Welcome to Acta Agronomica Sinica,

Acta Agron Sin ›› 2017, Vol. 43 ›› Issue (02): 157-170.doi: 10.3724/SP.J.1006.2017.00157

• REVIEW •     Next Articles

Characteristics of Genes Selected by Domestication and Intensive Breeding in Crop Plants

ZHANG Xue-Yong1,*, MA Lin1, ZHENG Jun2   

  1. 1 Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China; 2 Wheat Research Institute, Shanxi Academy of Agricultural Sciences, Linfen 041000, China
  • Received:2016-09-22 Revised:2016-11-03 Online:2017-02-12 Published:2016-11-18
  • Contact: 张学勇,E-mail:zhangxueyong@caas.cn
  • Supported by:

    The Principal Investigator was supported by the National Research and Development Program (2016YFD0100300).

Abstract:

Crop genomics made great progress in last 15–20 years. Second generation sequencing technology has dramatically reduced the cost of genome sequencing, brought life science into the times of genomics,and strongly promoted development of system biology, genetics, breeding and genetic resources. Single nucleotide polymorphism (SNP) and haplotype block analysis are currently widely used forexploring animal and plant genetic resources and breeding. Successful isolation of many important genes help us elucidate the history of crop domestication and breeding, andpredict the future of breeding. It has been changing the breeding concepts and strategies. Most crop cultivars used today have experienced two major steps of harsh artificial selection, i.e., domestication and breeding. Despite so many similarities between domestication and breeding, they are different in some aspects. Domestication relatively affects small regions of plant genome. The dramatic reduction of diversity is usually caused by bottleneck effect.Although the breeding history is only about 100 years, it has brought tremendous alteration in most crop genomes.Breeding targets much more genes than domestication.It is very difficult for further selection of alleles at domestication targeted locus, usually only one alleleiskept, which referred as fixed. However, it is not in the case of selecting alleles at breeding targeted locus. Few alleles can be present at the same time in varient populations and rotate at the same locus in cultivars released in different periods or regions. Frequency of favored alleles in new cultivars has been increased dramatically because of positive selection. In addition,strong artificial selection usually reshapes the sub-genomes in polyploid species, which made them quite distinct from donor’s genomes. Therefore, it would be a good strategy to highlight future breeding through elucidating the basic rule of crop genome and gene in reaction to artificial selection at the targeted regions. Here, webriefly review the current major strategies for dissection of genes, haplotype blocks as well as the major genes targeted in crop domestication and breeding selection. We also give a brief introduction on the mission and strategies for “formation and evolution mechanism of funder genotypes and famous cultivars in major crops”, a newly initiated national key research and development program of China.

