Acta Agron Sin ›› 2014, Vol. 40 ›› Issue (01): 54-62.doi: 10.3724/SP.J.1006.2014.00054
• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles Next Articles
LI Bin1,DENG Yuan-Bao1,YAN Xue-Hai1,YANG Yang1,LIU Peng-Qiang1,DU Yong1,XIE Pei1,WANG De-Zheng2,DENG Qi-Ming1,*,LI Ping1,*
[1]Moffat A S. Plant genetics. Mapping the sequence of disease resistance. Science, 1994, 265: 1804–1805[2]Skamnioti P, Gurr S J. Against the grain: safeguarding rice from rice blast disease. Trends Biotechnol, 2009, 27: 141–150[3]赵国珍, 贾育林, 严宗卜, Christopher WDEREN, Melissa H JIA, 戴陆园. 一种高效便捷的水稻DNA提取法及其应用. 中国水稻科学. 2012, 26: 495–499Zhao G-Z, Jia Y L, Yan Z B, Christopher WDEREN, Melissa H JIA, Dai L G. An efficient, economic, and rapid rice DNA extracton method and its application. Chin J Rice Sci, 2012, 26: 495–499 (in Chinese with English abstract)[4]雷财林, 凌忠专, 王久林. 水稻抗病育种研究进展. 生物学通报, 2004, 39(11): 4–7Lei C L, Ling Z Z, Wang J L. Research advanccs in rice breeding for disease resistance. Bull Biol, 2004, 39(11): 4–7 (in Chinese)[5]Ashikawa I, Hayashi N, Yamane H, Kanamori H, Wu J Z, Matsumoto T, Ono K, Yano M. Two adjacent nucleotide-binding site-leucine-rich repeat class genes are required to confer Pikm-specific rice blast resistance. Genetics, 2008, 180: 2267–2276[6]Bryan G T, Wu K S, Farrall L, Jia Y L, Hershey H P, McAdams S A, Faulk K N, Donaldson G K, Tarchini R, Valent B. A single amino acid difference distinguishes resistant and susceptible alleles of the rice blast resistance gene Pi-ta. Plant Cell, 2000, 12: 2033–2046[7]Hua L, Wu J, Chen C, Chen C X, Wu W H, He X Y, Lin F, Wang L, Ashikawa I, Matsumoto T, Wang L, Pan Q H. The isolation of Pi1, an allele at the Pik locus which confers broad spectrum resistance to rice blast. Theor Appl Genet, 2012, 125: 1047–1055[8]Kanzaki H, Yoshida K, Saitoh H, Fujisaki K, Hirabuchi A, Alaux L, Fournier E, Tharreau D, Terauchi R. Arms race co-evolution of Magnaporthe oryzae AVR-Pik and rice Pik genes driven by their physical interactions. Plant J, 2012, 72: 894–907[9]Lee S W, Han S W, Sririyanum M, Park CH J, Seo Y S, Ronald P C. A type I-secreted, sulfated peptide triggers XA21-mediated innate immunity. Science, 2009, 326: 850–853[10]Lin F, Chen S, Que Z, Wang L, Liu X Q, Pan Q H. The blast resistance gene Pi37 encodes a nucleotide binding site leucine-rich repeat protein and is a member of a resistance gene cluster on rice chromosome 1. Genetics, 2007, 177: 1871–1880[11]Liu J, Liu X, Dai L, Wang G L. Recent progress in elucidating the structure, function and evolution of disease resistance genes in plants. J Genet Genomics, 2007, 34: 765–776[12]Qu S D, Liu G F, Zhou B, Bellizzi M, Zeng L R, Dai L Y, Wang G L. The broad-spectrum blast resistance gene Pi9 encodes a nucleotide-binding site-leucine-rich repeat protein