Welcome to Acta Agronomica Sinica,

Acta Agron Sin ›› 2013, Vol. 39 ›› Issue (10): 1727-1738.doi: 10.3724/SP.J.1006.2013.01727

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Sequence Diversity of ZmLEC1 and Association Analysis of Embryogenic calli Formation Ability in Maize

LI Zhao1,2,ZHANG Deng-Feng2,SUN Yong-Hua2,WU Xun2,LI Yong-Xiang2,SHI Yun-Su2,SONG Yan-Chun2,YANG De-Guang1,*,WANG Tian-Yu2,LI Yu2,*   

  1. 1 College of Agriculture, Northeast Agricultural University, Harbin 150030, China;2 Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
  • Received:2013-01-28 Revised:2013-06-02 Online:2013-10-12 Published:2013-08-01
  • Contact: 杨德光, E-mail: ydgl@tom.com; 黎裕, E-mail: liyu03@caas.cn, Tel: 010-62131196

Abstract:

A maize association mapping population consisted of a mini core collection of ninety-five maize inbred lines and three elite maize accessions (A188, HiII, and Zong 31)usually for genetic transformation was used to analyze the sequence diversity and linkage disequilibrium (LD) of ZmLEC1, a candidate gene of regeneration ability in maize. A candidate gene association strategy was used to reveal the relationship between this gene and embryogenic calli formation ability and discover favorable alleles and genotypes enhancing the embryogenic calli formation ability. The results showed that there existed significant differences in abilities of embryogenic calli formation and regeneration among these accessions. The calli induced from Yue267-1-1 were very similar to those of HiII, the popularly used genotype in maize transformation. Yue267-1-1 had the highest ability of embryogenic calli formation and regeneration and could be a new germplasm for immature embryo-based genetic transformation. The result of sequence polymorphism analysis of ZmLEC1 showed that there were thirty-three SNPs and nine InDels in the coding region of 852 bps. The LD between all of the informative polymorphisms decayed rapidly to about 300 bp at R2=0.1. Totally four polymorphic sites in the ZmLEC1 gene were significantly associated with embryogenetic calli formation ability.

Key words: Zea mays, ZmLEC1, Embryogenetic callus, Association analysis

[1]Hecht V, Vielle-Calzada J P, Hartog M V, Schmidt E D L, Boutilier K, Grossniklaus U, de Vries S C. The Arabidopsis SOMATIC EMBRYOGENESIS KINASE 1 is expressed in developing ovules and embryos and enhances embryogenic competence in culture. Plant Physiol, 2001, 127: 803–816



[2]Nishimura A, Ashikari M, Lin S Y, Takashi T, Angeles E R, Yamamoto T, Matsuoka M. Isolation of a rice regeneration quantitative trait loci gene and its application to transformation systems. Proc Natl Acad Sci USA, 2005, 102:11940–11944



[3]Ozawa K, Kawahigashi H. Positional cloning of the nitrite reductase gene associated with good growth and regeneration ability of calli and establishment of a new selection system for Agrobacterium-mediated transformation in rice (Oryza sativa L.). Plant Sci, 2006, 170:384–393



[4]Tromas A, Paponov I, Perrot-Rechenmann C. AUXIN BINDING PROTEIN 1: functional and evolutionary aspects. Trends Plant Sci, 2010, 15:436–446



[5]Sauter M, Wiegen P, Lörz H, Kranz E. Cell cycle regulatory genes from maize are differentially controlled during fertilization and first embryonic cell division. Sexual Plant Reprod, 1998, 11: 41–48



[6]Meinke D W,Franzmann L H,Nickle T C,Yeung E C.Leafy cotyledon mutants of Arabidopsis. Plant Cell, 1994, 6:1049–1064



[7]Lotan T, Ohto M, Yee K M, West M A L, Lo R, Kwong R W, Yamagishi K, Fischer R L, Goldberg R B, Harada J J. Arabidopsis LEAFY COTYLEDON1 is sufficient to induce embryo development in vegetative cells. Cell, 1998, 93:1195–1205



[8]Zhang S, Wong L, Meng L, Lemaux P G. Similarity of expression patterns of knotted1 and ZmLEC1 during somatic and zygotic embryogenesis in maize ( Zea mays L.). Planta, 2002, 215:191–194



[9]Duncan D R, Williams M E, Zehr B E, Widholm J M. The production of callus capable of plant regeneration from immature embryos of numerous Zea mays genotypes. Planta. 1985, 165:322–332



[10]Bolibok H, Rakoczy-Trojanowska M. Genetic mapping of QTLs for tissue culture response in plants. Euphytica, 2006, 149: 73–83_



