Welcome to Acta Agronomica Sinica,

Acta Agron Sin ›› 2014, Vol. 40 ›› Issue (08): 1331-1339.doi: 10.3724/SP.J.1006.2014

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS •     Next Articles

Main Agronomic Traits of 390 Wheat-Rye Derivatives and GISH/FISH Identification of Their Outstanding Materials

LUO Qiao-Ling1,4,ZHENG Qi2,XU Yun-Feng1,LI Li-Hui3,HAN Fang-Pu2,XU Hong-Xing1,LI Bin2,MA Peng-Tao1,AN Diao-Guo1,*   

  1. 1 Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, Hebei 050022, China; 2 State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; 3 Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China; 4 University of Chinese Academy of Sciences, Beijing 100049, China?
  • Received:2014-02-24 Revised:2014-04-16 Online:2014-08-12 Published:2014-06-03
  • Contact: 安调过, E-mail: dgan@sjziam.ac.cn

Abstract:

Transferring desirable genes of rye (Secale cereale L.) into common wheat (Triticum aestivum L.) can widen the genetic basis and enrich genetic variation of wheat. We analyzed 390 wheat-rye derivatives in this study. Large ranges of variation were found according to six main agronomic traits, indicating an abundant genetic diversity in these germplasms. Compared to ten major wheat cultivars, more than 90% of the wheat-rye derivatives were superior in spike length and tiller number, more than 60% were superior in spikelet number, and about 30% had higher kernel number per spike and thousand-grain weight. Eight representative materials with desirable agronomic traits were tested with genomic in situ hybridization(GISH) and multicolor fluorescent in situ hybridization (mc-FISH). The result showed thatamong eight outstanding materials three were hexaploid triticales (AABBRR) and two were octoploid triticales (AABBDDRR); another one was the 1RS·1BL translocation line; and the remaining two lines contained neither chromosome nor chromosome fragments of rye. Interestingly, the rye chromosomes were not completely the same between the hexaploid triticale and the octoploid triticale. A pair of rye chromosomes in the octoploidtriticale was smaller than usual, which was not contained in the hexaploid triticale. We also found that differenttriticale materials had different GISH banding patterns of chromosomes 4R. These results provide a basis for application of the wheat-rye derivatives in wheat breeding.

Key words: Wheat-rye derivatives, Agronomic trait, GISH, FISH, Triticale, Genetic diversity

[1]郝晨阳, 王兰芬, 张学勇, 游光霞, 董玉琛, 贾继增, 刘旭, 尚勋武, 刘三才, 曹永生. 我国育成小麦品种的遗传多样性演变. 中国科学C辑?生命科学, 2005, 35: 408–415



Hao C Y, Wang L F, Zhang X Y, You G X, Dong Y C, Jia J Z, Liu X, Shang X W, Liu S C, Cao Y S. Changes of genetic diversity of wheat varieties released in China. Sci China Ser C: Life Sci, 2005, 35: 408–415 (in Chinese)



[2]Harper J, Armstead I, Thomas A, James C, Gasior D, Bisaga M, Roberts L, King I, King J. Alien introgression in the grasses Lolium perenne (perennial ryegrass) and Festuca pratensis (meadow fescue): the development of seven monosomic substitution lines and their molecular and cytological characterization. Ann Bot-London, 2011, 107: 1313–1321



[3]安调过, 许红星, 许云峰. 小麦远缘杂交种质资源创新. 中国生态农业学报, 2011, 19: 1011–1019



An D G, Xu H X, Xu Y F. Enhancement of wheat distant hybridization germplasm. Chin. J Eco-Agric, 2011, 19: 1011–1019 (in Chinese with English abstract)



[4]Carver B F, Rayburn A L. Comparison of related wheat stocks possessing 1B or 1RS•1BL chromosomes agronomic performance. Crop Sci, 1994, 34: 1505–1510



[5]Wang C M, Zheng Q, Li L H, Niu Y C, Wang H B, Li B, Zhang X T, Xu Y F, An D G. Molecular cytogenetic characterization of a new T2BL center dot 1RS wheat-rye chromosome translocation line resistant to stripe rust and powdery mildew. Plant Dis, 2009, 93: 124–129



