Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2018, Vol. 44 ›› Issue (11): 1713-1724.doi: 10.3724/SP.J.1006.2018.01713

• TILLAGE & CULTIVATION·PHYSIOLOGY & BIOCHEMISTRY • Previous Articles     Next Articles

Alleviation Effects of Exogenous Growth Regulators on Seed Germination of Sweet Sorghum under Salt Stress and Its Physiological Basis

Guang-Long ZHU1,Cheng-Yu SONG2,Lin-Lin YU2,Xu-Bing CHEN2,Wen-Fang ZHI2,Jia-Wei LIU2,Xiu-Rong JIAO1,Gui-Sheng ZHOU1,2,*()   

  1. 1 Institutes of Agricultural Science and Technology Development, Yangzhou University / Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou 225009, Jiangsu, China
    2 Co-Innovation Center for Modern Production Technology in Grain Crops of Jiangsu Province, Yangzhou University, Yangzhou 225009, Jiangsu, China
  • Received:2017-11-21 Accepted:2018-08-20 Online:2018-11-12 Published:2018-09-04
  • Contact: Gui-Sheng ZHOU E-mail:gszhou@yzu.edu.cn
  • Supported by:
    This study was supported by the Key Research and Development Program of Jiangsu Province(BE2016345);the Agricultural Independent Innovation Program of Jiangsu Province(cx[16]1005-5);the Natural Science Foundation of Jiangsu Higher Education Institutions(17KJB210008)

Abstract:

Salinity is a major abiotic constraint affecting crop seed germination and growth. It is vital to exploit and utilize salinity soil by exploring the technologies for promoting seed germination under salt stress. In this experiment, two contrasting sorghum genotypes (Guotian 2011 and Guotian 106) were used to study the salt stress (0, 50, 100, 150, and 200 mmol L -1 NaCl solution) effect on seed germination, and different concentrations of exogenous growth substances of γ-aminobutyric acid (GABA), gibberellin (GA3), kinetin (KT), and salicylic acid (SA) were used to regulate seed germination on salt-sensitive sorghum genotype Guotian 106. The seed germination was significantly inhibited under salt stress. Water uptake rate, germination potential, germination rate, germination index all decreased under salt stress, but relative salt damage rate and MDA (malondialdehyde) prominently increased in salinity condition. Exogenous growth regulators could effectively relieve the salt stress. With applied the exogenous growth substances, the seed uptake rate, germination rate, contact of soluble sugar and soluble protein, activities of SOD (superoxide dismutase), POD (peroxidase), and CAT (catalase) were all significantly increased, the absorption of K +, Ca 2+, and Mg 2+ enhanced in the same time, but the contents of Na + and MDA decreased. Overall, GA3 and GABA performed a better alleviating effect on salt stress, KT showed positive effect on promoting Mg 2+ absorption. These results suggested that the exogenous growth substances (especially GA3 and GABA) can be applicated in sorghum production under salt condition, laying a foundation for improving and utilizing saline soil.

Key words: sweet sorghum, salt stress, exogenous growth regulators, seed germination, physiological characteristics

Fig. 1

Effect of different salt concentrations on water uptake rate of sweet sorghum seeds GT2011: Guotian 2011; GT106: Guotian 106."

Table 1

Seed germination energy, germination rate and germination index of sweet sorghum under salt stress"

盐分浓度
Salt concentration
(mmol L-1)
国甜2011 Guotian 2011 国甜106 Guotian 106
发芽势Germination energy (%) 发芽率
Germination rate (%)
发芽指数
Germination index
发芽势
Germination energy (%)
发芽率
Germination rate (%)
发芽指数
Germination index
0 80 a 88 a 53 a 78 a 85 a 51 bc
50 79 a 84 a 53 ab 74 b 80 b 49 c
100 48 b 60 b 35 d 39 c 45 c 29 e
150 25 c 32 c 19 f 17 d 21 d 16 g
200 15 d 21 d 11 g 9 e 13 e 6 h
平均值Mean 49 57 34 43 49 30

Table 2

Relative salt damage rate of sweet sorghum seeds under different salt concentration stresses"

品种
Genotype
盐分浓度
Salt concentration (mmol L-1)
相对盐害率 Relative salt stress rate (%)
12 h 24 h 36 h 48 h 60 h 72 h
国甜2011 50 26 d 5 d 2 d 0 d 4 d 2 d
Guotian 2011 100 59 c 35 c 34 c 28 c 36 c 40 c
150 78 b 60 b 65 b 69 b 68 b 69 b
200 81 a 78 a 84 a 83 a 83 a 82 a
国甜106 50 28 d 10 d 8 d 3 d 5 d 6 d
Guotian 106 100 61 c 67 c 48 c 46 c 48 c 51 c
150 89 b 82 b 80 b 78 b 77 b 79 b
200 94 a 89 a 87 a 89 a 89 a 89 a

