Acta Agron Sin ›› 2013, Vol. 39 ›› Issue (10): 1727-1738.doi: 10.3724/SP.J.1006.2013.01727
• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles Next Articles
LI Zhao1,2,ZHANG Deng-Feng2,SUN Yong-Hua2,WU Xun2,LI Yong-Xiang2,SHI Yun-Su2,SONG Yan-Chun2,YANG De-Guang1,*,WANG Tian-Yu2,LI Yu2,*
[1]Hecht V, Vielle-Calzada J P, Hartog M V, Schmidt E D L, Boutilier K, Grossniklaus U, de Vries S C. The Arabidopsis SOMATIC EMBRYOGENESIS KINASE 1 is expressed in developing ovules and embryos and enhances embryogenic competence in culture. Plant Physiol, 2001, 127: 803–816[2]Nishimura A, Ashikari M, Lin S Y, Takashi T, Angeles E R, Yamamoto T, Matsuoka M. Isolation of a rice regeneration quantitative trait loci gene and its application to transformation systems. Proc Natl Acad Sci USA, 2005, 102:11940–11944[3]Ozawa K, Kawahigashi H. Positional cloning of the nitrite reductase gene associated with good growth and regeneration ability of calli and establishment of a new selection system for Agrobacterium-mediated transformation in rice (Oryza sativa L.). Plant Sci, 2006, 170:384–393[4]Tromas A, Paponov I, Perrot-Rechenmann C. AUXIN BINDING PROTEIN 1: functional and evolutionary aspects. Trends Plant Sci, 2010, 15:436–446[5]Sauter M, Wiegen P, Lörz H, Kranz E. Cell cycle regulatory genes from maize are differentially controlled during fertilization and first embryonic cell division. Sexual Plant Reprod, 1998, 11: 41–48[6]Meinke D W,Franzmann L H,Nickle T C,Yeung E C.Leafy cotyledon mutants of Arabidopsis. Plant Cell, 1994, 6:1049–1064[7]Lotan T, Ohto M, Yee K M, West M A L, Lo R, Kwong R W, Yamagishi K, Fischer R L, Goldberg R B, Harada J J. Arabidopsis LEAFY COTYLEDON1 is sufficient to induce embryo development in vegetative cells. Cell, 1998, 93:1195–1205[8]Zhang S, Wong L, Meng L, Lemaux P G. Similarity of expression patterns of knotted1 and ZmLEC1 during somatic and zygotic embryogenesis in maize ( Zea mays L.). Planta, 2002, 215:191–194[9]Duncan D R, Williams M E, Zehr B E, Widholm J M. The production of callus capable of plant regeneration from immature embryos of numerous Zea mays genotypes. Planta. 1985, 165:322–332[10]Bolibok H, Rakoczy-Trojanowska M. Genetic mapping of QTLs for tissue culture response in plants. Euphytica, 2006, 149: 73–83_[11]Armstrong C L , Romero-Severson J, Hodges T K. Improved tissue culture response of an elite maize inbred through back cross breeding , and identification of chromosomal regions important f or regene ration by RFLP analysis. Theor Appl Genet, 1992, 84: 755–762[12]Krakowsky M D , Lee M, Garay L. Quantitative trait loci for callus initiation in maize (Zea mays L.). Theor Appl Genet, 2006, 113: 821–830 _[13]Zhang H-W(张红伟), Liu Y-J(刘亚娟), Guo X-L(郭晓琳), Zhang F(张峰),Li J-S(李建生), Chen G(陈刚),Sun D-F(孙东发), Tan Z-B(谭振波). QTL mapping for callus induction and plant regeneration in maize immature embryos. Acta Agrono Sin(作物学报), 2006, 32(3): 385–389 (in Chinese with English abstract)[14]Ye X-G(叶兴国), She M-Y(佘茂云), Wang K(王轲), Du L-P(杜丽璞), XU H-J(徐惠君). Identification, cloning, and potential application of genes related to somatic embryogenesis in plant tissue culture. Acta Agrono Sin(作物学报), 