[6]Zhou J P, Zhang H Y, Yang Z J, Li G R, Hu L J, Lei M P, Liu C, Zhang Y, Ren Z L. Characterization of a new T2DS•2DL-?R translocation triticale ZH-1 with multiple resistances to diseases. Gen Resour Crop Evol, 2012, 59: 1161–1168



[7]An D G, Zheng Q, Zhou Y L, Ma P T, Lv Z L, Li L H, Li B, Luo Q L, Xu H X, Xu Y F. Molecular cytogenetic characterization of a new wheat-rye 4R chromosome translocation line resistant to powdery mildew. Chromosome Res, 2013, 21: 419–432



[8]孙元枢. 中国小黑麦遗传育种研究与应用. 杭州:浙江科学技术出版社, 2002. pp 14–24



Sun Y S. Triticale Genetic Breeding and Utilization in China. Hangzhou: Zhejiang Science and Technology Press, 2002. pp 14–34 (in Chinese)



[9]Sebesta E E, Wood E A, Porter D R, Webster J A, Smith E L. Registration of amigo wheat germplasm resistant to greenbug. Crop Sci, 1995, 35: 293–293



[10]Lukaszewski A J. Frequency of 1RS.1AL and 1RS.1BL translocations in United-States wheats. Crop Sci, 1990, 30: 1151–1153



[11]Rabinovich S V. Importance of wheat-rye translocations for breeding modern cultivars of Triticum aestivum L. Euphytica, 1998, 100: 323–340



[12]Schneider A, Molnar-Lang M. Detection of the 1RS chromosome arm in Martonvásár wheat genotypes containing 1BL?1RS or 1AL?1RS translocations using SSR and STS markers. Acta Agron Hung, 2009, 57: 409–416



[13]尚海英, 郑有良, 魏育明, 吴卫. 黑麦属基因资源研究进展. 麦类作物学报, 2003, 23(1): 86–89



Shang H Y, Zheng Y L, Wei Y M, Wu W. Advantage of study on the genetic resources of Secale. J Triticeae Crops, 2003, 23(1): 86–89 (in Chinese with English abstract)



[14]郑琪. 蓝粒小麦易位系的分子细胞遗传学分析及应用. 中国科学院研究生院博士学位论文, 2006. pp 27–28



Zheng Q. Molecular Cytogenetic Verification and Utilization of Blue-Grained Wheat Translocation Lines. PhD Dissertation of Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China, 2006. pp 27–28 (in Chinese with English abstract)



[15]Le H T, Armstrong K C, Miki B. Detection of rye DNA in wheat–rye hybrids and wheat translocation stocks using total genomic DNA as a probe. Plant Mol Biol Rep, 1989, 7: 150–158



[16]Cai X, Jones S S, Murray T D. Molecular cytogenetic characterization of Thinopyrum genomes conferring perennial growth habit in wheat–Thinopyrum amphiploids. Plant Breed, 2001, 120: 21–26



[17]Mukai Y, Nakahara Y, Yamamoto M. Simultaneous discrimination of three genomes in hexaploid wheat by multicolor fluorescence in situ hybridization using total genomic and highly repeated DNA probes. Genome, 1993, 36: 489–494



[18]Pedersen C, Langridge P. Identification of entire chromosome complement of bread wheat by two-colour FISH. Genome, 1997, 40: 589–593



[19]Nagy E D, Molnár-Láng M, Linc G, Láng L. Identification of wheat–barley translocations by sequential GISH and two-colour FISH in combination with the use of genetically mapped barley SSR markers. Genome, 2002, 45: 1238–124



[20]李立会, 李秀全. 小麦种质资源描述规范和数据标准. 北京: 中国农业出版社, 2006



Li L H, Li X Q. Standard of Description and Data in Wheat Germplasm Resources. Beijing: China Agriculture Press, 2006 (in Chinese)



[21]Han F P, Gao Z, Yu W C, Birchler J A. Minichromosome analysis of chromosome pairing, disjunction, and sister chromatid cohesion in maize. Plant Cell, 2007, 19: 3853–3863



