Acta Agronomica Sinica ›› 2018, Vol. 44 ›› Issue (04): 493-504.doi: 10.3724/SP.J.1006.2018.00493
• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles Next Articles
Qing-Fei WU1,**(), Lei QIN1,**(), Lei DONG2, Ze-Hong DING3, Ping-Hua LI1,*(), Bai-Juan DU1,*()
[1] | Furbank R T, Hatch M D.Mechanism of C4 photosynthesis: the size and composition of the inorganic carbon pool in bundle sheath cells.Plant Physiol, 1987, 85: 958-964 |
[2] | Hatch M D.C4 photosynthesis: a unique blend of modified biochemistry, anatomy and ultrastructure.Biochim Biophy Acta, 1987, 895: 81-106 |
[3] | Edwards G E, Franceschi V R, Ku M S, Voznesenskaya E V, Pyankov V I, Andreo C S.Compartmentation of photosynthesis in cells and tissues of C4 plants.J Exp Bot, 2001, 52: 577-590 |
[4] | Majeran W, Friso G, Ponnala L, Connolly B, Huang M, Reidel E.Structural and metabolic transitions of C4 leaf development and differentiation defined by microscopy and quantitative proteomics in maize.Plant Cell, 2010, 22: 3509-3542 |
[5] | Gregory R P, Droppa M, Horváth G, Evans E H.A comparison based on delayed light emission and fluorescence induction of intact chloroplasts isolated from mesophyll protoplasts and bundle-sheath cells of maize.Biochem J, 1979, 180: 253-256 |
[6] | Takabayashi A, Kishine M, Asada K, Endo T, Sato F.Differential use of two cyclic electron flows around photo-system I for driving CO2-concentration mechanism in C4 photosynthesis.Proc Natl Acad Sci USA, 2005, 102: 16898-16903 |
[7] | Richard R A.Selectable traits to increase crop photosynthesis and yield of grain crops.J Exp Bot, 2000, 51: 447-458 |
[8] | Zhu X G, Long S P, Ort D R.What is the maximum efficiency with which photosynthesis can convert solar energy into biomass.Curr Opin Biotechnol, 2008, 19: 153-159 |
[9] | Stern D B, Hanson M R, Barkan A.Genetics and genomics of chloroplast biogenesis: maize as a model system.Trends Plant Sci, 2004, 9: 293-301 |
[10] | 李保珠, 赵孝亮, 彭雷. 植物叶绿体发育及调控研究进展. 植物学报, 2014, 49: 337-345 |
Li B Z, Zhao X L, Peng L.Research advances in the development and regulation of plant chloroplasts.Chin Bull Bot, 2014, 49: 337-345 (in Chinese with English abstract) | |
[11] | Belcher S, Williams-Carrier R, Stiffler N, Barkan A.Large-scale genetic analysis of chloroplast biogenesis in maize.Biochim Biophys Acta, 2015, 1847: 1004-1016 |
[12] | Covshoff S, Majeran W, Liu P, Kolkman J M, van Wijk K J, Brutnell T P. Deregulation of maize C4 photosynthetic development in a mesophyll cell-defective mutant.Plant Physiol, 2008, 146: 1469-1481 |
[13] | Plucken H, Muller B, Grohmann D, Westhoff P, Eichacker L A.The HCF136 protein is essential for assembly of the photosystem II reaction center in Arabidopsis thaliana. FEBS Lett, 2002, 532: 85-90 |
[14] | Schuster S C.Next-generation sequencing transforms today’s biology.Nat Methods, 2008, 5: 16-18 |
[15] | Chang Y M, Liu W Y, Shi A C, Shen M N, Lu C H, Lu M Y.Characterizing regulatory and functional differentiation between maize mesophyll and bundle sheath cells by transcriptomic analysis.Plant Physiol, 2012, 160: 165-177 |
[16] | John C R, Smith-Unna R D, Woodfield H, Covshoff S, Hibberd J M. Evolutionary convergence of cell-specific gene expression in in-dependent lineages of C4 grasses.Plant Physiol, 2014, 165: 62-75 |
[17] | Tausta S L, Li P, Si Y T, Gandotra N, Liu P, Sun Q.Developmental dynamics of Kranz cell transcriptional specificity in maize leaf reveals early onset of C4-related processes. J Exp Bot, 2014, 65: 3543-3555 |
[18] | 江芳, 丁泽红, 董雷, 李平华. 玉米光合突变体bsd2 (bundle sheath defective II)的转录组分析. 植物生理学报, 2016, 52: 1214-1222 |
Jiang F, Ding Z H, Dong L, Li P H.Transcriptome analysis on the maize photosynthetic mutant bsd2 (bundle sheath defective II). Plant Physiol J, 2016, 52: 1214-1222 (in Chinese with English abstract) | |