Key words: Cropgenome, Domestication, Breeding, Targetedgenes, Haplotypeblock

[1]ZederMA,EmshwillerE,SmithBD,BradlyDG.Identifyingcropdomestictiongenes.TrendsGenet,2006,22:139–155
[2]Ross-IbarraJ,MorrellPL,GautBS.Plantdomestication,auniqueopportunitytoidentifythegeneticbasisofadaptation.ProcNatlAcadSciUSA,2007,104:8641–8648
[3]PuruggananMD,FullerDQ.Thenatureofselectionduringplantdomestication.Nature,2009,457:843–848
[4]IzawaT,KonishiS,ShomuraA,YanoM.DNAchangestellusaboutricedomestication.CurrOpinPlantBiol,2009,12:185–192
[5]GeHM,YouGX,WangLF,HaoCY,DongYS,LiZS,ZhangXY.Genomeselectionsweepandassociationanalysisshedlightonfuturebreedingbydesigninwheat.CropSci,2002,52:1218–1228
[6LinT,ZhuGT,ZhangJH,XuXY,YuQH,ZhengZ,ZhangZH,LunYY,LiS,WangXX,HuangZJ,LiJM,ZhangCZ,WangTT,ZhangYY,WangAX,ZhangYC,LinK,LiCY,XiongGS,XueYB,MazzucatoA,CausseM,FeiZJ,GiovannoniJJ,ChetelatRT,ZamirD,StadlerT,LiJF,YeZB,DuYC,HuangSW.Genomicanalysesprovideinsightsintothehistoryoftomatobreeding.NatGenet,2014,46:1220–1226
[7]ZhouDG,ChenW,LinZC,ChenHD,WangCR,LiH,YuRB,ZhangFY,ZhenG,YiJL,LiKH,LiuYG,TerzaghiW,TangXY,HeH,ZhouSC,DengXW.Pedigree-basedanalysisofderivationofgenomesegmentsofanelitericerevealskeyregionsduringitsbreeding.PlantBiotechnolJ,2016,14:638–648
[8]DoebleyJF,GautBS,SmithBD.Themoleculargeneticsofcropdomestication.Cell,2006,127:1309–1321
[9]MeyerRS,PuruggananMD.Evolutionofcropspecies:geneticsofdomesticationanddiversification.NatRevGenet,2013,14:840–852
[10]ZhangXY,TongYP,YouGX,HaoCY,GeHM,WangLF,LiB,DongYS,LiZS.Hitchhikingeffectmapping:anewapproachfordiscoveringagronomicimportantgenes.AgricSciChina,2007,6:255–264
[11]OlsenKM,WendelJF.Abountifulharvest:Genomicinsightsintocropdomesticationphenotypes.AnnuRevPlantBiol,2013,64(4):47–70
[12]JinJ,HuangW,GaoJP,YangJ,ShiM,ZhuMZ,LuoD,LinHX.Geneticcontrolofriceplantarchitectureunderdomestication.NatGenet,2008,40:1365–1369
[13]TanLB,LiXR,LiuFX,SunXY,LiCG,ZhuZF,FuYC,CaiHW,WangXK,XieDX,SunCQ.Controlofakeytransitionfromprostratetoerectgrowthinricedomestication.NatGenet,2008,40:1360–1364[14]XieWB,WangGW,YuanM,YaoW,LyuK,ZhaoH,YangM,LiPB,ZhangX,YuanJ,WangQX,LiuF,DongHX,ZhangLJ,LiXL,MengXZ,ZhangW,XiongLZ,HeYQ,WangSP,YuSB,XuCG,LuoJ,LiXH,XiaoJH,LianXM,ZhangQF.Breedingsignaturesofriceimprovementrevealedbyagenomicvariationmapfromalargegermplasmcollection.ProcNatlAcadSciUSA,2015,112:5411–5419
