Welcome to Acta Agronomica Sinica,

Acta Agron Sin ›› 2017, Vol. 43 ›› Issue (05): 678-690.doi: 10.3724/SP.J.1006.2017.00678

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Mapping of QTLs and Heterotic Loci for Flowering Time-related Traits in Maize

YANG Hui-Li1,LIN Ya-Nan1,ZHANG Huai-Sheng1,WEI Xiao-Yi2,DING Dong1,XUE Ya-Dong1,*   

  1. 1 College of Agronomy, Henan Agricultural University, Zhengzhou 450002, China; 2 Xinxiang Academy of Agricultural Sciences, Xinxiang 453003, China
  • Received:2016-06-04 Revised:2016-11-02 Online:2017-05-12 Published:2016-11-25
  • Contact: Xue Yadong, E-mail: yadongxue@aliyun.com, Tel: 0371-63558122 E-mail:yanghuili000@126.com
  • Supported by:

    This study was supported by the National Natural Science Foundation of China (31271732) and the National Key Basic Research Program (2014CB138203).

Abstract:

Flowering is an important trait in maize evolution and adaptation. Dissecting the genetic basis of heterosis of flowering will promote the selection for elite hybrids adapted to different ecosystems. In this study, a panel of 203 single segment substitution lines (SSSLs) and its testcross population derived from an elite inbred line Xu178 as recipient parent and inbred line Zong3 as donor parent, were applied for mapping flowering time-related traits in maize. Flowering time-related traits, including days to anthesis (DTA), days to silk (DTA) and anthesis-to-silking interval (ASI), were scored in the two populations at three locations in two years. A total of 40 quantitative trait loci (QTLs) and 37 heterosis loci (HLs) for flowering-related traits were detected. Of them, six QTLs and four HLs were detected at the three locations simultaneously. Of all detected chromosomal regions, there were 11 regions in which the genes affected both flowering time-related QTLs and HLs.

Key words: Maize, Single segment substitution line, Flowering time, QTL, Heterosis