[22]Rayburn A L, Gill B S. Isolation of D-genome specific repeated DNA sequence from Aegilops squarrosa. Plant Mol Biol Rep, 1987, 4: 102–109



[23]McIntyre C L, Pereira S, Moran L B. New Secale cereale (rye) DNA deribatives for detection of rye chromosome segments in wheat. Genome, 1990, 33: 635–640



[24]Cuadrado A, Schwarzacher T, The chromosomal organization of simple sequence repeats in wheat and rye genomes. Chromosome, 1998, 107: 587–594



[25]田纪春, 邓志英, 胡瑞波, 王延训. 不同类型超级小麦产量构成因素及籽粒产量的通径分析. 作物学报, 2006, 32: 1699–1705



Tian J C, Deng Z Y, Hu R B, Wang Y X. Yield components of super wheat cultivar with different types and the path coefficient analysis on grain yield. Acta Agron Sin, 2006, 32: 1699–1705 (in Chinese with English abstract)



[26]何中虎, 夏先春, 陈新民, 庄巧生. 中国小麦育种进展与展望. 作物学报, 2011, 37: 202–215



He Z H, Xia X C, Chen X M, Zhuang Q S. Progress of wheat breeding in China and the future perspective. Acta Agron Sin, 2011, 37: 202–215 (in Chinese with English abstract)



[27]符书兰. 普通小麦(Triticum aestivum L.)与黑麦(Secale cereale L.)异源多倍体及异染色体系的分子细胞学研究. 四川农业大学博士学位论文, 雅安, 2009. pp 31–34



Fu S L. Molecular and Cytobiology Study on Allopolyploid and Alien Chromosome Lines of Triticum aestivum L. and Secale cereale L. PhD Dissertation of Sichuan Agricultural University, Ya’an, China, 2009. pp 31–34 (in Chinese with English abstract)



[28]Bento M, Gustafson J P, Viegas W, Silva M. Size matters in Triticeae polyploids: larger genomes have higher remodeling. Genome, 2011, 54: 175–183



[29]任正隆, Lelley T, Röbbelen G. 小麦和黑麦染色体在小黑麦与小麦杂种的不同世代群体中的传递. 遗传学报, 1991, 18: 161–167



Ren Z L, Lelley T, Röbbelen G. Transmission of the wheat and rye chromosomes in octoploid triticale × common wheat populations. Acta Genet Sin, 1991, 18: 161–167 (in Chinese with English abstract)



[30]符书兰, 唐宗祥, 任正隆, 小麦-黑麦附加系的创制及5R抗白粉病新基因的发现. 遗传, 2011, 33: 1258–1262



Fu S L, Tang Z X, Ren Z L. Establishment of wheat-rye addition lines and De Novo powdery mildew resistance gene from chromosome 5R. Hereditas (Beijing), 2011, 33: 1258–1262 (in Chinese with English abstract)



[31]李方安, 唐宗祥, 符书兰. 新型小麦-黑麦6R附加系的创制及其白粉病抗性基因向小麦中的渗进. 麦类作物学报, 2013, 34: 33–37



Li F A, Tang Z X Fu S L. Development and identification of the novel wheat-rye 6R addition line with resistant gene to powdery mildew. J Triticeae Crops, 2013, 34: 33–37 (in Chinese with English abstract)



[32]姚景侠, 钟少斌, 张德玉. 六倍体小黑麦抗白粉病基因导入普通小麦的研究. 见: 庄巧生, 杜振华主编. 中国小麦育种研究进展(1991–1995). 北京: 中国农业出版社, 1996. pp 331–338



Yao J X, Zhong S B, Zhang D Y. Research of transferring resistant genes to powdery mildew from hexaploid triticales to Triticum aestivum. In: Zhuang Q S, Du Z H, eds. Advance of Wheat Breeding in China (1991–1995). Beijing: China Agriculture Press, 1996. pp 331–338 (in Chinese)



[33]Saulescu N N, Ittu G, Ciuca M, Ittu M, Serban G, Mustatea P. Transferring useful rye genes to wheat, using triticale as a bridge. Czech J Genet Plant, 2011, 47: S56–S62



