Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2018, Vol. 44 ›› Issue (05): 642-649.doi: 10.3724/SP.J.1006.2018.00642

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Identification and Expression Analysis of Likely Orthologs of Tobacco Salicylic Acid Binding Protein 2 in Common Beans

Ren-Feng XUE1,**(), Li WANG2,**, Ming FENG1, Wei-De GE1,*()   

  1. 1 Crop Research Institute, Liaoning Academy of Agricultural Sciences, Shenyang 110161, Liaoning, China
    2 Rural Energy and Environment Agency, Ministry of Agriculture, Beijing 100125, China
  • Received:2017-09-10 Accepted:2018-01-08 Online:2018-05-20 Published:2018-01-29
  • Contact: Ren-Feng XUE,Li WANG,Wei-De GE E-mail:xuerf82@163.com;snowweide@163.com
  • Supported by:
    This work was supported by the National Natural Science Foundation of China (31401447), the Liaoning Doctor Startup Foundation (201501113), the New Varieties Breeding, High Quality and Effective Technology Integration and Demonstration of Special Grain and Oil Crop (2018416023), and the China Agriculture Research System (CARS-08-Z8).

Abstract:

Salicylic acid can induce the systematic resistant response in plants, and salicylic acid-binding protein 2 is an important esterase in the regulation of salicylic acid content in plant cells. In this study, we used the bioinformatics method to search the orthologous genes of tobacco salicylic acid-binding protein 2 in common bean, which were designated as PvMES1-PvMES7, then analyzed the changes of MES activity and free SA accumulation in plant roots. The expression level of 7 PvMES genes in susceptible varieties BRB130 and Baidaodou, resistant varieties Heiyundou and 260205 infected by Fusarium oxysporum f. sp. phaseoli isolate FOP-DM01 was detected by Real time PCR, showing that the expression of PvMES1, PvMES3, PvMES4, PvMES5, and PvMES6 was significantly increased at three days after FOP-DM01 infection, with most significant increase of 7.6 folds and 5.6 folds for PvMES5 gene in Heiyundou and PvMES1 gene in 260205 at 0 day, respectively. The MES activity and free SA content in roots of Heiyundou and 260205 were also improved, which activated the relevant defense response reaction mediated by SA in the host. The results of this study provide a theoretical basis for the resistance molecular breeding of Fusarium wilt in common beans.

Key words: common bean, Fusarium wilt, salicylic acid binding protein 2, orthologous genes, system acquired resistance

Table 1

Primers used in the experiment"

基因名称
Gene name
引物名称
Primer name
引物序列
Sequence for qPCR (5°-3°)
PvMES1 QMES1F GCTCTATCAACTTTCCCCTG
QMES1R CATCGTTGGTAATCCAAAGT
PvMES2 QMES2F CTATCAACTCTCCCCAACTC
QMES2R CAAAGTAATTGCAAGGTCTAT
PvMES3 QMES3F CAGAAAATTGAAGACGTTGG
QMES3R AACATAGGAGGGCTTGCGC
PvMES4 QMES4F GAGTACCTTGGGAGAGAAT
QMES4R TAGAGAAGCTCTTCTGTTGG
PvMES5 QMES5F GCAATTCCCAGAAAAAATTCTG
QMES5R CTTGGGACCAAAGAACATCAA
PvMES6 QMES6F ACCAAGTTTCTGTCCACTGC
QMES6R TACTCTTTTGGAATTGTCAA
PvMES7 QMES7F GGAGTTGAATTTTTGAGATCTA
QMES7R CATCAAATTATCTTTTCCAGC
PvPR1 QPR1F TGCTAAAGACGCCGATACCA
QPR1R GCAACACCTCCAACTATGCT
Actin Act-F GAAGTTCTCTTCCAACCATCC
Act-R TTTCCTTGCTCATTCTGTCCG

Table 2

Nucleotide sequence analysis of PvMES family members and tobacco (Nt) SABP2"