and is a member of a multigene family in rice. Genetics, 2006, 172: 1901–1914[13]Wang W, Wen Y, Berkey R, Xiao S Y. Specific targeting of the Arabidopsis resistance protein RPW8.2 to the interfacial membrane encasing the fungal Haustorium renders broad-spectrum resistance to powdery mildew. Plant Cell, 2009, 21: 2898–2913[14]Xu Y B. Molecular Plant Breeding. USA: International Institute for Applied Biological Science Center, 2012. pp 213–219[15]Zhou B, Qu S, Liu G, Dolan M, Sakai H, Lu G D, Bellizzi M, Wang G. The eight amino-acid differences within three leucine-rich repeats between Pi2 and Piz-t resistance proteins determine the resistance specificity to Magnaporthe grisea. Mol Plant Microbe Interact, 2006, 19: 1216–1228[16]Zhu X, Chen S, Yang J, Zhou S C, Zeng L X, Han J L, Su J, Wang L, Pan Q H. The identification of Pi50(t), a new member of the rice blast resistance Pi2/Pi9 multigene family. Theor Appl Genet, 2012, 124: 1295–1304[17]Fukuoka S, Saka N, Koga H, Ono K, Shimizu T, Ebana K, Hayashi N, Takahashi A, Hirochika H, Okuno K, Yano M. Loss of function of a proline-containing protein confers durable disease resistance in rice. Science, 2009, 325: 998–1001[18]Hayashi N, Inoue H, Kato T, Funao T, Shirota M, Shimizu T, Kanamori H, Yamane H, Saito Y H, Matsumoto T, Yano M, Takatsuji H. Durable panicle blast-resistance gene Pb1 encodes an atypical CC-NBS-LRR protein and was generated by acquiring a promoter through local genome duplication. Plant J, 2010, 64: 498–510[19]Chen X, Shang J, Chen D, Lei C L, Xu J C, Ling Z Z, Cao G, Ma B T, Wang Y P, Zhao X F, Li S G, Zhu L H. A B-lectin receptor kinase gene conferring rice blast resistance. Plant J, 2006, 46: 794–804[20]刘华招, 陈温福, 刘延. 水稻基因分子标记的物理图谱锚定. 华北农学报, 2009, 24(增刊): 5–8Liu H-Z, Chen W-F, Liu Y. Rice Pi genes molecular markers anchored to the physics map of rice genome. Acta Agric Boreali-Sin, 2009, 24(suppl): 5–8 (in Chinese with English abstract) [21]Zhai C, Lin F, Dong Z, He X Y, Yuan B, Zeng X S, Wang L, Pan Q H. The isolation and characterization of Pik, a rice blast resistance gene which emerged after rice domestication. New Phytol, 2011, 189: 321–334[22]Yuan B, Zhai C, Wang W, Zeng X S, Xu X K, Hu H Q, Lin F, Wang L, Pan Q H. The Pik-p resistance to Magnaporthe oryzae in rice is mediated by a pair of closely linked CC-NBS-LRR genes. Theor Appl Genet, 2011, 122: 1017–1028[23]Okuyama Y, Kanzaki H, Abe A, Yoshida K, Tamiru M, Saitoh H, Fujibe T, Matsumura H, Shenton M, Galam D C, Undan J, Ito A, Sone T, Terauchi R. A multifaceted genomics approach allows the isolation of the rice Pia-blast resistance gene consisting of two adjacent NBS-LRR protein genes. Plant J, 2011, 66: 467–479[24]Bamshad M, Wooding S P. Signature of natural selection in the human genome. Nat Rev Genet, 2003, 4: 