[11]Armstrong C L , Romero-Severson J, Hodges T K. Improved tissue culture response of an elite maize inbred through back cross breeding , and identification of chromosomal regions important f or regene ration by RFLP analysis. Theor Appl Genet, 1992, 84: 755–762



[12]Krakowsky M D , Lee M, Garay L. Quantitative trait loci for callus initiation in maize (Zea mays L.). Theor Appl Genet, 2006, 113: 821–830 _



[13]Zhang H-W(张红伟), Liu Y-J(刘亚娟), Guo X-L(郭晓琳), Zhang F(张峰),Li J-S(李建生), Chen G(陈刚),Sun D-F(孙东发), Tan Z-B(谭振波). QTL mapping for callus induction and plant regeneration in maize immature embryos. Acta Agrono Sin(作物学报), 2006, 32(3): 385–389 (in Chinese with English abstract)



[14]Ye X-G(叶兴国), She M-Y(佘茂云), Wang K(王轲), Du L-P(杜丽璞), XU H-J(徐惠君). Identification, cloning, and potential application of genes related to somatic embryogenesis in plant tissue culture. Acta Agrono Sin(作物学报), 2012, 38(2): 191–201(in Chinese with English abstract)



[15]Yang X-H(杨小红), Yan J-B(严建兵), Zheng Y-P(郑艳萍), Yu J-M(余建明), Li J-S(李建生). Reviews of association analysis for quantitative traits in plants. Acta Agrono Sin(作物学报), 2007, 33(4): 523–530(in Chinese with English abstract)



[16]Wang R-H(王荣焕), Wang T-Y(王天宇), Li Y(黎裕). Linkage disequilibrium in plant genomes. Hereditas(遗传), 2007, 29(11): 1317–1321(in Chinese with English abstract)



[17]Thornsberry J M, Goodman M M, Doebley J, Kresovich S, Nielsen D, Buckler E S. Dwarf8 polymorphisms associate with variation in flowering time. Nat Genet, 2001, 28: 286–289



[18]Palaisa K A, Morgante M, Williams M, Rafalski A. Contrasting effects of selection on sequence diversity and linkage disequilibrium at two phytoene synthase loci. Plant Cell, 2003, 15: 1795–1806



[19]Wilson L M, Whitt S R, Iba´n˜ez A M, Rocheford T R, Goodman M M, Buckler E S. Dissection of maize kernel composition and starch production by candidate gene association. Plant Cell, 2004, 16: 2719–2733



[20]Szalma S J, Buckler E S, Snook M E, McMullen M D. Association analysis of candidate genes for maysin and chlorogenic acid accumulation in maize silks. Theor Appl Genet, 2005, 110: 1324–1333



[21]Andersen J R, Zein I, Wenzel G, Krützfeldt B, Eder J, Ouzunova M, Lübberstedt T. High levels of linkage disequilibrium and associations with forage quality at a Phenylalanine Ammonia-Lyase locus in European maize (Zea mays L.) inbreds. Theor Appl Genet, 2006, 114: 307–319



[22]Yan J B, Brutnel T, Kandianis C B, Harjes C E, Bai L,Kim E H, Yang X H, Skinner D J, Fu Z Y, Mitchell S, Li Q, Fernandez M G S, Zaharieva M, Babu R,Fu Y, Palacios N, Li J S, DellaPenna D, Brutnell T, Buckler E S, Warburton M L, Rocheford T. Rare genetic variation at Zea mays crtRB1 increases carotene in maize grain. Nat Genet, 2010, 42: 322–327



[23]Wang R H, Yu Y T, Zhao J R, Shi Y S, Song Y C, Wang T Y, Li Y. Population structure and linkage disequilibrium of a mini core set of maize inbred lines in China. Theor Appl Genet, 2008, 117: 1141–1153 



[24]Ishida Y, Hiei Y, Komari T. Agrobacterium-mediated transformation of maize. Nat Protoc, 2007, 2: 1614–1621



[25]Armstrong C L, Green C E. Establishment and maintenance of friable, embryogenic maize callus and the involvement of L-proline. Planta, 1985, 164: 207–214



[26]Thompson J D, Gibson T J, Plewniak F, Jeanmougin F, Higgins D G. The ClustalX windows interface: flexible strategies of multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res, 1997, 25: 4876–4882



[27]Rozas J, Sanchez-DelBarrio J C, Messeguer X. DnaSP, DNA polymorphism analyses by the coalescent and other methods. Bioinformatics, 2003, 19:2496–2497



[28] Bradbury P J, Zhang Z W, Kroon D E, Casstevens T M, Ramdoss Y, Buckler E S. TASSEL: software for association mapping of complex traits in diverse samples. Bioinform Appl Note, 2007, 23: 2633–2635 



