Welcome to Acta Agronomica Sinica,

Acta Agron Sin ›› 2014, Vol. 40 ›› Issue (01): 37-44.doi: 10.3724/SP.J.1006.2014.00037

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Epistatic Effects and QTL×Environment Interaction Effects of QTLs for Yield and Agronomic Traits in Soybean

LIANG Hui-Zhen1,YU Yong-Liang1,YANG Hong-Qi1,ZHANG Hai-Yang1,DONG Wei1,LI Cai-Yun1,GONG Peng-Tao2,LIU Xue-Yi3,FANG Xuan-Jun4   

  1. 1 Sesame Research Center, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China; 2 Key Laboratory of Ministry of Education for Saline-alkali Vegetation Ecology Restoration in Oil Field (SAVER) /Alkali Soil Natural Environmental Science Center (ASNESC), Northeast Forestry University, Harbin 150040, China; 3 Economical Crops Institute, Shanxi Academy of Agricultural Sciences, Fenyang 032200, China; 4 Hainan Institute of Tropical Agriculture Resources, Sanya 572025, China
  • Received:2013-05-16 Revised:2013-09-16 Online:2014-01-12 Published:2013-10-22

Abstract:

Improving seed yield is an important goal of soybean breeding programs. In this investigation, a soybean SSR genetic linkage map constructed by a total of 447 recombinant inbred lines (RILs) derived from a cross between Jindou 23 (cultivar, female parent) and ZDD2315 (semi-wild, male parent) and the mixed linear model was used to identify the QTLs of yield and other QTLs for major agronomic traits in a two-year experiment. Nine QTLs bearing additive effects for pod position, plant height, node number on main stem, branch number, stem thickness and yield per plot were mapped in the linkage groups J_2, I, and M. The QTLs of yield per plot, stem thickness, plant height, branch number and node number on main stem showed positive additive effects donated by Jindou 23. Seven pairs of epistatic effects QTLs for pod position, plant height and stem thickness were detected, which had an interaction with environments. The results indicated that the epistatic effects and the environmental factors played an important role in yield per plot and agronomic traits in soybean. It will be very important to pay attention to not only QTLs with major effects but also those with epistatic effects in soybean molecular marker-assisted breeding in considering the stability expression and inheritance of the agronomic traits.

Key words: Soybean, Yield per plot, Agronomic traits, QTL×environment interaction effects, Epistatic effects

[1]Boerma H R, Specht J E. Soybeans: Improvement, Production and Uses, 3rd Edn. Madison, Wisconsin, USA: SSSA Publishers, 2004. pp 303–396



[2]Song Q J, Marek L F, Shoemaker R C, Lark K G, Concibido V C, Delannay X, Specht J E, Cregan P B. A new integrated genetic linkage map of the soybean. Theor Appl Genet, 2004, 109: 122–128



[3]梁慧珍, 余永亮, 杨红旗, 张海洋, 董微, 李彩云, 巩鹏涛, 刘学义, 方宣钧. 不同环境下大豆荚粒性状的遗传与QTL分析. 中国农业科学, 2012, 45: 2568–2579



Liang H Z, Yu Y L, Yang H Q, Zhang H Y, Dong W, Li C Y, Gong P T, Liu X Y, Fang X J. Genetic analysis and QTL mapping of pod-grain traits in soybean under different environments. Sci Agric Sin, 2012, 45: 2568-2579 (in Chinese with English abstract)



[4]Lee S H, Park K Y, Lee H S, Park E H, Boerma H R. Genetic mapping of QTLs conditioning soybean sprout yield and quality. Theor App Genet, 2001, 103: 702–709



[5]Hyten D L, Pantalone V R, Sams C E, Saxton A M, Landau-Ellis D, Stefaniak T R. Seed quality QTL in a prominent soybean population. Theor App Genet, 2004, 109: 552–561



[6]Reyna V, Sneller C H. Evaluation of marker assisted introgression of yield QTL alleles into adapted soybean. Crop Sci, 2001, 41: 1317–1321



[7]Hoeck J A, Fehr W R, Shoemaker R C, Welke G A, Johnson S L, Clanzio S R. Molecular marker analysis of seed size in soybean. Crop Sci, 2003, 43: 68–74



[8]Zhang W K, Wang Y J , Luo G Z, Zhang J S, He C Y, Wu X L, Gai J Y, ChenS Y. QTL mapping of ten agronomic traits on the soybean ( Glycine max L. Merr.) genetic map and their association with EST markers. Theor App Genet. 2004, 108: 1131–1139



[9]朱军. 广义遗传模型与数量遗传分析新方法. 浙江农业大学学报, 1994, 20: 551–559



Zhu J. General genetic models and new analysis methods for quantitative traits. J Zhejiang Agric Univ. 1994, 20: 551–559(in Chinese with English abstract)