[15]HouJ,JiangQY,HaoCY,WangYQ,ZhangHN,ZhangXY.Globalselectiononsucrosesynthasehaplotypesduringacenturyofwheatbreeding.PlantPhysiol,2014,164:1918–1929
[16]ShangY,MaYS,ZhouY,ZhangHM,DuanLX,ChenHM,ZengJG,ZhouQ,WangSH,GuWJ,LiuM,RenJW,GuXF,ZhangSP,WangY,YasukawaK,BouwmeesterHJ,QiXQ,ZhangZH,LucasWJ,HuangSW.Biosynthesis,regulation,anddomesticationofbitternessincucumber.Science,2014,346:1084–1088
[17]KonishiS,IzawaT,LinSY,EbanaK,FukutaY,SasakiT,YanoM.AnSNPcausedlossofseedshatteringduringricedomestication.Science,2006,312:1392–1396
[18]LiCB,ZhouAL,SangT.Ricedomesticationbyreducingshattering.Science,2006,311:1936–1939
[19LinZW,LiXR,ShannonLM,YehCT,WangML,BaiGH,PengZ,LiJR,TrickHN,ClementeTE,DoebleyJ,SchnablePS,TuinstraMR,TessoTT,WhiteF,YuJM.ParalleldomesticationoftheShattering1genesincereals.NatGenet,2012,44:720–754
[20]SimonsKJ,FellersJP,TrickHN,ZhangZC,TaiYS,GillBS,FarisJD.MolecularcharacterizationofthemajorwheatdomesticationgeneQ.Genetics,2006,172:547–555
[21]PourkheirandishM,HenselG,KilianB,SenthilN,ChenG,SameriM,AzhaguvelP,SakumaS,DhanagondS,SharmaR,MascherM,HimmelbachA,GottwaldS,NairSK,TagiriA,YukuhiroF,NagamuraY,KanamoriH,MatsumotoT,WillcoxG,MiddletonCP,WickerT,WaltherA,WaughR,FincherGB,SteinN,KumlehnJ,SatoK,KomatsudaT.Evolutionofthegraindispersalsysteminbarley.Cell,2015,162:527–539
[22]StuderA,ZhaoQ,Ross-IbarraJ,DoebleyJ.Identificationofafunctionaltransposoninsertioninthemaizedomesticationgenetb1.NatGenet,2011,43:1160–1164
[23]ZhouLL,ZhangJY,YanJB,SongRT.Twotransposableelementinsertionsarecausativemutationsforthemajordomesticationgeneteosintebranched1inmodernmaize.CellRes,2011,21:1267–1270
[24]TianZX,WangXB,LeeR,LiYH,SpechtJE,NelsonRL,McCleanPE,QiuLJ,MaJX.Artificialselectionfordeterminategrowthhabitinsoybean.ProcNatlAcadSciUSA,2010,107:8563–8568
[25]PingJQ,LiuYF,SunLJ,ZhaoMX,LiYH,SheMY,SuiY,LinF,LiuXD,TangZX,NguyenH,TianZX,QiuLJ,NelsonRL,ClementeTE,SpechtJE,MaJX.Dt2isagain-of-functionMADS-domainfactorgenethatspecifiessemideterminacyinsoybean.PlantCell,2014,26:2831–2842
[26]ZuoJR,LiJY.Moleculargeneticdissectionofquantitativetraitlociregulatingricegraindize.AnnuRevGenet,2014,48:99–118
[27]MaL,LiT,HaoCY,WangYQ,ChenXH,ZhangXY.TaGS5-3A,agrainsizegeneselectedduringwheatimprovementforlargerkernelandyield.PlantBiotechnolJ,2016,14:1269–1280
[28]CongB,BarreroLS,TanksleySD.RegulatorychangeinYABBY-liketranscriptionfactorledtoevolutionofextremefruitsizeduringtomatodomestication.NatGenet,2008,40:800–804
[29]WhittSR,WilsonLM,TenaillonMI,GautBS,BucklerES.Geneticdiversityandselectioninthemaizestarchpathway.ProcNatlAcadSciUSA,2002,99:12959–12962
[30]DingZH,WangCR,ChenS,YuSB.DiversityandselectivesweepintheOsAMT1;1genomicregionofrice.BMCEvolBiol,2011,11:1–10