[19] | Porra R J.The chequered history of the development and use of simultaneous equations for the accurate determination of chlorophyll a and b. Photosynth Res, 2002, 73: 149-156 |
[20] | Wang L, Si Y, Dedow L K, Shao Y, Liu P, Brutnell T P.A low cost library construction protocol and data analysis pipeline for Illumina-based strand-specific multiplex RNA-seq.PLoS One, 2011, 6: e26426 |
[21] | Robinson M D, McCarthy D J, Smyth G K. Edge R: a bioconductor package for differential expression analysis of digital gene expression data.Bioinformatics, 2010, 26: 139-140 |
[22] | Li P, Ponnala L, Gandotra N, Wang L, Si Y, Tausta S L, Kebrom T H, Provart N, Patel R, Brutnell T P.The developmental dynamics of the maize leaf transcriptome.Nat Genet, 2010, 42: 1060-1067 |
[23] | Suresh V K, Tellabati M, Nelli R K, White G A, Perez B B, Sebastian S, Slomka M J, Brown I H, Stephen P D, Kin C C.18S rRNA is a reliable normalisation gene for real time PCR based on influenza virus infected cells.Virl J, 2012, 9: 230 |
[24] | Yruela I, Montoya G, Picorel R.The inhibitory mechanism of Cu(II) on the photosystem II electron transport from higher plants.Photosynth Res, 1992, 33: 227-233 |
[25] | Ouzounidou G, Mousbakas M, Karataglis S.Responses of maize (Zea mays L.) plants to copper stress: IR growth, mineral content and ultrastructure of roots. Environ Exp Bot, 1995, 2: 167-176 |
[26] | Meurer J, Plücken H, Kowallik K V, Westhoff P.A nuclear-encoded protein of prokaryotic origin is essential for the stability of photosystem II in Arabidopsis thaliana. EMBO J, 1998, 17: 5286-5297 |
[27] | Maxwell K, Johnson G N.Chlorophyll fluorescence: a practical guide.J Exp Bot, 2000, 51: 659-668 |
[28] | Meurer J, Meierhoff K, Westhoff P.Isolation of high-chlorophyll- fluorescence mutants of Arabidopsis thaliana and their characterization by spectroscopy, immunoblotting and Northern hybridization.Planta, 1996, 198: 385-396 |
[29] | Varotto C, Pesaresi P, Maiwald D.Identification of photosynthetic mutants of Arabidopsis by automatic screening for altered effective quantum yield of photosystem II.Photosynthetica, 2000, 38: 497-504 |
[1] | CUI Lian-Hua, ZHAN Wei-Min, YANG Lu-Hao, WANG Shao-Ci, MA Wen-Qi, JIANG Liang-Liang, ZHANG Yan-Pei, YANG Jian-Ping, YANG Qing-Hua. Molecular cloning of two maize (Zea mays) ZmCOP1 genes and their transcription abundances in response to different light treatments [J]. Acta Agronomica Sinica, 2022, 48(6): 1312-1324. |
[2] | LI Wen-Lan, LI Wen-Cai, SUN Qi, YU Yan-Li, ZHAO Meng, LU Shou-Ping, LI Yan-Jiao, MENG Zhao-Dong. A study of expression pattern of auxin response factor family genes in maize (Zea mays L.) [J]. Acta Agronomica Sinica, 2021, 47(6): 1138-1148. |
[3] | Xiao-Qiang ZHAO,Bin REN,Yun-Ling PENG,Ming-Xia XU,Peng FANG,Ze-Long ZHUANG,Jin-Wen ZHANG,Wen-Jing ZENG,Qiao-Hong GAO,Yong-Fu DING,Fen-Qi CHEN. Epistatic and QTL × environment interaction effects for ear related traits in two maize (Zea mays) populations under eight watering environments [J]. Acta Agronomica Sinica, 2019, 45(6): 856-871. |
[4] | Yun-Fu LI,Jing-Xian WANG,Yan-Fang DU,Hua-Wen ZOU,Zu-Xin ZHANG. Identification of indeterminate domain protein family genes associated with flowering time in maize [J]. Acta Agronomica Sinica, 2019, 45(4): 499-507. |
[5] | ZHANG Chun-Xiao,LI Shu-Fang,JIN Feng-Xue,LIU Wen-Ping,LI Wan-Jun,LIU Jie,LI Xiao-Hui. QTL mapping of salt and alkaline tolerance-related traits at the germination and seedling stage in maize (Zea mays L.) using three analytical methods [J]. Acta Agronomica Sinica, 2019, 45(4): 508-521. |
[6] | Zhong-Xiang LIU,Mei YANG,Peng-Cheng YIN,Yu-Qian ZHOU,Hai-Jun HE,Fa-Zhan QIU. Fine Mapping and Genetic Effect Analysis of a Major QTL qPH3.2 Associated with Plant Height in Maize (Zea mays L.) [J]. Acta Agronomica Sinica, 2018, 44(9): 1357-1366. |
|