[10]Wang D L, Zhu J, Li Z K, Paterson A H. Mapping QTLs with epistatic effects and QTL environment interactions by mixed linear model approaches. Theor Appl Genet, 1999, 99: 1255–1264



[11]杨钊钊, 李永祥, 刘成, 刘志斋, 李春辉, 李清超, 彭勃, 张岩, 王迪, 谭巍巍, 孙宝成, 石云素, 宋燕春, 王天宇, 黎裕. 基于多个相关群体的玉米雄穗相关性状QTL分析. 作物学报, 2012, 38: 1435–1442



Yang Z Z, Li Y X, Liu C, Liu Z Z, Li C H, Li QC, Peng B, Zhang Y, Wang D, Tan W W, Sun B C, Shi Y S, Song Y C, Wang T Y, Li Y. QTL Analysis of tassel-related traits in maize (Zea mays L.) using multiple connected populations. Acta Agron Sin, 2012, 38: 1435–1442 (in Chinese with English abstract)



[12]魏良明, 戴景瑞, 刘占先, 鄂立柱. 普通玉米蛋白质、淀粉和油分含量的遗传效应分析. 中国农业科学, 2008, 41: 3845–3850



Wei L M, Dai J R, Liu Z X, E L Z. Genetic effects of grain protein, starch and oil contents in maize. Sci Agric Sin, 2008, 41: 3845–3850 (in Chinese with English abstract)



[13]高用明, 朱军, 宋佑胜, 何慈信, 石春海, 邢永忠. 水稻永久F2群体抽穗期QTL的上位性及其与环境互作效应的分析. 作物学报, 2004, 30: 849–854



Gao Y M, Zhu J , Song Y S, He C X, Shi C H, Xing Y Z. Use of permanent F2 population to analyze epistasis and their interaction effects with environments for QTLs controlling heading date in rice. Acta Agron Sin, 2004, 30: 849–854 (in Chinese with English abstract)



[14]胡霞, 石瑜敏, 贾倩, 徐琴, 王韵, 陈凯, 孙勇, 朱苓华, 徐建龙, 黎志康. 影响水稻穗部性状及籽粒碾磨品质的QTL及其环境互作分析. 作物学报, 2011, 37: 1175–1185



Hu X, Shi Y M, Jia Q, Xu Q, Wang R, Chen K, Sun Y, Zhu L H, Xu J L, Li Z K. Analyses of QTLs for rice panicle and milling quality traits and their interaction with environment. Acta Agron Sin, 2011, 37: 1175–1185 (in Chinese with English abstract)



[15]梁燕, 张坤普, 赵亮, 梁雪, 张雯婷, 孙晓琳, 孟庆伟, 田纪春, 赵世杰. 小麦苗期光合作用及其相关性状的QTL分析. 作物学报, 2010, 36: 267–275



Liang Y, Zhang K P, Zhao L, Liang X, Zhang W T, Sun X L, Meng Q W, Tian J C, Zhao S J. Analysis of QTLs associated with photosynthesis characteristics in wheat seedlings. Acta Agron Sin, 2010, 36: 267–275 (in Chinese with English abstract)



[16]周晓果, 景蕊莲, 郝转芳, 昌小平, 张正斌. 小麦幼苗根系性状的QTL分析. 中国农业科学, 2005,38: 1951–1957



Zhou X G, Jing R L, Hao Z F, Chang X P, Zhang Z B. Mapping QTL for seedling root traits in common wheat. Sci Agric Sin, 2005, 38: 1951–1957 (in Chinese with English abstract)



[17]单大鹏, 朱荣胜, 陈立君, 齐照明, 刘春燕, 胡国华, 陈庆山. 大豆蛋白质含量相关QTL间的上位效应和QE互作效应. 作物学报, 2009, 35: 41–47



Shan D P, Zhu R S, Chen L J, Qi Z M, Liu C Y, Hu G H, Chen Q S. Epistatic effects and QE interaction effects of QTLs for protein content in soybean. Acta Agron Sin, 2009, 35: 41–47 (in Chinese with English abstract)



[18]单大鹏, 齐照明, 邱红梅, 单彩云, 刘春燕, 胡国华, 陈庆山. 大豆油分含量相关的QTL间的上位效应和QE互作效应. 作物学报, 2008, 34: 952–957



Shan D P, Qi Z M, Qiu H M, Shan C Y, Liu C Y, Hu G H, Chen Q S. Epistatic effects and QE interaction effects of QTLs on oil content in soybean. Acta Agron Sin, 2008, 34: 952–957 (in Chinese with English abstract)