[31]MaY,DaiXY,XuYY,LuoW,ZhengXM,ZengDL,PanYJ,LinXL,LiuHH,ZhangDJ,XiaoJ,GuoXY,XuSJ,NiuYD,JinJB,ZhangH,XuX,LiLG,WangW,QianQ,GeS,ChongK.COLD1conferschillingtoleranceinrice.Cell,2015,160:1209–1221
[32]TanksleySD,McCouchSR.Seedbanksandmolecularmaps:unlockinggeneticpotentialfromthewild.Science,1997,277:1063–1066
[33]WangE,WangJ,ZhuXD,HaoW,WangLY,LiQ,ZhangLX,HeW,LuBR,LinHX,MaH,ZhangGQ,HeZH.Controlofricegrain-fillingandyieldbyagenewithapotentialsignatureofdomestication.NatGenet,2008,40:1370–1374
[34]McSteenP.Auxinandmonocotdevelopment.CshPerspectBiol,2010,2:564–571
[35]LiuY,XuJX,DingYF,WangQS,LiGH,WangSH.Auxininhibitstheoutgrowthoftillerbudsinrice(OryzasativaL.)bydownregulatingOsIPTexpressionandcytokininbiosynthesisinnodes.AustJCropSci,2011,5:169–174
[36]ZhouF,LinQB,ZhuLH,RenYL,ZhouKN,ShabekN,WuFQ,MaoHB,DongW,GanL,MaWW,GaoH,ChenJ,YangC,WangD,TanJJ,ZhangX,GuoXP,WangJL,JiangL,LiuX,ChenWQ,ChuJF,YanCY,UenoK,ItoS,AsamiT,ChengZJ,WangJ,LeiCL,ZhaiHQ,WuCY,WangHY,ZhengN,WanJM.D14-SCFD3-dependentdegradationofD53regulatesstrigolactonesignalling.Nature,2013,504:406–410
[37]JiangL,LiuX,XiongGS,LiuHH,ChenFL,WangL,MengXB,LiuGF,YuH,YuanYD,YiW,ZhaoLH,MaHL,HeYZ,WuZS,MelcherK,QianQ,XuHE,WangYH,LiJY.DWARF53actsasarepressorofstrigolactonesignallinginrice.Nature,2013,504:401–405
[38]LiXY,QianQ,FuZM,WangYH,XiongGS,ZengDL,WangXQ,LiuXF,TengS,HiroshiF,YuanM,LuoD,HanB,LiJY.Controloftilleringinrice.Nature,2003,422:618–621
[39]WangWF,LiG,ZhaoJ,ChuHW,LinWH,ZhangDB,WangZY,LiangWQ.DWARFTILLER1,aWUSCHEL-relatedhomeoboxtranscriptionfactor,isrequiredfortillergrowthinrice.PLoSGenet,2014,10:e1004154
[40]XueWY,XingYZ,WengXY,ZhaoY,TangWJ,WangL,ZhouHJ,YuSB,XuCG,LiXH,ZhangQF.NaturalvariationinGhd7isanimportantregulatorofheadingdateandyieldpotentialinrice.NatGenet,2008,40:761–767
[41]AshikariM,SakakibaraH,LinSY,YamamotoT,TakashiT,NishimuraA,AngelesER,QianQ,KitanoH,MatsuokaM.Cytokininoxidaseregulatesricegrainproduction.Science,2005,309:741–745
[42LiSY,ZhaoBR,YuanDY,DuanMJ,QianQ,TangL,WangB,LiuXQ,ZhangJ,WangJ,SunJQ,LiuZ,FengYQ,YuanLP,LiCY.RicezincfingerproteinDSTenhancesgrainproductionthroughcontrollingGn1a/OsCKX2expression.ProcNatlAcadSciUSA,2013,110:3167–3172
[43]LiuL,DuYF,ShenXM,LiMF,SunW,HuangJ,LiuZJ,TaoYS,ZhengYL,YanJB,ZhangZX.KRN4controlsquantitativevariationinmaizekernelrownumber.PLoSGenet,2015,11:e1005670
[44]ZhengJ,LiuH,WangYQ,WangLF,ChangXP,JingRL,HaoCY,ZhangXY.TEF-7A,atranscriptelongationfactorgene,influencesyield-relatedtraitsinbreadwheat(TriticumaestivumL.).JExpBot,2014,65:5351–5365
[45]LiuJ,HuaW,HuZY,YangHL,ZhangL,LiRJ,DengLB,SunXC,WangXF,WangHZ.NaturalvariationinARF18genesimultaneouslyaffectsseedweightandsiliquelengthinpolyploidrapeseed.ProcNatlAcadSciUSA,2015,112:5123–5132