Table 3

Content of MDA in sweet sorghum seeds under salt stress"

盐分处理
Salt treatment
(mmol L-1)
MDA含量 MDA content (μmol g-1 FW)
国甜2011
Guotian 2011
国甜106
Guotian 106
0 2.3 e 3.9 e
50 3.6 d 5.4 d
100 4.0 c 6.2 c
150 5.3 b 8.3 b
200 5.7 a 8.6 a
平均值Mean 4.2 6.5

Table 4

Variance analysis of different types of exogenous growth regulator to water uptake rate of sweet sorghum under salt stress"

变异来源
Source of variation
FF-value
0-4 h 4-8 h 8-16 h 16-24 h 24-36 h 36-48 h
盐分浓度 Salt concentration (SC) ns ns 3.68* 6.07** 23.30** 19.315**
生长调节物质 Exogenous growth regulators (EGR) 107.71** 121.47** 105.49** 180.52** 2544.96** 1361.21**
生长调节物质×盐分浓度 SC×EGR ns ns ns ns 3.52** ns

Table 5

Effect of exogenous growth regulators on water uptake rate of sweet sorghum under salt concentration stresses"

盐分浓度
Salt stress
(mmol L-1 )
生长调节物质
Exogenous growth regulator
吸水率Water uptake rate (%)
0-4 h 4-8 h 8-16 h 16-24 h 24-36 h 36-48 h
0 0 12.64 b 21.91 b 28.70 c 52.08 b 67.7 c 78.20 b
KT 12.80 b 25.60 ab 29.44 bc 54.87 b 71.2 ab 83.75 a
GA3 13.84 a 28.79 ab 41.05 a 66.26 a 74.1 a 84.89 a
SA 12.85 b 27.43 ab 37.50 ab 56.09 b 72.0 b 84.21 a
GABA 13.44 ab 27.98 a 39.11 a 58.14 ab 73.4 ab 84.73 a
平均值Mean 13.03 26.34 35.16 57.49 71.7 83.16
50 0 13.33 a 23.50 a 30.83 b 52.95 b 71.5 b 81.83 b
KT 13.67 a 26.78 a 30.79 b 55.04 b 72.5 ab 84.58 a
GA3 13.85 a 29.25 a 42.06 a 67.60 a 75.3 a 86.03 a
SA 13.73 a 28.90 a 37.57 a 56.37 b 72.8 ab 85.51 a
GABA 13.79 a 28.97 a 40.77 a 58.97 b 73.8 ab 85.74 a
平均值Mean 13.68 27.48 36.41 58.19 73.2 84.74
100 0 8.41 a 14.35 b 17.11 a 28.64 a 41.9 a 43.73 c
KT 10.34 a 16.54 a 17.60 a 30.21 a 42.6 a 44.70 bc
GA3 11.46 a 17.16 a 18.30 a 32.98 a 44.4 a 48.60 a
SA 10.61 a 16.62 a 17.67 a 30.24 a 43.0 a 46.43 abc
GABA 11.41 a 17.06 a 17.97 a 32.68 a 43.6 a 47.03 ab
平均值Mean 10.45 16.34 17.73 30.95 43.1 46.10
150 0 4.08 a 6.87 b 9.48 a 22.61 c 25.2 d 27.15 a
KT 5.13 a 6.99 b 9.77 a 23.59 c 32.3 c 35.10 a
GA3 5.85 a 8.83 a 10.21 a 28.89 a 35.6 a 38.19 a
SA 5.49 a 7.15 b 9.78 a 27.20 b 33.8 b 36.52 a
GABA 5.62 a 8.24 ab 9.92 a 27.87 ab 34.8 ab 37.45 a
平均值Mean 5.23 7.62 9.83 26.03 32.3 34.88

Table 6

Variance analysis of effect of different types of exogenous growth regulator on germination rate of sweet sorghum"

变异来源
Source of variation
FF-value
12 h 24 h 36 h 48 h 60 h 72 h
盐分浓度 Salt concentration (SC) 72.45** 20.61** 35.79** 55.47** 78.56** 30.29**
生长调节物质 Exogenous growth regulators (EGR) 303.91** 1586.50** 3397.20** 6028.48** 7744.33** 6326.75**
生长调节物质×盐分浓度 SC×EGR 7.37** ns ns ns ns 2.57*

Fig. 2

Effect of exogenous growth regulators on germination rate of sweet sorghum under salt stressKT: kinetin; GA3: gibberellin; SA: salicylic acid; GABA: γ-aminobutyric acid."