[19]张晶莹, 葛一楠, 孙君明, 韩粉霞, 于福宽, 闫淑荣, 杨华. .多环境条件下大豆异黄酮主要组分的QTL定位. 中国农业科学, 2012,45: 3909–3920



Zhang J Y, Ge Y N, Sun J M, Han F X, Yu F K, Yan S R, Yang H. Identification of QTLs for major isoflavone components among multiple environments in soybean seeds. Sci Agric Sin, 2012, 45: 3909–3920 (in Chinese with English abstract)



[20]Tang Q Y, Zhang C X. Data processing system (DPS) software with experimental design, statistical analysis and data mining developed for use in entomological research. Insect Sci, DOI: 2012, 10.1111/j.1744-7917.2012.01519.x



[21]王珍, 方宣钧. 植物DNA分离. 分子植物育种, 2003, 1: 281–288



Wang Z, Fang X J. Plant DNA isolation. Mol Plant Breed, 2003, 1: 281–288 (in Chinese with English abstract)



[22]梁慧珍. 大豆子粒性状的遗传及QTL分析. 西北农林科技大学博士学位论文, 2006. pp 54–57



Liang H Z. Genetic Analysis and QTL Mapping of Seed Traits in Soybean [Glycine max (L.) Merr]. PhD Dissertation of  Northwest A&F University. 2008. pp 54–57 (in Chinese with English abstract)



[23]Yang J, Zhu J. Predicting superior genotypes in multiple environments based on QTL effects. Theor Appl Genet, 2005, 110: 1268−1274



[24]McCouch S R, Cho Y G, Yano M, Paul E, Blinstrub M, Morishima H, Kinoshita T. Report on QTL nomenclature. Rice Genet Newsl, 1997, 14: 11–14



[25]李慧慧, 张鲁燕, 王建康. 数量性状基因定位研究中若干常见问题的分析与解答. 作物学报, 2010, 36: 918−931



Li H H, Zhang L Y, Wang J K. Analysis and answers to frequently asked questions in quantitative trait locus mapping. Acta Agron Sin, 2010, 36: 918−931 (in Chinese with English abstract)



[26]翟虎渠, 王建康. 应用数量遗传. 北京: 中国农业科学技术出版社, 2007



Zhai H Q, Wang J K. Applied Quantitative Genetics. Beijing: China Agricultural Science and Technology Press, 2007 (in Chinese)



[27]Li Z K, Yu S B, Lafitte H R, Huang N, Courtois B, Hittalmani S. QTL × environment interactions in rice: I. heading date and plant height. Theor Appl Genet, 2003, 108: 141–153



[28]Paterson A H, Damon S, Hewitt J D, Zamir D, Rabinowitch H D, Lincoln S E, Lander E S, Tanksley S D. Mendelian factors underlying quantitative traits in tomato: Comparison across species, generations, and environments. Genetics, 1991, 127: 181–197



[29]杨喆, 关荣霞, 王跃强, 刘章雄, 常汝镇, 王曙明, 邱丽娟. 大豆遗传图谱的构建和若干农艺性状的QTL定位分析. 植物遗传资源学报, 2004, (4): 309–314



Yang Z, Guan R X, Wang Y Q, Liu Z X, Chang R Z, Wang S M, Qiu L J. Construction of genetic map and QTL analysis for some agronomic traits in soybean. J Plant Genet Resour, 2004, (4): 309–314



[30]Liao C Y, Wu P, Hu B, Yi K K. Effects of genetic background and environment on QTL and epistasis for rice (Oryza sativa L.) panicle number. Theor Appl Genet, 2001, 103: 104–111