[1]Birchler J A, Yao H, Chudalayandi S, Vaiman D, Veitia R A. Heterosis. Pant Cell, 2010, 22: 2105–2112 [2]Zhou G, Chen Y, Yao W, Zhang C, Xie W, Hua J, Xing Y, Xiao J, Zhang Q. Genetic composition of yield heterosis in an elite rice hybrid. Proc Natl Acad Sci USA, 2012, 109: 15847–15852 [3]Guo X, Guo Y, Ma J, Wang F, Sun M, Gui L, Zhou J, Song X, Sun X, Zhang T. Mapping heterotic loci for yield and agronomic traits using chromosome segment introgression lines in cotton. J Integr Plant Biol, 2013, 55: 759–774 [4]Stuber C W, Lincoln S E, Wolff D W, Helentjaris T, Lander E S. Identification of genetic factors contributing to heterosis in a hybrid from two elite maize inbred lines using molecular markers. Genetics, 1992, 132: 823–839 [5]Lariepe A, Mangin B, Jasson S, Combes V, Dumas F, Jamin P, Lariagon C, Jolivot D, Madur D, Fiévet J, Gallais A, Dubreuil P, Charcosset A, Moreau L. The genetic basis of heterosis: multiparental quantitative trait loci mapping reveals contrasted levels of apparent overdominance among traits of agronomical interest in maize (Zea mays L.). Genetics, 2012, 190: 795–811 [6]Lu H, Romero-Severson J, Bernardo R. Genetic basis of heterosis explored by simple sequence repeat markers in a random-mated maize population. Theor Appl Genet, 2003, 107: 494–502 [7]Tang J, Ma X, Teng W, Yan J, Wu W, Dai J, Li J. Detection of quantitative trait loci and heterotic loci for plant height using an immortalized F2 population in maize. Chin Sci Bull, 2007, 52: 477–483 [8]Tang J, Yan J, Ma X, Teng W, Wu W, Dai J, Dhillon B S, Melchinger A E, Li J. Dissection of the genetic basis of heterosis in an elite maize hybrid by QTL mapping in an immortalized F2 population. Theor Appl Genet, 2010, 120: 333–340 [9]Melchinger A E, Utz H F, Piepho H P, Zeng Z B, Schon C C. The role of epistasis in the manifestation of heterosis: A systems-oriented approach. Genetics, 2007, 177: 1815–1825 [10]Groszmann M, Greaves I K, Albertyn Z I, Scofield G N, Peacock W J, Dennis E S. Changes in 24-nt siRNA levels in Arabidopsis hybrids suggest an epigenetic contribution to hybrid vigor. Proc Natl Acad Sci USA, 2011, 108: 2617–2622 [11]Li A, Zhou Y, Jin C, Song W, Chen C, Wang C. LaAP2L1, a heterosis-associated AP2/EREBP transcription factor of Larix, increases organ size and final biomass by affecting cell proliferation in arabidopsis. Plant Cell Physiol, 2013, 54: 1822–1836 [12]Guo M, Rupe M A, Wei J, Winkler C, Goncalves-Butruille M, Weers B P, Cerwick S F, Dieter J A, Duncan K E, Howard R J, Hou Z L, L?ffler C M, Cooper M, Simmons C R. Maize ARGOS1 (ZAR1) transgenic alleles increase hybrid maize yield. J Exp Bot, 2014, 65: 249–260 [13]Zhang Y, Ni Z, Yao Y, Nie X, Sun Q. Gibberellins and heterosis of plant height in wheat (Triticum aestivum L.). BMC Genet, 2007, 8(1): 40 [14]Ni Z, Kim E D, Ha M, Lackey E, Liu J, Zhang Y, Sun Q, Chen Z J. Altered circadian rhythms regulate growth vigour in hybrids and allopolyploids. Nature, 2009, 457: 327–331 [15]Atwell S, Huang Y S, Vilhjálmsson B J, Willems G, Horton M, Li Y, Meng D, Platt A, Tarone A M, Hu T T, Jiang R, Muliyati N W, Zhang X, Amer M A, Baxter I, Brachi B, Chory J, Dean C, Debieu M, de Meaux J, Echker J R, Faure N, Kniskern J M, Jones J D, Michael T, Nemri A, Roux F, Salt D E, Tang C, Todesco M, Traw M B, Weigel D, Marjoram P, Borevitz J O, Bergelson J, Nordborg M. Genome-wide association study of 107 phenotypes in Arabidopsis thaliana inbred lines. Nature, 2010, 465: 627–631 [16]Buckler E S, Holland J B, Bradbury P J, Acharya C B, Brown P J, Browne C, Ersoz E, Flint-Garcia S, Garcia A, Glaubitz J C, Goodman M M, Harjes C, Guill K, Kroon D E, Larsson S, Lepak N K, Li H H, Mitchell S E, Pressoir G, Peiffer J A, Rosas M O, Rocheford T R, Romay M C, Romero S, Salvo S, Villeda H S, Silva H S, Sun Q, Tian