[34]Kim W, Johnson J W, Baenziger P S, Lukaszewski A J, Gaines C S. Agronomic effect of wheat-rye translocation carrying rye chromatin (1R) from different sources. Crop Sci, 2004, 44: 1254–1258



[35]Graybosch R A. Uneasy unions: quality effects of rye chromatin transfers to wheat. J Cereal Sci, 2001, 33: 3–16



[36]Kumlay A M, Baenziger P S, Gill K S, Shelton D R, Graybosch R A, Lukaszewski A J, Wesenberg D M. Understanding the effect of rye chromatin in bread wheat. Crop Sci, 2003, 43: 1643–1651



[37]周建平, 张怀渝, 张怀琼, 任正隆. 小麦新品种川农12号中外源染色质的分子细胞遗传学检测. 麦类作物学报, 2006, 26(4): 20–22



Zhou J P, Zhang H Y, Zhang H Q, Ren Z L. Molecular cytogenetics identification of alien chromatin in Chuannong 12. J Triticeae Crops, 2006, 26(4): 20–22 (in Chinese with English abstract)



[38]任天恒, 晏本菊, 张怀琼, 任正隆. 1RS•1BL易位染色体对小麦开花后叶片延绿特性的影响. 麦类作物学报, 2009, 29: 419–423



Ren T H, Yan B J, Zhang H Q, Ren Z L. Effect of 1RS•1BL translocation chromosome on stay green trait in common wheat (Triticum aestivum L.). J Triticeae Crops, 2009, 29: 419–423 (in Chinese with English abstract)



[39]樊小莉, 王静, 张玮, 纪军, 张相岐, 李俊明. 小麦高产抗病新种质9204R的分子细胞学鉴定. 麦类作物学报, 2011, 31: 611–616



Fan X L, Wang J, Zhang W, Ji J, Zhang X Q, Li J M. Identification of wheat-rye translocation line 9204R with desirable agronomic traits and stripe rust resistance. J Triticeae Crops, 2011, 31: 611–616 (in Chinese with English abstract)