基因名称
Gene
基因位点
Genetic locus
基因序列位置
Sequence location
E值
E-value
一致性
Identity (%)
染色体
Chromosome
PvMES1 Phvul.003G248200.1 48561200-48564505 1.7×10-35 59.2 3
PvMES2 Phvul.003G248300.1 48567955-48569848 7.0×10-34 57.6 3
PvMES3 Phvul.003G248025.1 48530639-48532632 1.6×10-29 63.8 3
PvMES4 Phvul.003G248050.1 48539059-48541466 1.9×10-28 61.4 3
PvMES5 Phvul.003G248075.1 48545538-48547254 1.9×10-28 63.1 3
PvMES6 Phvul.002G022300.1 2389494-2391172 3.4×10-25 58.4 2
PvMES7 Phvul.010G043800.2 6682398-6684451 5.1×10-4 45.3 10

Fig. 1

Multiple sequence alignment of PvMES1-PvMES7 and tobacco SABP2 (NtSABP2) Identical residues are shaded in black and similar residues in gray; the catalytic triad residues are indicated by arrows, and residues that contact salicylic acid are indicated with black triangles."

Fig. 2

Phylogenetic tree of PvMES1-PvMES7 and NtSABP2"

Fig. 3

Expression of PvMES1-PvMES7 and PvPR1 induced by Fusarium oxysporum f. sp. phaseoli DM01 isolate (FOP-DM01) Bars represented by different letters are significantly different (P < 0.05) among four common bean varieties at the same time point."

Fig. 4

MES activity induced by Fusarium oxysporum f. sp. phaseoli DM01 isolate (FOP-DM01) Bars represented by different letters are significantly different (P < 0.05) among four common bean varieties at the same time point."

Fig. 5

SA content induced by Fusarium oxysporum f. sp. phaseoli DM01 isolate (FOP-DM01) Bars represented by different letters are significantly different (P < 0.05) among four common bean varieties at the same time point."

Fig. 6

Disease assessment of the common bean varieties after inoculating with FOP-DM01 A: Disease progress of the common bean varieties at three weeks post inoculation with FOP-DM01; B: Disease index of the common bean varieties plants at three weeks post inoculation with FOP-DM01. Bars represented by different letters are significantly different (P < 0.05) among four common bean varieties at the same time point."