F, Upadyayula N, Ware D, Yates H, Yu J, Zhang Z W, Kresovich S, McMullen M D. The genetic architecture of maize flowering time. Science, 2009, 325: 714–718 [17]Colasanti J, Yuan Z, Sundaresan V. The indeterminate gene encodes a zinc finger protein and regulates a leaf-generated signal required for the transition to flowering in maize. Cell, 1998, 93: 593–603 [18]Muszynski M G, Dam T, Li B, Shirbroun D M, Hou Z, Bruggemann E, Archibald R, Ananiev E V, Danilevskaya O N. Delayed flowering1 encodes a basic leucine zipper protein that mediates floral inductive signals at the shoot apex in maize. Plant Physiol, 2006, 142: 1523–1536 [19]Salvi S, Sponza G, Morgante M, Tomes D, Niu X, Fengler K A, Meeley R, Ananiev E V, Svitashev S, Bruggemann E, Li B, Hainey C F, Radovic S, Zaina G, Rafalski J A, Tingey S V, Miao G H, Phillips R L, Tuberosa R. Conserved noncoding genomic sequences associated with a flowering-time quantitative trait locus in maize. Proc Natl Acad Sci USA, 2007, 104: 11376–11381 [20]Coles N D, McMullen M D, Balint-Kurti P J, Pratt R C, Holland J B. Genetic control of photoperiod sensitivity in maize revealed by joint multiple population analysis. Genetics, 2010, 184: 799–812 [21]Miller T A, Muslin E H, Dorweiler J E. A maize CONSTANS-like gene, conz1, exhibits distinct diurnal expression patterns in varied photoperiods. Planta, 2008, 227: 1377–1388 [22]Bomblies K. Pleiotropic effects of the duplicate maize FLORICAULA/LEAFY genes zfl1 and zfl2 on traits under selection during maize domestication. Genetics, 2005, 172: 519–531 [23]Meng X, Muszynski M G, Danilevskaya O N. The FT-Like ZCN8 gene functions as a floral activator and is involved in photoperiod sensitivity in maize. Plant Cell, 2011, 23: 942–960 [24]Krieger U, Lippman Z B, Zamir D. The flowering gene SINGLE FLOWER TRUSS drives heterosis for yield in tomato. Nat Genet, 2010, 42: 459–463 [25]Jiang K, Liberatore K L, Park S J, Alvarez J P, Lippman Z B. Tomato yield heterosis is triggered by a dosage sensitivity of the florigen pathway that fine-tunes shoot architecture. PLoS Genet, 2013, 9(12): e1004043 [26]Xue W Y, Xing Y Z, Weng X Y, Zhao Y, Tang W J, Wang L, Zhou H J, Yu S B, Xu C G, Li X H, Zhang Q F. Natural variation in Ghd7 is an important regulator of heading date and yield potential in rice. Nat Genet, 2008, 40: 761–767 [27]张向歌. 基于玉米单片段代换系测交群体的植株性状杂种优势分析. 河南农业大学硕士学位论文, 河南郑州, 2014 Zhang X G. Analysis of Heterotic Loci for Plant Architecture Characters using the Testcross Population of SSSLs in Maize. MS Thesis of Henan Agricultural University, Zhengzhou, China, 2014 (in Chinese with English abstract) [28]潘家驹. 作物育种学总论. 北京: 中国农业出版社, 1994 Pan J J. Crop Breeding. Beijing: China Agriculture Press, 1994 (in Chinese) [29]Yu S B, Li J X, Xu C G, Tan Y F, Gao Y J, Li X H, Zhang Q, Maroof M A S. Importance of epistasis as the genetic basis of heterosis in an elite rice hybrid. Proc Natl Acad Sci USA, 1997, 94: 9226–9231 [30]Causse M A, Fulton T M, Cho Y G, Ahn S N, Chunwongse J, Wu K, Xiao J, Yu Z, Ronald P C, Harrington S E, Second G, McCouch S R, Tanksley S D. Saturated molecular map of the rice genome based on an interspecific backcross population. Genetics, 1994, 138: 1251–1274 [31]Zhu L, Chen J, Li D, Zhang J, Huang Y, Zhao Y, Song Z, Liu Z. QTL mapping for stalk related traits in maize (Zea mays L.) under different densities. J Integr Agric, 2013, 12: 218–228 [32]Li Q C, Li Y X, Yang Z Z, Li Y. QTL mapping for plant height and ear height by using multiple related RIL populations in maize. Acta Agron Sin, 2013, 39: 1521–1529 (in Chinese with English abstract) [33]Koester R P, Sisco P H, Stuber C W. Identification of quantitative trait loci controlling days to flowering and plant height in two near isogenic lines of maize. Crop Sci, 1993, 33: 1209–1216 [34]Zhang S, Feng L, Xing L, Yang B, Gao X, Zhu X, Zhang T, Zhou B. New QTLs for lint percentage and boll weight mined in introgression lines from two feral landraces into Gossypium hirsutum acc TM-1. Plant Breed, 2016, 135: 90–101 [35]Lu M Y, Li X H, Shang A L, Wang Y M, Xi Z Y. Characterization of a set of chromosome single-segment substitution lines derived from two sequenced elite maize inbred lines. Maydica, 2011, 56: 399–407 [36]毛克举. 