[46ChalhoubB,DenoeudF,LiuSY,ParkinIAP,TangHB,WangXY,ChiquetJ,BelcramH,TongCB,SamansB,CorreaM,DaSilvaC,JustJ,FalentinC,KohCS,LeClaincheI,BernardM,BentoP,NoelB,LabadieK,AlbertiA,CharlesM,ArnaudD,GuoH,DaviaudC,AlameryS,JabbariK,ZhaoMX,EdgerPP,ChelaifaH,TackD,LassalleG,MestiriI,SchnelN,LePaslierMC,FanGY,RenaultV,BayerPE,GoliczAA,ManoliS,LeeTH,ThiVHD,ChalabiS,HuQ,FanCC,TollenaereR,LuYH,BattailC,ShenJX,SidebottomCHD,WangXF,CanaguierA,ChauveauA,BerardA,DeniotG,GuanM,LiuZS,SunFM,LimYP,LyonsE,TownCD,BancroftI,WangXW,MengJL,MaJX,PiresJC,KingGJ,BrunelD,DelourmeR,RenardM,AuryJM,AdamsKL,BatleyJ,SnowdonRJ,TostJ,EdwardsD,ZhouYM,HuaW,SharpeAG,PatersonAH,GuanCY,WinckerP.Earlyallopolyploidevolutioninthepost-neolithicBrassicanapusoilseedgenome.Science,2014,345:950–953
[47]PengJR,RichardsDE,HartleyNM,MurphyGP,DevosKM,FlinthamJE,BealesJ,FishLJ,WorlandAJ,PelicaF,SudhakarD,ChristouP,SnapeJW,GaleMD,HarberdNP.‘Greenrevolution’genesencodemutantgibberellinresponsemodulators.Nature,1999,400:256–261
[48]FuXD,RichardsDE,Ait-AliT,HynesLW,OughamH,PengJR,HarberdNP.Gibberellin-mediatedproteasome-dependentdegradationofthebarleyDELLAproteinSLN1repressor.PlantCell,2002,14:3191–3200
[49]WuJ,KongXY,WanJM,LiuXY,ZhangX,GuoXP,ZhouRH,ZhaoGY,JingRL,FuXD,JiaJZ.DominantandpleiotropiceffectsofaGAIGeneinwheatresultsfromalackofinteractionbetweenDELLAandGID1.PlantPhysiol,2011,157:2120–2130
[50]杨松杰,张晓科,何中虎,夏先春,周阳.用STS标记检测矮秆基因Rht-B1b和Rht-D1b在中国小麦中的分布.中国农业科学,2006,39:1680–1688
YangSJ,ZhangXK,HeZH,XiaXC,ZhouY.DistrubitionofdwarfinggenesRht-B1binChinesebreadwheatsdetectedbySTSmarker.SciAgricSin,2006,39:1680–1688(inChinesewithEnglishabstract)
[51]AsanoK,TakashiT,MiuraK,QianQ,KitanoH,MatsuokaM,AshikariM.Geneticandmolecularanalysisofutilityofsd1allelesinricebreeding.BreedSci,2007,57:53–58
[52]WuWX,ZhengXM,LuGW,ZhongZZ,GaoH,ChenLP,WuCY,WangHJ,WangQ,ZhouKN,WangJL,WuFQ,ZhangX,GuoXP,ChengZJ,LeiCL,LinQB,JiangL,WangHY,GeS,WanJM.AssociationoffunctionalnucleotidepolymorphismsatDTH2withthenorthwardexpansionofricecultivationinAsia.ProcNatlAcadSciUSA,2013,110:277–2780
[53]YangQ,LiZ,LiWQ,KuLX,WangC,YeJR,LiK,YangN,LiYP,ZhongT,LiJS,ChenYH,YanJB,YangXH,XuML.CACTA-liketransposableelementinZmCCTattenuatedphotoperiodsensitivityandacceleratedthepostdomesticationspreadofmaize.ProcNatlAcadSciUSA,2003,110:16969–16974
[54]YanLL,LoukoianovA,TranquilliG,HelgueraM,FahimaT,DubcovskyJ.PositionalcloningofthewheatvernalizationgeneVRN1.ProcNatlAcadSciUSA,2003,100:6263–6268
[55]YanLL,LoukoianovA,BlechlA,TranquilliG,RamakrishnaW,SanMiguelP,BennetzenJL,EcheniqueV,DubcovskyJ.ThewheatVRN2geneisafloweringrepressordown-regulatedbyvernalization.Science,2004,303:1640–1644
[56]TrevaskisB,HemmingMN,PeacockWJ,DennisES.HvVRN2respondstodaylength,whereasHvVRN1isregulatedbyvernalizationanddevelopmentalstatus.PlantPhysiol,2006,140:1397–1405