[1] Broughton W J, Hernandez G, Blair M, Beebe S, Gepts P, Vanderleyden J.Beans (Phaseolus spp.)—model food legumes. Plant Soil, 2003, 252: 55-128
[2] Xue R F, Wu J, Zhu Z D, Wang L F, Wang X M, Wang S M, Blair M W.Differentially expressed genes in resistant and susceptible common bean (Phaseolus vulgaris L.) genotypes in response to Fusarium oxysporum f. sp. phaseoli. PLoS One, 2015, 10: e0127698, doi:10.1371/journal.pone.0127698
[3] Xue R F, Wu J, Wang L F, Blair M W, Wang X M, Ge W D, Zhu Z D, Wang S M.Salicylic acid enhances resistance to Fusarium oxysporum f. sp. phaseoli in common beans(Phaseolus vulgaris L.). J Plant Growth Regul, 2014, 33: 470-476
[4] Vlot A C, Dempsey D A, Klessig D F.Salicylic acid, amultifaceted hormone to combat disease.Annu Rev Phytopathol, 2009, 47: 177-206
doi: 10.1146/annurev.phyto.050908.135202 pmid: 19400653
[5] Liu P P, von Dahl C C, Park S W, Klessig D F. Interconnection between methyl salicylate and lipid-based long-distance signaling during the development of systemic acquired resistance in Arabidopsis and tobacco.Plant Physiol, 2011, 155:1762-1768
doi: 10.1104/pp.110.171694 pmid: 21311035
[6] Edgar C I, McGrath K C, Dombrecht B, Manners J M, Maclean D C, Schenk P M, Kazan K. Salicylic acid mediates resistance to the vascular wilt pathogen Fusarium oxysporum in the model host Arabidopsis thaliana. Aust Plant Path, 2006, 35: 581-591
[7] Mandal S, Mallick N, Mitra A.Salicylic acid-induced resistance to Fusarium oxysporum f. sp. lycopersici in tomato. Plant Physiol Biochem, 2009, 47: 642-649
[8] Dihazi A, Serghini M A, Jaiti F, Daayf F, Driouich A, Dihazi H, El Hadrami I.Structural and biochemical changes in salicylic-acid-treated date palm roots challenged with Fusarium oxysporum f. sp. albedinis.J Pathogens, 2011, doi 10.4061/2011/280481
[9] Gayatridevi S, Jayalakshmi S, Sreeramulu K.Salicylic acid is a modulator of catalase isozymes in chickpea plants infected with Fusarium oxysporum f. sp. ciceri. Plant Physiol Biochem, 2012, 52:154-161
[10] Park S W, Kaimoyo E, Kumar D, Mosher S, Klessig D F.Methyl salicylate is a critical mobile signal for plant systemic acquired resistance.Science, 2007, 318:113-116
doi: 10.1126/science.1147113 pmid: 17916738
[11] Kumar D, Klessig D F.High-affinity salicylic acid-binding protein 2 is required for plant innate immunity and has salicylic acid-stimulated lipase activity.Proc Natl Acad Sci USA, 2003, 100: 16101-16106
doi: 10.1073/pnas.0307162100
[12] Tripathi D, Jiang Y L, Kumar D.SABP2, a methyl salicylate esterase is required for the systemic acquired resistance induced by acibenzolar-S-methyl in plants.FEBS Lett, 2010, 584: 3458-3463
doi: 10.1016/j.febslet.2010.06.046
[13] Park S W, Liu P P, Forouhar F, Volt A C, Tong L, Tiejen K, Klessig D F.Use of a synthetic salicylic acid analog to investigate the roles of methyl salicylate and its esterases in plant disease resistance.J Biol Chem, 2009, 284: 7307-7317
doi: 10.1074/jbc.M807968200 pmid: 19131332
[14] Kumar D, Hotz T, Hossain M, Chigurupati P, Mayakoti A, Binda N, Zhao B Q, Tripathi D.Methyl salicylate esterases in plant immunity.Plant Stress, 2012, 1: 47-51
[15] Chigurupati P, Haq I, Kumar D.Tobacco Methyl Salicylate Esterase Mediates Nonhost Resistance.Curr Plant Biol, 2016, 6: 48-55
doi: 10.1016/j.cpb.2016.10.001