99–111[25]Tian D, Araki H, Stahl E, Bergelson J, Kreitman M. Signature of balancing selection in the Arabidopsis. Proc Natl Acad Sci USA, 2002, 99: 11525–11530[26]Brunner S, Hurni S, Streckeisen P, Mayr G, Albrecht M, Yahiaoui N, Keller B. Intragenic allele pyramiding combines different specificities of wheat Pm3 resistance alleles. Plant J, 2010, 64: 433–445[27]Ravensdale M, Nemri A, Thrall P H, Ellis J G, Dodds P N. Co-evolutionary interactions between host resistance and pathogen effector genes in flax rust disease. Mol Plant Pathol, 2011, 12: 93–102[28]Rai A K, Kumar S P, Gupta S K, Gautam N, Singh N K, Sharma T R. Functional complementation of rice blast resistance gene Pi-K(H)(Pi54) conferring resistance to diverse strains of Magnaporthe oryzae. Plant Biochem Biotechnol, 2011, 20: 55–65[29]李成云, 陈宗麒, 陈琼珠,稻瘟病菌的研究进展. 西南农业学报, 1995, 8(3): 107–112Li C Y, Chen Z Q, Chen Q Z. Research progress of rice blast fungus. Southwest China J Agric Sci, 1995, 8(3): 107–112 (in Chinese)[30]Takahashi A, Hayashi N, Miyao A, Hirochika H. Unique features of the rice blast resistance Pi-sh locus revealed by large scale retrotransposon-tagging. BMC Plant Biol, 2010, 10(175): 1–14[31]刘海, 肖应辉, 唐文邦, 邓化冰, 陈立云. 水稻两用核不育系繁殖基地计算机选择系统研制与应用. 作物学报, 2011, 37: 755–763Liu , Xiao Y H, Tang W B, Deng H B, Chen L Y. Development and application of a computer-aided selection system for thermo-sensitive genic male sterile rice multiplying site. Acta Agron Sin, 2011, 37: 755–763 (in Chinese with English abstract)[32]杨仕华, 程本义, 沈伟峰, 夏俊辉. 中国两系杂交水稻选育与应用进展. 杂交水稻, 2009, 24(1): 5–9Yang S H, Cheng B Y, Shen W F, Xia J H. Progress of application and breeding on two-line hybrid rice in China. Hybrid Rice, 2009, 24(1): 5–9 (in Chinese with English abstract) |
[1] | ZHENG Chong-Ke, ZHOU Guan-Hua, NIU Shu-Lin, HE Ya-Nan, SUN wei, XIE Xian-Zhi. Phenotypic characterization and gene mapping of an early senescence leaf H5(esl-H5) mutant in rice (Oryza sativa L.) [J]. Acta Agronomica Sinica, 2022, 48(6): 1389-1400. |
[2] | DENG Zhao, JIANG Nan, FU Chen-Jian, YAN Tian-Zhe, FU Xing-Xue, HU Xiao-Chun, QIN Peng, LIU Shan-Shan, WANG Kai, YANG Yuan-Zhu. Analysis of blast resistance genes in Longliangyou and Jingliangyou hybrid rice varieties [J]. Acta Agronomica Sinica, 2022, 48(5): 1071-1080. |
[3] | YANG De-Wei, WANG Xun, ZHENG Xing-Xing, XIANG Xin-Quan, CUI Hai-Tao, LI Sheng-Ping, TANG Ding-Zhong. Functional studies of rice blast resistance related gene OsSAMS1 [J]. Acta Agronomica Sinica, 2022, 48(5): 1119-1128. |
[4] | ZHU Zheng, WANG Tian-Xing-Zi, CHEN Yue, LIU Yu-Qing, YAN Gao-Wei, XU Shan, MA Jin-Jiao, DOU Shi-Juan, LI Li-Yun, LIU Guo-Zhen. Rice transcription factor WRKY68 plays a positive role in Xa21-mediated resistance to Xanthomonas oryzae pv. oryzae [J]. Acta Agronomica Sinica, 2022, 48(5): 1129-1140. |