玉米染色体单片段代换系的构建与株型和开花期性状的QTL定位. 河南农业大学硕士学位论文, 河南郑州, 2013 Mao K J. Construction of Single Segment Substitution Lines in Maize and QTL Mapping for Flowering Time-related Traits. MS Thesis of Henan Agricultural University, Zhengzhou, China, 2013 (in Chinese with English abstract) [37]Hua J, Xing Y, Wu W, Xu C, Sun X, Yu S, Zhang Q. Single-locus heterotic effects and dominance by dominance interactions can adequately explain the genetic basis of heterosis in an elite rice hybrid. Proc Natl Acad Sci USA, 2003, 100: 2574–2579 [38]Qi H H, Huang J, Zheng Q, Huang Y Q, Shao R X, Zhu L Y, Zhang Z X, Qiu F Z, Zhou G C, Zheng Y L, Yue B. Identification of combining ability loci for five yield-related traits in maize using a set of testcrosses with introgression lines. Theor Appl Genet, 2013, 126: 369–377 [39]Liu G, Zhu H, Zhang G, Li L, Ye G. Dynamic analysis of QTLs on tiller number in rice (Oryza sativa L.) with single segment substitution lines. Theor Appl Genet, 2012, 125: 143–153 [40]王智权, 江玲, 尹长斌, 王晓玲, 雷建国, 肖宇龙, 刘喜, 刘世家, 陈明亮, 余传元, 万建民. 水稻产量相关农艺性状杂种优势位点的定位. 中国水稻科学, 2013, 27: 569–576 Wang Z Q, Jiang L, Yin C B, Wang X L, Lei J G, Xiao Y L, Liu X, Liu S J, Chen M L, Yu C Y, Wan J M. QTL mapping of heterotic loci for yield-related traits in rice. Chin J Rice Sci, 2013, 27: 569–576 (in Chinese with English abstract) [41]郭战勇, 吕盼晴, 张向歌, 孙高阳, 王洪秋, 李卫华, 付志远, 汤继华. 利用单片段代换系的测交群体定位玉米籽粒性状杂种优势位点. 中国农业科学, 2016, 49: 621–631 Guo Z Y, Lyu P Q, Zhang X G, Sun G Y, Wang H Q, Li W H, Fu Z Y, Tang J H. Identification of heterotic loci for kernel-related traits using a maize introgression lines test population. Sci Agric Sin, 2016, 49: 621–631 (in Chinese with English abstract) [42]彭倩, 薛亚东, 张向歌, 李慧敏, 孙高阳, 李卫华, 谢慧玲, 汤继华. 利用单片段代换系测交群体定位玉米产量相关性状的杂种优势位点. 作物学报, 2016, 42: 482–491 Peng Q, Xue Y D, Zhang X G, Li H M, Sun G Y, Li W H, Xie H L, Tang J H. Identification of heterotic loci for yield and ear traits using t SSSLs test population in maize. Acta Agron Sin, 2016, 42: 482–491 (in Chinese with English abstract) [43]Wei X, Wang B, Peng Q, Wei F, Mao K, Zhang X, Sun P, Liu Z, Tang J. Heterotic loci for various morphological traits of maize detected using a single segment substitution lines test-cross population. Mol Breed [Internet], 2015, [cited 2016 Mar 8] 35(3) Available from: http://link.springer.com/10.1007/s11032-015-0287-4 [44]李卓坤, 谢全刚, 朱占玲, 刘金良, 韩淑晓, 田宾, 袁倩倩, 田纪春. 基于QTL 定位分析小麦株高的杂种优势. 作物学报, 2010, 36: 771–778 Li Z K, Xie Q G, Zhu Z L, Liu J L, Han S X, Tian B, Yuan Q Q, Tian J C. Analysis of plant height heterosis based on QTL mapping in wheat. Acta Agron Sin, 2010, 36: 771–778 (in Chinese with English abstract) [45]Wei X, Lu X, Zhang Z, Xu M, Mao K, Li W, Wei F, Sun P, Tang J. Genetic analysis of heterosis for maize grain yield and its components in a set of SSSL testcross populations. Euphytica [Internet], 2016, [cited 2016 Jun 4] Available from: http://link.springer.com/10.1007/s10681-016-1695-1 [46]Sch?n C C, Dhillon B S, Utz H F, Melchinger A E. High congruency of QTL positions for heterosis of grain yield in three crosses of maize. Theor Appl Genet, 2010, 120: 321–332 [47]Schnable P S, Springer N M. Progress toward understanding heterosis in crop plants. Annu Rev Plant Biol, 2013, 64: 71–88 [48]Shen G, Zhan W, Chen H, Xing Y. Dominance and epistasis are the main contributors to heterosis for plant height in rice. Plant Sci, 2014, 215/216: 11–18