[57]GuoZA,SongYX,ZhouRH,RenZL,JiaJZ.Discovery,evaluationanddistributionofhaplotypesofthewheatPpd-D1gene.NewPhytol,2010,185:841–851
[58]TurnerA,BealesJ,FaureS,DunfordRP,LaurieDA.Thepseudo-responseregulatorPpd-H1providesadaptationtophotoperiodinbarley.Science,2005,310:1031–1034
[59]StaskawiczBJ,AusubelFM,BakerBJ,EllisJG,JonesJDG.Molecular-geneticsofplant-diseaseresistance.Science,1995,268:661–667
[60]SongWY,PiLY,WangGL,GardnerJ,HolstenT,RonaldPC.EvolutionofthericeXa21diseaseresistancegenefamily.PlantCell,1997,9:1279–1287
[61]LiuYQ,WuH,ChenH,LiuYL,HeJ,KangHY,SunZG,PanG,WangQ,HuJL,ZhouF,ZhouKN,ZhengXM,RenYL,ChenLM,WangYH,ZhaoZG,LinQB,WuFQ,ZhangX,GuoXP,ChengXI,JiangL,WuCY,WangHY,WanJM.Ageneclusterencodinglectinreceptorkinasesconfersbroad-spectrumanddurableinsectresistanceinrice.NatBiotechnol,2015,33:301–305
[62]CookDE,LeeTG,GuoXL,MelitoS,WangK,BaylessAM,WangJP,HughesTJ,WillisDK,ClementeTE,DiersBW,JiangJM,HudsonME,BentAF.CopynumbervariationofmultiplegenesatRhg1mediatesnematoderesistanceinsoybean.Science,2012,338:1206–1209
[63]KrattingerSG,LagudahES,WickerT,RiskJM,AshtonAR,SelterLL,MatsumotoT,KellerB.Lr34multi-pathogenresistanceABCtransporter:molecularanalysisofhomoeologousandorthologousgenesinhexaploidwheatandothergrassspecies.PlantJ,2011,65:392–403
[64]MooreJW,Herrera-FoesselS,LanCX,SchnippenkoetterW,AyliffeM,Huerta-EspinoJ,LillemoM,ViccarsL,MilneR,PeriyannanS,KongXY,SpielmeyerW,TalbotM,BarianaH,PatrickJW,DoddsP,SinghR,LagudahE.Arecentlyevolvedhexosetransportervariantconfersresistancetomultiplepathogensinwheat.NatGenet,2015,47:1494–1498
[65]ChenM,XuZS,XiaLQ,LiLC,ChengXG,DongJH,WangQY,MaYZ.Cold-inducedmodulationandfunctionalanalysesoftheDRE-bindingtranscriptionfactorgene,GmDREB3,insoybean(GlycinemaxL.).JExpBot,2009,60:121–135
[66]JamesRA,DavenportRJ,MunnsR.PhysiologicalcharacterizationoftwogenesforNa+exclusionindurumwheat,Nax1andNax2.PlantPhysiol,2006,142:1537–1547
[67]MunnsR,JamesRA,XuB,AthmanA,ConnSJ,JordansC,ByrtCS,HareRA,TyermanSD,TesterM,PlettD,GillihamM.WheatgrainyieldonsalinesoilsisimprovedbyanancestralNa+transportergene.NatBiotechnol,2012,30:36–373
[68]JiaJZ,ZhaoSC,KongXY,LiYR,ZhaoGY,HeWM,AppelsR,PfeiferM,TaoY,ZhangXY,JingRL,ZhangC,MaYZ,GaoLF,GaoC,SpannaglM,MayerKFX,LiD,PanSK,ZhengFY,HuQ,XiaXC,LiJW,LiangQS,ChenJ,WickerT,GouCY,KuangHH,HeGY,LuoYD,KellerB,XiaQJ,LuP,WangJY,ZouHF,ZhangRZ,XuJY,GaoJL,MiddletonC,QuanZW,LiuGM,WangJ,YangHM,LiuX,HeZH,MaoL,WangJ.Aegilopstauschiidraftgenomesequencerevealsagenerepertoireforwheatadaptation.Nature,2013,496:91–95
[69]YangCW,ZhaoL,ZhangHK,YangZZ,WangH,WenSS,ZhangCY,RustgiS,vonWettsteinD,LiuB.Evolutionofphysiologicalresponsestosaltstressinhexaploidwheat.ProcNatlAcadSciUSA,2014,111:11882–11887
[70]MickelbartMV,HasegawaPM,Bailey-SerresJ.Geneticmechanismsofabioticstresstolerancethattranslatetocropyieldstability.NatRevGenet,2015,16:237–251
