica Sinica, 2018, 44(10): 1477-1484.
[8] ZHOU Yong,TAO Ya-Jun,YAO Rui,LI Chang,TAN Wen-Chen,YI Chuan-Deng,GONG Zhi-Yun, LIANG Guo-Hua*. QTL Mapping for Leaf Morphological Traits of Rice Using Chromosome Segment Substitution Lines [J]. Acta Agron Sin, 2017, 43(11): 1650-1657.
[9] ZHOU Ke,LI Yan,WANG Shi-Ming,CUI Guo-Qing,YANG Zheng-Lin,HE Guang-Hua,LING Ying-Hua,ZHAO Fang-Ming. Identification of Rice Chromosome Segment Substitution Line Z519 with Purple Sheath and Candidate Gene Analysis of PSH1 [J]. Acta Agron Sin, 2017, 43(07): 974-982.
[10] SHE Dong, LIU Qiang-Ming, LI Da-Lu, LIANG Yin-Feng, LIU Er-Bao,DANG Xiao-Jing,HONG De-Lin. QTL Mapping of Seven Panicle Traits in Rice (Oryza sativa L.) Using Chromosome Segment [J]. Acta Agron Sin, 2017, 43(05): 658-668.
[11] PENG Qian,XUE Ya-Dong,ZHANG Xiang-Ge,LI Hui-Min,SUN Gao-Yang,LI Wei-Hua,XIE Hui-Ling,TANG Ji-Hua. Identification of Heterotic Loci for Yield and Ear Traits Using CSSL Test Population in Maize [J]. Acta Agron Sin, 2016, 42(04): 482-491.
[12] XIANG Jia, LI Yan, FAN Ya-Wei, XU Jun-Hong, ZHENG Li-Yuan, HE Guang-Hua, YANG Zheng-Lin, WANG Nan, and ZHAO Fang-Ming*. Identification and Morphological Analysis of a Rice Chromosome Segment Substitution Line Carrying a Major Effect Gene for Late Heading Date and Mapping of Ehd4-2 [J]. Acta Agron Sin, 2015, 41(05): 683-691.
[13] LIU Xin-Yan,ZHU Kong-Zhi,ZHANG Chang-Quan,HONG Ran,SUN Peng,TANG Su-Zhu,GU Ming-Hong,LIU Qiao-Quan. Mapping of Minor QTLs for Rice Gelatinization Temperature Using Chromosome Segment Substitution Lines from Indica 9311 in the Japonica Background [J]. Acta Agron Sin, 2014, 40(10): 1740-1747.
[14] JIANG Yan,WU Cun-Xiang,HU Po,HOU Wen-Sheng,ZU Wei,HAN Tian-Fu. Morphological and Anatomic Characteristics on Terminal Raceme Development of Soybean Varieties with Different Stem Termination Types [J]. Acta Agron Sin, 2014, 40(06): 1117-1124.
[15] WANG Li-Xia,CHENG Xu-Zhen,WANG Su-Hua,LIU Yan. Inheritance of Several Traits in Mungbean (Vigna radiata) [J]. Acta Agron Sin, 2013, 39(07): 1172-1178.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!