2012, 38(2): 191–201(in Chinese with English abstract)[15]Yang X-H(杨小红), Yan J-B(严建兵), Zheng Y-P(郑艳萍), Yu J-M(余建明), Li J-S(李建生). Reviews of association analysis for quantitative traits in plants. Acta Agrono Sin(作物学报), 2007, 33(4): 523–530(in Chinese with English abstract)[16]Wang R-H(王荣焕), Wang T-Y(王天宇), Li Y(黎裕). Linkage disequilibrium in plant genomes. Hereditas(遗传), 2007, 29(11): 1317–1321(in Chinese with English abstract)[17]Thornsberry J M, Goodman M M, Doebley J, Kresovich S, Nielsen D, Buckler E S. Dwarf8 polymorphisms associate with variation in flowering time. Nat Genet, 2001, 28: 286–289[18]Palaisa K A, Morgante M, Williams M, Rafalski A. Contrasting effects of selection on sequence diversity and linkage disequilibrium at two phytoene synthase loci. Plant Cell, 2003, 15: 1795–1806[19]Wilson L M, Whitt S R, Iba´n˜ez A M, Rocheford T R, Goodman M M, Buckler E S. Dissection of maize kernel composition and starch production by candidate gene association. Plant Cell, 2004, 16: 2719–2733[20]Szalma S J, Buckler E S, Snook M E, McMullen M D. Association analysis of candidate genes for maysin and chlorogenic acid accumulation in maize silks. Theor Appl Genet, 2005, 110: 1324–1333[21]Andersen J R, Zein I, Wenzel G, Krützfeldt B, Eder J, Ouzunova M, Lübberstedt T. High levels of linkage disequilibrium and associations with forage quality at a Phenylalanine Ammonia-Lyase locus in European maize (Zea mays L.) inbreds. Theor Appl Genet, 2006, 114: 307–319[22]Yan J B, Brutnel T, Kandianis C B, Harjes C E, Bai L,Kim E H, Yang X H, Skinner D J, Fu Z Y, Mitchell S, Li Q, Fernandez M G S, Zaharieva M, Babu R,Fu Y, Palacios N, Li J S, DellaPenna D, Brutnell T, Buckler E S, Warburton M L, Rocheford T. Rare genetic variation at Zea mays crtRB1 increases carotene in maize grain. Nat Genet, 2010, 42: 322–327[23]Wang R H, Yu Y T, Zhao J R, Shi Y S, Song Y C, Wang T Y, Li Y. Population structure and linkage disequilibrium of a mini core set of maize inbred lines in China. Theor Appl Genet, 2008, 117: 1141–1153 [24]Ishida Y, Hiei Y, Komari T. Agrobacterium-mediated transformation of maize. Nat Protoc, 2007, 2: 1614–1621[25]Armstrong C L, Green C E. Establishment and maintenance of friable, embryogenic maize callus and the involvement of L-proline. Planta, 1985, 164: 207–214[26]Thompson J D, Gibson T J, Plewniak F, Jeanmougin F, Higgins D G. The ClustalX windows interface: flexible strategies of multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res, 1997, 25: 4876–4882[27]Rozas J, Sanchez-DelBarrio J C, Messeguer X. DnaSP, DNA polymorphism analyses by the coalescent and other methods. Bioinformatics, 2003, 19:2496–2497[28] Bradbury P J, Zhang Z W, Kroon D E, Casstevens T M, Ramdoss Y, Buckler E S. TASSEL: software for association mapping of complex traits in diverse samples. Bioinform Appl Note, 2007, 23: 2633–2635 [29] Zhao Z-Y, Gu W N, Cai T S, Tagliani L, Hondred D, Bond D, Schroeder S, Rudert M, Pierce D. High throughput genetic transformtion mediated by Agrobacterum trmefaciens in maize. Mol Breed, 2001, 8: 323–333[30] Ishida Y, Saito H, Hiei Y, Komari T. Improved protocol for transformation of maize(Zea Maize