[71]WangLF,GeHM,HaoCY,DongYS,ZhangXY.Identifyinglociinfluencing1000-kernelweightinwheatbymicrosatellitescreeningforevidenceofselectionduringbreeding.PLoSOne,2012,7:e29432
[72]ZhangDL,HaoCY,WangLF,ZhangXY.Identifyinglociinfluencinggrainnumberbymicrosatellitescreeninginbreadwheat(TriticumaestivumL.).Planta,2012,236:1507–1517
[73]ZhangHK,ZhuB,QiB,GouXW,DongYZ,XuCM,ZhangBJ,HuangW,LiuC,WangXT,YangCW,ZhouH,KashkushK,FeldmanM,WendelJF,LiuB.EvolutionoftheBBAAcomponentofbreadwheatduringitshistoryattheallohexaploidlevel.PlantCell,2014,26:2761–2776
[74]XuK,XuX,FukaoT,CanlasP,Maghirang-RodriguezR,HeuerS,IsmailAM,Bailey-SerresJ,RonaldPC,MackillDJ.Sub1Aisanethylene-response-factor-likegenethatconferssubmergencetolerancetorice.Nature,2006,442:705–708
[75]PelemanJD,vanderVoortJR.Breedingbydesign.TrendsPlantSci,2003,8:330–334
[76]SnowdonRJ,AbbadiA,KoxT,SchmutzerT,LeckbandG.Heterotichaplotypecapture:precisionbreedingforhybridperformance.TrendsPlantSci,2015,20:410–413

[1] DENG Zhao, JIANG Nan, FU Chen-Jian, YAN Tian-Zhe, FU Xing-Xue, HU Xiao-Chun, QIN Peng, LIU Shan-Shan, WANG Kai, YANG Yuan-Zhu. Analysis of blast resistance genes in Longliangyou and Jingliangyou hybrid rice varieties [J]. Acta Agronomica Sinica, 2022, 48(5): 1071-1080.
[2] MA Hong-Bo, LIU Dong-Tao, FENG Guo-Hua, WANG Jing, ZHU Xue-Cheng, ZHANG Hui-Yun, LIU Jing, LIU Li-Wei, YI Yuan. Application of Fhb1 gene in wheat breeding programs for the Yellow-Huai Rivers valley winter wheat zone of China [J]. Acta Agronomica Sinica, 2022, 48(3): 747-758.
[3] ZHAO Mei-Cheng, DIAO Xian-Min. Phylogeny of wild Setaria species and their utilization in foxtail millet breeding [J]. Acta Agronomica Sinica, 2022, 48(2): 267-279.
[4] ZHAO Hai-Han, LIAN Wang-Min, ZHAN Xiao-Deng, XU Hai-Ming, ZHANG Ying-Xin, CHENG Shi-Hua, LOU Xiang-Yang, CAO Li-Yong, HONG Yong-Bo. Genetic dissection of the bacterial blight disease resistance in super hybrid rice RILs using genome-wide association study [J]. Acta Agronomica Sinica, 2022, 48(1): 121-137.
[5] HUANG Yi-Wen, DAI Xu-Ran, LIU Hong-Wei, YANG Li, MAI Chun-Yan, YU Li-Qiang, YU Guang-Jun, ZHANG Hong-Jun, LI Hong-Jie, ZHOU Yang. Relationship between the allelic variations at the Ppo-A1 and Ppo-D1 loci and pre-harvest sprouting resistance in wheat [J]. Acta Agronomica Sinica, 2021, 47(11): 2080-2090.
[6] CHE Yang, CHENG Shuang, TIAN Jin-Yu, TAO Yu, LIU Qiou-Yuan, XING Zhi-Peng, DOU Zhi, XU Qiang, HU Ya-Jie, GUO Bao-Wei, WEI Hai-Yan, GAO Hui, ZHANG Hong-Cheng. Characteristics and differences of rice yield, quality, and economic benefits under different modes of comprehensive planting-breeding in paddy fields [J]. Acta Agronomica Sinica, 2021, 47(10): 1953-1965.