[29] Zhao Z-Y, Gu W N, Cai T S, Tagliani L, Hondred D, Bond D, Schroeder S, Rudert M, Pierce D. High throughput genetic transformtion mediated by Agrobacterum trmefaciens in maize. Mol Breed, 2001, 8: 323–333



[30] Ishida Y, Saito H, Hiei Y, Komari T. Improved protocol for transformation of maize(Zea Maize L.) mediated by Agrobacterium tumefaciens. Plant Biotechnol, 2003, 20: 57–66



[31] Wang Z-Y(王章英). Isolation and Characterization of Maize Endosperm AGPase Mutants and Improving Maize Starch Content by Using Genetic Engineering. PhD Dissertation of China Agricultura University, 2006(in Chinese with English abstract)



[32] Liang G-D(梁广东), Di H(邸宏), Lu C-H(卢翠华), Zhang L(张林), Dong L(董玲), Wang Z-H(王振华), Jiang L-L(姜丽丽), Zhou Y(周羽). Study onimmature embryos regeneration of maize inbred lines. J Northeast Agric Univ(东北农业大学学报), 2010, 41(2): 11–14(in Chinese with English abstract)



[33] Hu Y-M(胡彦民), Tang J-H(汤继华), Liu Z-H(刘宗华), Ji H-Q(季洪强), Shi H-L(史红丽), Ji L-Y(季良越). Selection of the genotypes of high plant regeneration frequency from immature embryo calli in maize. Henan Sci(河南科学), 2004, 22(1): 63–66(in Chinese with English abstract)



[34] Wang H-N(王汉宁), Zhang J-W(张金文), Kong W-P(孔维萍), Feng Y-L(冯玉兰). Callus initiation and regeneration from immture embryos of maize. J Maize Sci(玉米科学), 2006, 14(5): 71–73(in Chinese with English abstract)



[35] Wu H(吴红), Xie S-Z(谢树章), Lin Q(林清), Lei K-R(雷开荣),  Qiu Z-G(邱正高), Zhang Y-Q(张亚勤), Wang N(王楠), Zhou Y-K(周幼昆). Study on callus induction and plantlet regeneration from immature embyro among different maize inbreds.Acta Agric Southwest (西南农业学报), 2012, 25(2): 385–389(in Chinese with English abstract)



[36] Mu G-Q(母贵琴), Pan G-T(潘光堂), Liu Y-Z(刘玉贞), Xia Y-L(夏燕莉). Preliminary study on maize genotypes and the establishment of embryogenic callus. J Sichuan Agric Univ(四川农业大学学报), 2003, 21(1): 13–17(in Chinese with English abstract)



[37] Ching A, Caldwell K S, Jung M, Dolan M, Smith O S, Tingey S, Morgante M, Rafalski A J. SNP frequency haplotype structure and linkage disequilibrium in elite maize inbred lines. BMC Genet, 2003, 3: 1–14



[38] Jung M, Ching A, Bhattramakki D, Dolan M, Tingey S, Morgante M, Rafalski A. Linkage disequilibrium and sequence diversity in a 500-kb region around the adh1 locus in elite maize germplasm. Theor Appl Genet, 2004, 109: 681–689



[39] Nordborg M. Linkage disequilibrium, gene trees and sel?ng: an ancestral recombination graph with partial self-fertilization. Genetics ,2000, 154: 923–929



[40] Remington D L, Thornsberry J M, Matsuoka Y, Wilson L M, Whitt S R, Doebley J, Kresovich S, Goodman M M, Buckler E S. Structure of linkage disequilibrium and phenotypic associations in the maize genome. Proc Natl Acad Sci USA, 2001, 98: 11479–11484



[41] Tenaillon M I, Sawkins M C, Long A D, Long R L, Doebley J F, Gaut B S. Patterns of DNA sequence polymorphism along chromosome 1 of maize (Zea mays ssp. mays L.). Proc Natl Acad Sci USA, 2001, 98: 9161–9166