[5] | WANG Hao-Rang, ZHANG Yong, YU Chun-Miao, DONG Quan-Zhong, LI Wei-Wei, HU Kai-Feng, ZHANG Ming-Ming, XUE Hong, YANG Meng-Ping, SONG Ji-Ling, WANG Lei, YANG Xing-Yong, QIU Li-Juan. Fine mapping of yellow-green leaf gene (ygl2) in soybean (Glycine max L.) [J]. Acta Agronomica Sinica, 2022, 48(4): 791-800. |
[6] | LIU Lei, ZHAN Wei-Min, DING Wu-Si, LIU Tong, CUI Lian-Hua, JIANG Liang-Liang, ZHANG Yan-Pei, YANG Jian-Ping. Genetic analysis and molecular characterization of dwarf mutant gad39 in maize [J]. Acta Agronomica Sinica, 2022, 48(4): 886-895. |
[7] | XU Ning-Kun, LI Bing, CHEN Xiao-Yan, WEI Ya-Kang, LIU Zi-Long, XUE Yong-Kang, CHEN Hong-Yu, WANG Gui-Feng. Genetic analysis and molecular characterization of a novel maize Bt2 gene mutant [J]. Acta Agronomica Sinica, 2022, 48(3): 572-579. |
[8] | ZHAO Mei-Cheng, DIAO Xian-Min. Phylogeny of wild Setaria species and their utilization in foxtail millet breeding [J]. Acta Agronomica Sinica, 2022, 48(2): 267-279. |
[9] | JIANG Jian-Hua, ZHANG Wu-Han, DANG Xiao-Jing, RONG Hui, YE Qin, HU Chang-Min, ZHANG Ying, HE Qiang, WANG De-Zheng. Genetic analysis of stigma traits with genic male sterile line by mixture model of major gene plus polygene in rice (Oryza sativa L.) [J]. Acta Agronomica Sinica, 2021, 47(7): 1215-1227. |
[10] | YIN Ming, YANG Da-Wei, TANG Hui-Juan, PAN Gen, LI De-Fang, ZHAO Li-Ning, HUANG Si-Qi. Genome-wide identification of GRAS transcription factor and expression analysis in response to cadmium stresses in hemp (Cannabis sativa L.) [J]. Acta Agronomica Sinica, 2021, 47(6): 1054-1069. |
[11] | HUANG Xing, XI Jin-Gen, CHEN Tao, QIN Xu, TAN Shi-Bei, CHEN He-Long, YI Ke-Xian. Identification and expression of PAL genes in sisal [J]. Acta Agronomica Sinica, 2021, 47(6): 1082-1089. |
[12] | WU Ran-Ran, LIN Yun, CHEN Jing-Bin, XUE Chen-Chen, YUAN Xing-Xing, YAN Qiang, GAO Ying, LI Ling-Hui, ZHANG Qin-Xue, CHEN Xin. Genetic and cytological analysis of male sterile mutant msm2015-1 in mungbean [J]. Acta Agronomica Sinica, 2021, 47(5): 860-868. |
[13] | WANG Heng-Bo, CHEN Shu-Qi, GUO Jin-Long, QUE You-Xiong. Molecular detection of G1 marker for orange rust resistance and analysis of candidate resistance WAK gene in sugarcane [J]. Acta Agronomica Sinica, 2021, 47(4): 577-586. |
[14] | JIANG Cheng-Gong, SHI Hui-Min, WANG Hong-Wu, LI Kun, HUANG Chang-Ling, LIU Zhi-Fang, WU Yu-Jin, LI Shu-Qiang, HU Xiao-Jiao, MA Qing. Phenotype analysis and gene mapping of small kernel 7 (smk7) mutant in maize [J]. Acta Agronomica Sinica, 2021, 47(2): 285-293. |
[15] | JIANG Wei, PAN Zhe-Chao, BAO Li-Xian, ZHOU Fu-Xian, LI Yan-Shan, SUI Qi-Jun, LI Xian-Ping. Genome-wide association analysis for late blight resistance of potato resources [J]. Acta Agronomica Sinica, 2021, 47(2): 245-261. |
|