[7] YAN Zhuang-Zhuang, YAN Xue-Hui, SHI Jia, SUN Kai, YU Jiang-Lin, ZHANG Zhan-Guo, HU Zhen-Bang, JIANG Hong-Wei, XIN Da-Wei, LI Yang, QI Zhao-Ming, LIU Chun-Yan, WU Xiao-Xia, CHEN Qing-Shan, ZHU Rong-Sheng. Classification of soybean pods using deep learning [J]. Acta Agronomica Sinica, 2020, 46(11): 1771-1779.
[8] ZHAI Sheng-Nan, GUO Jun, LIU Cheng, LI Hao-Sheng, SONG Jian-Min, LIU Ai-Feng, CAO Xin-You, CHENG Dun-Gong, LI Fa-Ji, HE Zhong-Hu, XIA Xian-Chun, LIU Jian-Jun. Functional analysis of Lcye gene involved in the carotenoid synthesis in common wheat [J]. Acta Agronomica Sinica, 2020, 46(10): 1485-1495.
[9] LIU Rong, WANG Fang, FANG Li, YANG Tao, ZHANG Hong-Yan, HUANG Yu-Ning, WANG Dong, JI Yi-Shan, XU Dong-Xu, LI Guan, GUO Rui-Jun, ZONG Xu-Xiao. An integrated high-density SSR genetic linkage map from two F2 population in Chinese pea [J]. Acta Agronomica Sinica, 2020, 46(10): 1496-1506.
[10] HU Wen-Jing,ZHANG Yong,LU Cheng-Bin,WANG Feng-Ju,LIU Jin-Dong,JIANG Zheng-Ning,WANG Jin-Ping,ZHU Zhan-Wang,XU Xiao-Ting,HAO Yuan-Feng,HE Zhong-Hu,GAO De-Rong. Mapping and genetic analysis of QTLs for Fusarium head blight resistance to disease spread in Yangmai 16 [J]. Acta Agronomica Sinica, 2020, 46(02): 157-165.
[11] Jian-Guo LI,Xiao-Meng XUE,Zhao-Hua ZHANG,Zhi-Hui WANG,Li-Ying YAN,Yu-Ning CHEN,Li-Yun WAN,Yan-Ping KANG,Dong-Xin HUAI,Hui-Fang JIANG,Yong LEI,Bo-Shou LIAO. Establishment and applicant of near-infrared reflectance spectroscopy models for predicting main fatty acid contents of single seed in peanut [J]. Acta Agronomica Sinica, 2019, 45(12): 1891-1898.
[12] ZHANG An-Ning,LIU Yi,WANG Fei-Ming,XIE Yue-Wen,KONG De-Yan,NIE Yuan-Yuan,ZHANG Fen-Yun,BI Jun-Guo,YU Xin-Qiao,LIU Guo-Lan,LUO Li-Jun. Pyramiding and evaluation of brown planthopper resistance genes in water-saving and drought-resistance restorer line [J]. Acta Agronomica Sinica, 2019, 45(11): 1764-1769.
[13] ZHOU Ping-Ping,YAN Hong-Hai,PENG Yuan-Ying. Hexaploid ancestor of cultivated hexaploid oats inferred from high throughput GBS-SNP markers [J]. Acta Agronomica Sinica, 2019, 45(10): 1604-1612.
[14] Ying-Fen JIANG,Zong-Xiang ZHAN,Zhong-Yun PIAO,Chun-Yu ZHANG. Progresses and Prospects of Germplasms Innovation for Clubroot Resistance and Genetic Improvement in Brassica napus [J]. Acta Agronomica Sinica, 2018, 44(11): 1592-1599.
[15] MAO Yan-Zhi,LI Chun-Jie,HU Yan-Feng,HUA Cui,YOU Jia,WANG Xin-Peng,LIU Xi-Cai,YANG Geng-Bin,WANG Cong-Li. Resistance Evaluation of Potato Cultivars and Germplasms to Meloidogyne hapla in Heilongjiang Province [J]. Acta Agron Sin, 2017, 43(12): 1864-1869.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!