L.) mediated by Agrobacterium tumefaciens. Plant Biotechnol, 2003, 20: 57–66[31] Wang Z-Y(王章英). Isolation and Characterization of Maize Endosperm AGPase Mutants and Improving Maize Starch Content by Using Genetic Engineering. PhD Dissertation of China Agricultura University, 2006(in Chinese with English abstract)[32] Liang G-D(梁广东), Di H(邸宏), Lu C-H(卢翠华), Zhang L(张林), Dong L(董玲), Wang Z-H(王振华), Jiang L-L(姜丽丽), Zhou Y(周羽). Study onimmature embryos regeneration of maize inbred lines. J Northeast Agric Univ(东北农业大学学报), 2010, 41(2): 11–14(in Chinese with English abstract)[33] Hu Y-M(胡彦民), Tang J-H(汤继华), Liu Z-H(刘宗华), Ji H-Q(季洪强), Shi H-L(史红丽), Ji L-Y(季良越). Selection of the genotypes of high plant regeneration frequency from immature embryo calli in maize. Henan Sci(河南科学), 2004, 22(1): 63–66(in Chinese with English abstract)[34] Wang H-N(王汉宁), Zhang J-W(张金文), Kong W-P(孔维萍), Feng Y-L(冯玉兰). Callus initiation and regeneration from immture embryos of maize. J Maize Sci(玉米科学), 2006, 14(5): 71–73(in Chinese with English abstract)[35] Wu H(吴红), Xie S-Z(谢树章), Lin Q(林清), Lei K-R(雷开荣), Qiu Z-G(邱正高), Zhang Y-Q(张亚勤), Wang N(王楠), Zhou Y-K(周幼昆). Study on callus induction and plantlet regeneration from immature embyro among different maize inbreds.Acta Agric Southwest (西南农业学报), 2012, 25(2): 385–389(in Chinese with English abstract)[36] Mu G-Q(母贵琴), Pan G-T(潘光堂), Liu Y-Z(刘玉贞), Xia Y-L(夏燕莉). Preliminary study on maize genotypes and the establishment of embryogenic callus. J Sichuan Agric Univ(四川农业大学学报), 2003, 21(1): 13–17(in Chinese with English abstract)[37] Ching A, Caldwell K S, Jung M, Dolan M, Smith O S, Tingey S, Morgante M, Rafalski A J. SNP frequency haplotype structure and linkage disequilibrium in elite maize inbred lines. BMC Genet, 2003, 3: 1–14[38] Jung M, Ching A, Bhattramakki D, Dolan M, Tingey S, Morgante M, Rafalski A. Linkage disequilibrium and sequence diversity in a 500-kb region around the adh1 locus in elite maize germplasm. Theor Appl Genet, 2004, 109: 681–689[39] Nordborg M. Linkage disequilibrium, gene trees and sel?ng: an ancestral recombination graph with partial self-fertilization. Genetics ,2000, 154: 923–929[40] Remington D L, Thornsberry J M, Matsuoka Y, Wilson L M, Whitt S R, Doebley J, Kresovich S, Goodman M M, Buckler E S. Structure of linkage disequilibrium and phenotypic associations in the maize genome. Proc Natl Acad Sci USA, 2001, 98: 11479–11484[41] Tenaillon M I, Sawkins M C, Long A D, Long R L, Doebley J F, Gaut B S. Patterns of DNA sequence polymorphism along chromosome 1 of maize (Zea mays ssp. mays L.). Proc Natl Acad Sci USA, 2001, 98: 9161–9166 |
[1] | XU De-Rong, SUN Chao, BI Zhen-Zhen, QIN Tian-Yuan, WANG Yi-Hao, LI Cheng-Ju, FAN You-Fang, LIU Yin-Du, ZHANG Jun-Lian, BAI Jiang-Ping. Identification of StDRO1 gene polymorphism and association analysis with root traits in potato [J]. Acta Agronomica Sinica, 2022, 48(1): 76-85. |
[2] | YU Rui-Su, TIAN Xiao-Kang, LIU Bin-Bin, DUAN Ying-Xin, LI Ting, ZHANG Xiu-Ying, ZHANG Xing-Hua, HAO Yin-Chuan, LI Qin, XUE Ji-Quan, XU Shu-Tu. Dissecting the genetic architecture of lodging related traits by genome-wide association study and linkage analysis in maize [J]. Acta Agronomica Sinica, 2022, 48(1): 138-150. |