[1] HU Wen-Jing, LI Dong-Sheng, YI Xin, ZHANG Chun-Mei, ZHANG Yong. Molecular mapping and validation of quantitative trait loci for spike-related traits and plant height in wheat [J]. Acta Agronomica Sinica, 2022, 48(6): 1346-1356.
[2] WANG Dan, ZHOU Bao-Yuan, MA Wei, GE Jun-Zhu, DING Zai-Song, LI Cong-Feng, ZHAO Ming. Characteristics of the annual distribution and utilization of climate resource for double maize cropping system in the middle reaches of Yangtze River [J]. Acta Agronomica Sinica, 2022, 48(6): 1437-1450.
[3] YANG Huan, ZHOU Ying, CHEN Ping, DU Qing, ZHENG Ben-Chuan, PU Tian, WEN Jing, YANG Wen-Yu, YONG Tai-Wen. Effects of nutrient uptake and utilization on yield of maize-legume strip intercropping system [J]. Acta Agronomica Sinica, 2022, 48(6): 1476-1487.
[4] CHEN Jing, REN Bai-Zhao, ZHAO Bin, LIU Peng, ZHANG Ji-Wang. Regulation of leaf-spraying glycine betaine on yield formation and antioxidation of summer maize sowed in different dates [J]. Acta Agronomica Sinica, 2022, 48(6): 1502-1515.
[5] SHAN Lu-Ying, LI Jun, LI Liang, ZHANG Li, WANG Hao-Qian, GAO Jia-Qi, WU Gang, WU Yu-Hua, ZHANG Xiu-Jie. Development of genetically modified maize (Zea mays L.) NK603 matrix reference materials [J]. Acta Agronomica Sinica, 2022, 48(5): 1059-1070.
[6] YU Chun-Miao, ZHANG Yong, WANG Hao-Rang, YANG Xing-Yong, DONG Quan-Zhong, XUE Hong, ZHANG Ming-Ming, LI Wei-Wei, WANG Lei, HU Kai-Feng, GU Yong-Zhe, QIU Li-Juan. Construction of a high density genetic map between cultivated and semi-wild soybeans and identification of QTLs for plant height [J]. Acta Agronomica Sinica, 2022, 48(5): 1091-1102.
[7] XU Xin, QIN Chao, ZHAO Tao, LIU Bin, LI Hong-Yu, LIU Jun. Function analysis of GmELF3s in regulating soybean flowering time and circadian rhythm [J]. Acta Agronomica Sinica, 2022, 48(4): 812-824.
[8] XU Jing, GAO Jing-Yang, LI Cheng-Cheng, SONG Yun-Xia, DONG Chao-Pei, WANG Zhao, LI Yun-Meng, LUAN Yi-Fan, CHEN Jia-Fa, ZHOU Zi-Jian, WU Jian-Yu. Overexpression of ZmCIPKHT enhances heat tolerance in plant [J]. Acta Agronomica Sinica, 2022, 48(4): 851-859.
[9] LIU Lei, ZHAN Wei-Min, DING Wu-Si, LIU Tong, CUI Lian-Hua, JIANG Liang-Liang, ZHANG Yan-Pei, YANG Jian-Ping. Genetic analysis and molecular characterization of dwarf mutant gad39 in maize [J]. Acta Agronomica Sinica, 2022, 48(4): 886-895.
[10] YAN Yu-Ting, SONG Qiu-Lai, YAN Chao, LIU Shuang, ZHANG Yu-Hui, TIAN Jing-Fen, DENG Yu-Xuan, MA Chun-Mei. Nitrogen accumulation and nitrogen substitution effect of maize under straw returning with continuous cropping [J]. Acta Agronomica Sinica, 2022, 48(4): 962-974.
[11] XU Ning-Kun, LI Bing, CHEN Xiao-Yan, WEI Ya-Kang, LIU Zi-Long, XUE Yong-Kang, CHEN Hong-Yu, WANG Gui-Feng. Genetic analysis and molecular characterization of a novel maize Bt2 gene mutant [J]. Acta Agronomica Sinica, 2022, 48(3): 572-579.
[12] SONG Shi-Qin, YANG Qing-Long, WANG Dan, LYU Yan-Jie, XU Wen-Hua, WEI Wen-Wen, LIU Xiao-Dan, YAO Fan-Yun, CAO Yu-Jun, WANG Yong-Jun, WANG Li-Chun. Relationship between seed morphology, storage substance and chilling tolerance during germination of dominant maize hybrids in Northeast China [J]. Acta Agronomica Sinica, 2022, 48(3): 726-738.
[13] HUANG Li, CHEN Yu-Ning, LUO Huai-Yong, ZHOU Xiao-Jing, LIU Nian, CHEN Wei-Gang, LEI Yong, LIAO Bo-Shou, JIANG Hui-Fang. Advances of QTL mapping for seed size related traits in peanut [J]. Acta Agronomica Sinica, 2022, 48(2): 280-291.
[14] QU Jian-Zhou, FENG Wen-Hao, ZHANG Xing-Hua, XU Shu-Tu, XUE Ji-Quan. Dissecting the genetic architecture of maize kernel size based on genome-wide association study [J]. Acta Agronomica Sinica, 2022, 48(2): 304-319.
[15] ZHANG Yan-Bo, WANG Yuan, FENG Gan-Yu, DUAN Hui-Rong, LIU Hai-Ying. QTLs analysis of oil and three main fatty acid contents in cottonseeds [J]. Acta Agronomica Sinica, 2022, 48(2): 380-395.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!