[1] XU De-Rong, SUN Chao, BI Zhen-Zhen, QIN Tian-Yuan, WANG Yi-Hao, LI Cheng-Ju, FAN You-Fang, LIU Yin-Du, ZHANG Jun-Lian, BAI Jiang-Ping. Identification of StDRO1 gene polymorphism and association analysis with root traits in potato [J]. Acta Agronomica Sinica, 2022, 48(1): 76-85.
[2] YU Rui-Su, TIAN Xiao-Kang, LIU Bin-Bin, DUAN Ying-Xin, LI Ting, ZHANG Xiu-Ying, ZHANG Xing-Hua, HAO Yin-Chuan, LI Qin, XUE Ji-Quan, XU Shu-Tu. Dissecting the genetic architecture of lodging related traits by genome-wide association study and linkage analysis in maize [J]. Acta Agronomica Sinica, 2022, 48(1): 138-150.
[3] HAN Bei, WANG Xu-Wen, LI Bao-Qi, YU Yu, TIAN Qin, YANG Xi-Yan. Association analysis of drought tolerance traits of upland cotton accessions (Gossypium hirsutum L.) [J]. Acta Agronomica Sinica, 2021, 47(3): 438-450.
[4] TANG Jing-Quan, WANG Nan, GAO Jie, LIU Ting-Ting, WEN Jing, YI Bin, TU Jin-Xing, FU Ting-Dong, SHEN Jin-Xiong. Bioinformatics analysis of SnRK gene family and its relation with seed oil content of Brassica napus L. [J]. Acta Agronomica Sinica, 2021, 47(3): 416-426.
[5] JIANG Wei, PAN Zhe-Chao, BAO Li-Xian, ZHOU Fu-Xian, LI Yan-Shan, SUI Qi-Jun, LI Xian-Ping. Genome-wide association analysis for late blight resistance of potato resources [J]. Acta Agronomica Sinica, 2021, 47(2): 245-261.
[6] XIE Lei, REN Yi, ZHANG Xin-Zhong, WANG Ji-Qing, ZHANG Zhi-Hui, SHI Shu-Bing, GENG Hong-Wei. Genome-wide association study of pre-harvest sprouting traits in wheat [J]. Acta Agronomica Sinica, 2021, 47(10): 1891-1902.
[7] LI Jing-Cai, WANG Qiang-Lin, SONG Wei-Wu, HUANG Wei, XIAO Gui-Lin, WU Cheng-Jin, GU Qin, SONG Bo-Tao. Association analysis of dormancy QTL in tetraploid potato via candidate gene markers [J]. Acta Agronomica Sinica, 2020, 46(9): 1380-1387.
[8] PENG Bo,ZHAO Xiao-Lei,WANG Yi,YUAN Wen-Ya,LI Chun-Hui,LI Yong-Xiang,ZHANG Deng-Feng,SHI Yun-Su,SONG Yan-Chun,WANG Tian-Yu,LI Yu. Genome-wide association studies of leaf orientation value in maize [J]. Acta Agronomica Sinica, 2020, 46(6): 819-831.
[9] Yun-Fu LI,Jing-Xian WANG,Yan-Fang DU,Hua-Wen ZOU,Zu-Xin ZHANG. Identification of indeterminate domain protein family genes associated with flowering time in maize [J]. Acta Agronomica Sinica, 2019, 45(4): 499-507.
[10] Mi WU,Nian WANG,Chao SHEN,Cong HUANG,Tian-Wang WEN,Zhong-Xu LIN. Development and evaluation of InDel markers in cotton based on whole-genome re-sequencing data [J]. Acta Agronomica Sinica, 2019, 45(2): 196-203.
[11] Yang-Yang LI,Rong-Rong JING,Rong-Rong LYU,Peng-Cheng SHI,Xin LI,Qin WANG,Dan WU,Qing-Yuan ZHOU,Jia-Na LI,Zhang-Lin TANG. Genome-wide association analysis and candidate genes prediction of waterlogging-responding traits in Brassica napus L. [J]. Acta Agronomica Sinica, 2019, 45(12): 1806-1821.
[12] Mei DENG, Yuan-Jiang HE, Lu-Lu GOU, Fang-Jie YAO, Jian LI, Xue-Mei ZHANG, Li LONG, Jian MA, Qian-Tao JIANG, Ya-Xi LIU, Yu-Ming WEI, Guo-Yue CHEN. Genetic Effects of Key Genomic Regions Controlling Yield-Related Traits in Wheat Founder Parent Fan 6 [J]. Acta Agronomica Sinica, 2018, 44(05): 706-715.
[13] SHEN Cong-Cong,ZHU Ya-Jun,CHEN Kai,CHEN Hui-Zhen,WU Zhi-Chao,MENG Li-Jun,XU Jian-Long. Mapping of QTL for Heading Date and Plant Height Using MAGIC Populations of Rice [J]. Acta Agron Sin, 2017, 43(11): 1611-1621.
[14] WU Lyu, DAI Li-Qiang, DONG Qing-Song, SHI Ting-Ting,WANG Pi-Wu*. Genome-wide Association Analysis of Kernel Number per Row in Maize [J]. Acta Agron Sin, 2017, 43(10): 1559-1564.
[15] ZHU Ji-Feng,WU Jing,WANG Lan-Fen,ZHU Zhen-Dong,WANG Shu-Min. Mapping of Common Bacterial Blight Resistance Gene in Common Bean [J]. Acta Agron Sin, 2017, 43(01): 1-8.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!