[16] Vlot A C, Liu P P, Cameron R K, Park S W, Yang Y, Kumar D, Zhou F, Padukkavidana T, Gustafsson C, Pichersky E, Klessig D F.Identification of likely orthologs of tobacco salicylic acid-binding protein 2 and their role in systemic acquired resistance in Arabidopsis thaliana. Plant J, 2008, 56: 445-456
doi: 10.1111/j.1365-313X.2008.03618.x pmid: 18643994
[17] Manosalva P M, Park S W, Forouhar F, Tong L, Fry W E, Klessig D F.Methyl esterase 1 (StMES1) is required for systemic acquired resistance in potato. Mol Plant- Microbe Interact, 2010, 23: 1151-1163
doi: 10.1094/MPMI-23-9-1151 pmid: 20687805
[18] 薛仁风, 朱振东, 王晓鸣, 王兰芬, 武小菲, 王述民. 普通菜豆镰孢菌枯萎病抗病相关基因PvCaM1的克隆及表达.作物学报, 2012, 38: 606-613
doi: 10.3724/SP.J.1006.2012.00606
Xue R F, Zhu Z D, Wang X M, Wang L F, Wu X F, Wang S M.Cloning and expression analysis of the Fusarium wilt resistance-related gene PvCaM1 in common bean(Phaseolus vulgaris L.). Acta Agron Sin, 2011, 38: 606-613 (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2012.00606
[19] Forouhar F, Yang Y, Kumar D, Chen Y, Fridman E, Park S W, Chiang Y, Acton T B, Montelione G T, Pichersky E, Klessig D F, Tong L.Structural and biochemical studies identify tobacco SABP2 as a methyl salicylate esterase and implicate it in plant innate immunity. Proc Natl Acad Sci USA, 2005, 102: 1773
doi: 10.1073/pnas.0409227102
[20] 王述民, 张亚芝, 魏淑红. 普通菜豆种质资源描述规范和数据标准. 北京: 中国农业出版社, 2006. p 64
Wang S M, Zhang Y Z, Wei S H.Descriptors and Data Standard for Common Bean (Phaseolus vulgaris L.). Beijing: China Agriculture Press, 2006. p 64 (in Chinese)
[21] Institute S.SAS 9.1.3 Intelligence Platform: Single-user Installation Guide. SAS Institute Cary, NC, 2005
[22] Dempsey D A, Shah J, Klessig D F.Salicylic acid and disease resistance in plants.Crit Rev Plant Sci, 1999, 18: 547-575
doi: 10.1080/07352689991309397
[23] Xue R F, Wu J, Chen M L, Zhu Z D, Wang L F, Wang X M, Blair M W, Wang S M.Cloning and characterization of a novel secretory root-expressed peroxidase gene from common bean (Phaseolus vulgaris L.) infected with Fusarium oxysporum f. sp. Phaseoli. Mol Breed, 2014, 34: 855-870
[24] Xue R F, Wu X B, Wang Y J, Zhuang Y, Chen J, Wu J, Ge W D,Wang L F, Wang S M, Blair M W.Hairy root transgene expression analysis of a secretory peroxidase (PvPOX1) from common bean infected by Fusarium wilt. Plant Sci, 2017, 260:1-7
doi: 10.1016/j.plantsci.2017.03.011 pmid: 28554466
[25] Spletzer M E, Enyedi A J.Salicylic acid induces resistance toAlternaria solani in hydroponically grown tomato. Phytopathology, 1999, 89: 722-727
doi: 10.1094/PHYTO.1999.89.9.722 pmid: 18944699
[26] Szôke C, Pál M, Szalai G, Janda T, Rácz F, Marton C L.Potencial role of salicylic acid in tolerance of maize to Fusarium graminearum. Acta Biol Szeged, 2011, 55: 167-168
[27] Wu Y L, Yi G J, Peng X X, Huang B Z, Liu E, Zhang J J.Systemic acquired resistance in Cavendish banana induced by infection with an incompatible strain of Fusarium oxysporum f. sp. cubense. J Plant Physiol, 2013, 170 : 1039-1046
doi: 10.1016/j.jplph.2013.02.011 pmid: 23702248
[28] 陈明丽, 王兰芬, 赵晓彦, 王述民. 普通菜豆基因组学及抗炭疽病遗传研究进展. 植物遗传资源学报, 2011, 12: 941-947
Chen M L, Wang L F, Zhao X Y, Wang S M.Current research progress (Phaseolus vulgaris L.) on Anthracnose resistant genetics and genomics of common bean. J Plant Genet Resour, 2011, 12: 941-947 (in Chinese with English abstract)