[1] CHEN Ling-Ling, LI Zhan, LIU Ting-Xuan, GU Yong-Zhe, SONG Jian, WANG Jun, QIU Li-Juan. Genome wide association analysis of petiole angle based on 783 soybean resources (Glycine max L.) [J]. Acta Agronomica Sinica, 2022, 48(6): 1333-1345.
[2] YANG Huan, ZHOU Ying, CHEN Ping, DU Qing, ZHENG Ben-Chuan, PU Tian, WEN Jing, YANG Wen-Yu, YONG Tai-Wen. Effects of nutrient uptake and utilization on yield of maize-legume strip intercropping system [J]. Acta Agronomica Sinica, 2022, 48(6): 1476-1487.
[3] YU Chun-Miao, ZHANG Yong, WANG Hao-Rang, YANG Xing-Yong, DONG Quan-Zhong, XUE Hong, ZHANG Ming-Ming, LI Wei-Wei, WANG Lei, HU Kai-Feng, GU Yong-Zhe, QIU Li-Juan. Construction of a high density genetic map between cultivated and semi-wild soybeans and identification of QTLs for plant height [J]. Acta Agronomica Sinica, 2022, 48(5): 1091-1102.
[4] LI A-Li, FENG Ya-Nan, LI Ping, ZHANG Dong-Sheng, ZONG Yu-Zheng, LIN Wen, HAO Xing-Yu. Transcriptome analysis of leaves responses to elevated CO2 concentration, drought and interaction conditions in soybean [Glycine max (Linn.) Merr.] [J]. Acta Agronomica Sinica, 2022, 48(5): 1103-1118.
[5] PENG Xi-Hong, CHEN Ping, DU Qing, YANG Xue-Li, REN Jun-Bo, ZHENG Ben-Chuan, LUO Kai, XIE Chen, LEI Lu, YONG Tai-Wen, YANG Wen-Yu. Effects of reduced nitrogen application on soil aeration and root nodule growth of relay strip intercropping soybean [J]. Acta Agronomica Sinica, 2022, 48(5): 1199-1209.
[6] WANG Hao-Rang, ZHANG Yong, YU Chun-Miao, DONG Quan-Zhong, LI Wei-Wei, HU Kai-Feng, ZHANG Ming-Ming, XUE Hong, YANG Meng-Ping, SONG Ji-Ling, WANG Lei, YANG Xing-Yong, QIU Li-Juan. Fine mapping of yellow-green leaf gene (ygl2) in soybean (Glycine max L.) [J]. Acta Agronomica Sinica, 2022, 48(4): 791-800.
[7] LI Rui-Dong, YIN Yang-Yang, SONG Wen-Wen, WU Ting-Ting, SUN Shi, HAN Tian-Fu, XU Cai-Long, WU Cun-Xiang, HU Shui-Xiu. Effects of close planting densities on assimilate accumulation and yield of soybean with different plant branching types [J]. Acta Agronomica Sinica, 2022, 48(4): 942-951.
[8] DU Hao, CHENG Yu-Han, LI Tai, HOU Zhi-Hong, LI Yong-Li, NAN Hai-Yang, DONG Li-Dong, LIU Bao-Hui, CHENG Qun. Improving seed number per pod of soybean by molecular breeding based on Ln locus [J]. Acta Agronomica Sinica, 2022, 48(3): 565-571.
[9] ZHOU Yue, ZHAO Zhi-Hua, ZHANG Hong-Ning, KONG You-Bin. Cloning and functional analysis of the promoter of purple acid phosphatase gene GmPAP14 in soybean [J]. Acta Agronomica Sinica, 2022, 48(3): 590-596.
[10] WANG Juan, ZHANG Yan-Wei, JIAO Zhu-Jin, LIU Pan-Pan, CHANG Wei. Identification of QTLs and candidate genes for 100-seed weight trait using PyBSASeq algorithm in soybean [J]. Acta Agronomica Sinica, 2022, 48(3): 635-643.
[11] ZHANG Guo-Wei, LI Kai, LI Si-Jia, WANG Xiao-Jing, YANG Chang-Qin, LIU Rui-Xian. Effects of sink-limiting treatments on leaf carbon metabolism in soybean [J]. Acta Agronomica Sinica, 2022, 48(2): 529-537.
[12] YU Tao-Bing, SHI Qi-Han, NIAN-Hai , LIAN Teng-Xiang. Effects of waterlogging on rhizosphere microorganisms communities of different soybean varieties [J]. Acta Agronomica Sinica, 2021, 47(9): 1690-1702.
[13] SONG Li-Jun, NIE Xiao-Yu, HE Lei-Lei, KUAI Jie, YANG Hua, GUO An-Guo, HUANG Jun-Sheng, FU Ting-Dong, WANG Bo, ZHOU Guang-Sheng. Screening and comprehensive evaluation of shade tolerance of forage soybean varieties [J]. Acta Agronomica Sinica, 2021, 47(9): 1741-1752.
[14] CAO Liang, DU Xin, YU Gao-Bo, JIN Xi-Jun, ZHANG Ming-Cong, REN Chun-Yuan, WANG Meng-Xue, ZHANG Yu-Xian. Regulation of carbon and nitrogen metabolism in leaf of soybean cultivar Suinong 26 at seed-filling stage under drought stress by exogenous melatonin [J]. Acta Agronomica Sinica, 2021, 47(9): 1779-1790.
[15] ZHANG Ming-Cong, HE Song-Yu, QIN Bin, WANG Meng-Xue, JIN Xi-Jun, REN Chun-Yuan, WU Yao-Kun, ZHANG Yu-Xian. Effects of exogenous melatonin on morphology, photosynthetic physiology, and yield of spring soybean variety Suinong 26 under drought stress [J]. Acta Agronomica Sinica, 2021, 47(9): 1791-1805.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!