[40]任正隆. 遗传转移的MADI过程. 四川农业大学学报, 1990, 8(1): 1–6



Ren Z L. The MADI process for genetic transfer. J Sichuan Agric Univ, 1990, 8(1): 1–6 (in Chinese with English abstract)
[1] XIAO Ying-Ni, YU Yong-Tao, XIE Li-Hua, QI Xi-Tao, LI Chun-Yan, WEN Tian-Xiang, LI Gao-Ke, HU Jian-Guang. Genetic diversity analysis of Chinese fresh corn hybrids using SNP Chips [J]. Acta Agronomica Sinica, 2022, 48(6): 1301-1311.
[2] TAO Jun, LAN Xiu-Jin. Molecular cytogenetic identification of wheat-Thinopyrum intermedium 2A/6St substitution strain 014-459 [J]. Acta Agronomica Sinica, 2022, 48(2): 511-517.
[3] ZHAO Jing, MENG Fan-Gang, YU De-Bin, QIU Qiang, ZHANG Ming-Hao, RAO De-Min, CONG Bo-Tao, ZHANG Wei, YAN Xiao-Yan. Response of agronomic traits and P/Fe utilization efficiency to P application with different P efficiency in soybean [J]. Acta Agronomica Sinica, 2021, 47(9): 1824-1833.
[4] WANG Yan-Yan, WANG Jun, LIU Guo-Xiang, ZHONG Qiu, ZHANG Hua-Shu, LUO Zheng-Zhen, CHEN Zhi-Hua, DAI Pei-Gang, TONG Ying, LI Yuan, JIANG Xun, ZHANG Xing-Wei, YANG Ai-Guo. Construction of SSR fingerprint database and genetic diversity analysis of cigar germplasm resources [J]. Acta Agronomica Sinica, 2021, 47(7): 1259-1274.
[5] LIU Shao-Rong, YANG Yang, TIAN Hong-Li, YI Hong-Mei, WANG Lu, KANG Ding-Ming, FANG Ya-Ming, REN Jie, JIANG Bin, GE Jian-Rong, CHENG Guang-Lei, WANG Feng-Ge. Genetic diversity analysis of silage corn varieties based on agronomic and quality traits and SSR markers [J]. Acta Agronomica Sinica, 2021, 47(12): 2362-2370.
[6] SUN Qian, ZOU Mei-Ling, ZHANG Chen-Ji, JIANG Si-Rong, Eder Jorge de Oliveira, ZHANG Sheng-Kui, XIA Zhi-Qiang, WANG Wen-Quan, LI You-Zhi. Genetic diversity and population structure analysis by SNP and InDel markers of cassava in Brazil [J]. Acta Agronomica Sinica, 2021, 47(1): 42-49.
[7] Meng-Liang ZHAO,Li-Hui WANG,Yan-Jing REN,Xue-Mei SUN,Zhi-Qiang HOU,Shi-Peng YANG,Li LI,Qi-Wen ZHONG. Genetic diversity of phenotypic traits in 257 Jerusalem artichoke accessions [J]. Acta Agronomica Sinica, 2020, 46(5): 712-724.
[8] Hong-Yan ZHANG,Tao YANG,Rong LIU,Fang JIN,Li-Ke ZHANG,Hai-Tian YU,Jin-Guo HU,Feng YANG,Dong WANG,Yu-Hua HE,Xu-Xiao ZONG. Assessment of genetic diversity by using EST-SSR markers in Lupinus [J]. Acta Agronomica Sinica, 2020, 46(3): 330-340.
[9] Li-Lan ZHANG, Lie-Mei ZHANG, Huan-Ying NIU, Yi XU, Yu LI, Jian-Min QI, Ai-Fen TAO, Ping-Ping FANG, Li-Wu ZHANG. Correlation between SSR markers and fiber yield related traits in jute (Corchorus spp.) [J]. Acta Agronomica Sinica, 2020, 46(12): 1905-1913.
[10] MA Yan-Ming, FENG Zhi-Yu, WANG Wei, ZHANG Sheng-Jun, GUO Ying, NI Zhong-Fu, LIU Jie. Genetic diversity analysis of winter wheat landraces and modern bred varieties in Xinjiang based on agronomic traits [J]. Acta Agronomica Sinica, 2020, 46(12): 1997-2007.
[11] MA Yan-Ming, LOU Hong-Yao, CHEN Zhao-Yan, XIAO Jing, XU Lin, NI Zhong-Fu, LIU Jie. Genetic diversity assessment of winter wheat landraces and cultivars in Xinjiang via SNP array analysis [J]. Acta Agronomica Sinica, 2020, 46(10): 1539-1556.
[12] LIU Yi-Ke,ZHU Zhan-Wang,CHEN Ling,ZOU Juan,TONG Han-Wen,ZHU Guang,HE Wei-Jie,ZHANG Yu-Qing,GAO Chun-Bao. Revealing the genetic diversity of wheat varieties (lines) in China based on SNP markers [J]. Acta Agronomica Sinica, 2020, 46(02): 307-314.
[13] YE Wei-Jun,CHEN Sheng-Nan,YANG Yong,ZHANG Li-Ya,TIAN Dong-Feng,ZHANG Lei,ZHOU Bin. Development of SSR markers and genetic diversity analysis in mung bean [J]. Acta Agronomica Sinica, 2019, 45(8): 1176-1188.
[14] JIA Xiao-Ping,QUAN Jian-Zhang,WANG Yong-Fang,DONG Zhi-Ping,YUAN Xi-Lei,ZHANG Bo,LI Jian-Feng. Effects of different photoperiod conditions on agronomic traits of foxtail millet [J]. Acta Agronomica Sinica, 2019, 45(7): 1119-1127.
[15] Mi WU,Nian WANG,Chao SHEN,Cong HUANG,Tian-Wang WEN,Zhong-Xu LIN. Development and evaluation of InDel markers in cotton based on whole-genome re-sequencing data [J]. Acta Agronomica Sinica, 2019, 45(2): 196-203.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!