[1] Lan-Fen WANG, Jing WU, Zhao-Li WANG, Ji-Bao CHEN, Li YU, Qiang WANG, Shu-Min WANG. Adaptability and Phenotypic Variations of Agronomic Traits in Common Bean Germplasm Resources in Different Environments [J]. Acta Agronomica Sinica, 2018, 44(03): 357-368.
[2] HUANG Qi-Xiu,QU Yan-Ying,YAO Zheng-Pei,LI Meng-Yu,CHEN Quan-Jia*. Correlation between Resistance to Fusarium Wilt and Expression of Flavonoid Metabolism Related Genes in Gossypium barbadense L. [J]. Acta Agron Sin, 2017, 43(12): 1791-1801.
[3] GENG Qing-He,WANG Lan-Fen,WU Jing,WANG Shu-Min. QTL Mapping for Seed Size and Shape in Common Bean [J]. Acta Agron Sin, 2017, 43(08): 1149-1160.
[4] HAN Ze-Gang,ZHAO Zeng-Qiang,LI Hui-Hui,ZHANG Xi,LI Xiao-Ling,ZHANG Wei. Expression Profiling Analysis between Resistant and Susceptible Cotton Cultivars (Gossypium hirsutum L.) in Response to Fusarium Wilt [J]. Acta Agron Sin, 2015, 41(08): 1201-1211.
[5] LI Long,WANG Lan-Fen,WU Jing,JING Rui-Lian,WANG Shu-Min*. Identification of Drought Resistence at Seedlings Stage in Common Bean (Phaseolus vulgaris L.) Varieties [J]. Acta Agron Sin, 2015, 41(06): 963-971.
[6] HAN Ze-Gang,ZHAO Zeng-Qiang,HE Lan-Lan,CHAI Meng-Liang,LI Hui-Hui,ZHANG Wei. Expression Changes of Transcription Factors in Susceptible and Resistant Upland Cotton Cultivars (Gossypium hirsutum L.) in Response to Fusarium wilt [J]. Acta Agron Sin, 2015, 41(02): 228-239.
[7] CHEN Ming-Li,WANG Lan-Fen,WU Jing,ZHANG Xiao-Yan,YANG Guang-Dong,WANG Shu-Min. Development of Genomic SSR Markers in Common Bean and Their Transferability in Cowpea and Adzuki Bean [J]. Acta Agron Sin, 2014, 40(05): 924-933.
[8] LI Long,WANG Lan-Fen,WU Jing,JING Rui-Lian,WANG Shu-Min. Physiological Characteristics of Drought Resistance in Common Bean (Phaseolus vulgaris L.) [J]. Acta Agron Sin, 2014, 40(04): 702-710.
[9] XUE Ren-Feng,ZHU Zhen-Dong,HUANG Yan,WANG Xiao-Ming,WANG Lan-Fen,WANG Shu-Min. Quantification of Fusarium oxysporum f. sp. phaseoli Detected by Real-time Quantitative PCR in Different Common Beans Cultivars [J]. Acta Agron Sin, 2012, 38(05): 791-799.
[10] XUE Ren-Feng,ZHU Zhen-Dong,WANG Xiao-Ming,WANG Lan-Fen,WU Xiao-Fei,WANG Shu-Min. Cloning and Expression Analysis of Fusarium Wilt Resistance-related Gene PvCaM1 in Common Bean (Phaseolus vulgaris L.) [J]. Acta Agron Sin, 2012, 38(04): 606-613.
[11] CHEN Meng-Li, WANG Lan-Fen, WANG Xiao-Ming, ZHANG Xiao-Yan, WANG Shu-Min. Mapping of Gene Conferring Resistance to Anthracnose in Common Bean (Phaseolus vulgaris L.) by Molecular Makers [J]. Acta Agron Sin, 2011, 37(12): 2130-2135.
[12] WANG Kun;WANG Xiao-Ming;ZHU Zhen-Dong;ZHAO Xiao-Yan;WANG Shu-Min. Mapping of a Novel Anthracnose Resistance Gene Using SSR Markers in Common Bean(Phaseolus vulgaris L.) [J]. Acta Agron Sin, 2009, 35(3): 432-437.
[13] CHEN Ji-Bao;JING Rui-Lian;MAO Xin-Guo;CHANG Xiao-Ping;WANG Shu-Min. A Response of PvP5CS2 Gene to Abiotic Stresses in Common Bean [J]. Acta Agron Sin, 2008, 34(07): 1121-1127.
[14] ZHAO Xiao-Yan;WANG Xiao-Ming;WANG Shu-Min. Identification of Anthracnose Resistant Genes Based on SCAR Markers in Common Bean (Phaseolus vulgaris L.) [J]. Acta Agron Sin, 2007, 33(11): 1815-1821.
[15] ZHANG Chi-Hong;WANG Shu-Min. The Genetic Diversity Assessment of Common Bean Germplasm Resources by Using SSR Markers [J]. Acta Agron Sin, 2005, 31(05): 619-627.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!