[3] | HAN Bei, WANG Xu-Wen, LI Bao-Qi, YU Yu, TIAN Qin, YANG Xi-Yan. Association analysis of drought tolerance traits of upland cotton accessions (Gossypium hirsutum L.) [J]. Acta Agronomica Sinica, 2021, 47(3): 438-450. |
[4] | TANG Jing-Quan, WANG Nan, GAO Jie, LIU Ting-Ting, WEN Jing, YI Bin, TU Jin-Xing, FU Ting-Dong, SHEN Jin-Xiong. Bioinformatics analysis of SnRK gene family and its relation with seed oil content of Brassica napus L. [J]. Acta Agronomica Sinica, 2021, 47(3): 416-426. |
[5] | JIANG Wei, PAN Zhe-Chao, BAO Li-Xian, ZHOU Fu-Xian, LI Yan-Shan, SUI Qi-Jun, LI Xian-Ping. Genome-wide association analysis for late blight resistance of potato resources [J]. Acta Agronomica Sinica, 2021, 47(2): 245-261. |
[6] | XIE Lei, REN Yi, ZHANG Xin-Zhong, WANG Ji-Qing, ZHANG Zhi-Hui, SHI Shu-Bing, GENG Hong-Wei. Genome-wide association study of pre-harvest sprouting traits in wheat [J]. Acta Agronomica Sinica, 2021, 47(10): 1891-1902. |
[7] | LI Jing-Cai, WANG Qiang-Lin, SONG Wei-Wu, HUANG Wei, XIAO Gui-Lin, WU Cheng-Jin, GU Qin, SONG Bo-Tao. Association analysis of dormancy QTL in tetraploid potato via candidate gene markers [J]. Acta Agronomica Sinica, 2020, 46(9): 1380-1387. |
[8] | PENG Bo,ZHAO Xiao-Lei,WANG Yi,YUAN Wen-Ya,LI Chun-Hui,LI Yong-Xiang,ZHANG Deng-Feng,SHI Yun-Su,SONG Yan-Chun,WANG Tian-Yu,LI Yu. Genome-wide association studies of leaf orientation value in maize [J]. Acta Agronomica Sinica, 2020, 46(6): 819-831. |
[9] | Yun-Fu LI,Jing-Xian WANG,Yan-Fang DU,Hua-Wen ZOU,Zu-Xin ZHANG. Identification of indeterminate domain protein family genes associated with flowering time in maize [J]. Acta Agronomica Sinica, 2019, 45(4): 499-507. |
[10] | Mi WU,Nian WANG,Chao SHEN,Cong HUANG,Tian-Wang WEN,Zhong-Xu LIN. Development and evaluation of InDel markers in cotton based on whole-genome re-sequencing data [J]. Acta Agronomica Sinica, 2019, 45(2): 196-203. |
[11] | Yang-Yang LI,Rong-Rong JING,Rong-Rong LYU,Peng-Cheng SHI,Xin LI,Qin WANG,Dan WU,Qing-Yuan ZHOU,Jia-Na LI,Zhang-Lin TANG. Genome-wide association analysis and candidate genes prediction of waterlogging-responding traits in Brassica napus L. [J]. Acta Agronomica Sinica, 2019, 45(12): 1806-1821. |
[12] | Mei DENG, Yuan-Jiang HE, Lu-Lu GOU, Fang-Jie YAO, Jian LI, Xue-Mei ZHANG, Li LONG, Jian MA, Qian-Tao JIANG, Ya-Xi LIU, Yu-Ming WEI, Guo-Yue CHEN. Genetic Effects of Key Genomic Regions Controlling Yield-Related Traits in Wheat Founder Parent Fan 6 [J]. Acta Agronomica Sinica, 2018, 44(05): 706-715. |
[13] | SHEN Cong-Cong,ZHU Ya-Jun,CHEN Kai,CHEN Hui-Zhen,WU Zhi-Chao,MENG Li-Jun,XU Jian-Long. Mapping of QTL for Heading Date and Plant Height Using MAGIC Populations of Rice [J]. Acta Agron Sin, 2017, 43(11): 1611-1621. |
[14] | WU Lyu, DAI Li-Qiang, DONG Qing-Song, SHI Ting-Ting,WANG Pi-Wu*. Genome-wide Association Analysis of Kernel Number per Row in Maize [J]. Acta Agron Sin, 2017, 43(10): 1559-1564. |
[15] | ZHU Ji-Feng,WU Jing,WANG Lan-Fen,ZHU Zhen-Dong,WANG Shu-Min. Mapping of Common Bacterial Blight Resistance Gene in Common Bean [J]. Acta Agron Sin, 2017, 43(01): 1-8. |
|