Table 7

Variance analysis of effect of different types of exogenous growth regulator on osmotic adjustment substance of sweet sorghum under salt stress"

变异来源
Source of variation
FF-value
MDA 含量
MDA content
(μmol g-1 FW)
可溶性蛋白含量
Content of soluble protein
(mg g-1 FW)
可溶性糖含量
Content of soluble sugar
(mg g-1 FW)
盐分浓度 Salt concentration (SC) 2.33** 92.30** 110.61**
生长调节物质 Exogenous growth regulators (EGR) ns 310.16** 128.91**
生长调节物质×盐分浓度 SC×EGR ns 13.29** 2.56*

Table 8

Effect of different types of exogenous growth regulator on osmotic adjustment substance of sweet sorghum under salt stress"

盐分浓度
Salt concentration
(mmol L-1 )
生长调节物质
Exogenous growth regulator
渗透调节物质含量 Content of osmotic adjustment substance
MDA
(μmol g-1 FW)
可溶性蛋白
Soluble protein (mg g-1 FW)
可溶性糖
Soluble sugar (mg g-1 FW)
0 0 29.0 a 3.53 d 12.72 c
KT 26.2 b 6.60 c 12.74 c
GA3 21.1 c 7.23 c 17.09 b
SA 12.4 d 8.75 b 25.26 a
GABA 7.6 e 14.09 a 25.42 a
平均值Mean 19.3 8.04 18.65
50 0 32.6 a 4.21 c 14.66 e
KT 30.7 b 6.97 b 16.79 d
GA3 29.2 b 7.78 b 20.80 c
SA 14.8 c 14.57 a 28.60 b
GABA 11.4 d 14.43 a 30.21 a
平均值Mean 23.7 9.59 22.21
100 0 32.3 a 4.63 d 19.21 e
KT 15.5 b 8.55 c 21.10 d
GA3 13.6 b 8.61 c 25.61 c
SA 32.7 a 21.38 a 40.51 a
GABA 31.5 a 15.23 b 35.40 b
Mean 25.1 11.68 28.37
150 0 35.3 a 8.44 b 23.78 d
KT 17.7 b 23.69 a 42.95 b
GA3 33.4 a 8.55 b 48.27 a
SA 32.6 a 9.30 b 27.33 c
GABA 17.2 b 21.66 a 28.52 c
平均值Mean 27.2 14.33 34.17

Table 9

Effect of different types of exogenous growth regulator on antioxidant enzyme activities of sweet sorghum under salt stress"

盐分浓度
Salt concentration
(mmol L-1)
生长调节物质
Exogenous growth regulator
酶活性 Enzyme activity (U g-1 FW)
SOD POD CAT
0 0 31.35 e 257.98 d 251.04 c
KT 40.94 d 287.47 c 267.88 b
GA3 51.35 c 361.24 b 271.99 b
SA 62.02 b 534.74 a 437.42 a
GABA 72.60 a 540.22 a 439.85 a
平均值Mean 51.65 396.33 333.64
50 0 41.56 c 343.57 e 323.38 c
KT 49.98 c 372.75 d 323.83 c
GA3 63.51 b 455.42 c 335.06 b
SA 77.53 a 586.33 a 464.59 a
GABA 81.56 a 549.64 b 471.70 a
平均值Mean 62.83 461.54 383.71
100 0 15.38 e 185.61 e 199.89 e
KT 27.55 d 211.66 b 213.30 d
GA3 43.78 b 318.92 c 245.10 c
SA 62.20 a 450.79 a 298.31 b
GABA 31.13 c 395.49 b 361.51 a
平均值Mean 36.01 312.49 263.62
150 0 10.80 c 120.92 e 153.75 e
KT 50.22 a 223.88 c 193.73 c
GA3 20.64 b 271.57 b 178.00 d
SA 24.15 b 298.78 a 231.31 a
GABA 28.99 b 185.78 d 212.83 b
平均值Mean 26.96 220.19 193.92

Table 10

Effect of different types of exogenous growth regulator on ions content of sweet sorghum under salt stress"

盐分浓度
Salt concentration
(mmol L-1)
生长调节物质
Exogenous growth regulator
离子含量 Ions content (mg g-1)
Na+ K+ Ca2+ Mg2+
0 0 2.85 a 1.96 c 0.15 d 0.50 c
KT 2.57 b 1.99 c 0.18 b 0.62 a
GA3 2.56 b 2.03 b 0.18 b 0.53 b
SA 2.22 c 2.08 b 0.16 c 0.53 b
GABA 2.09 d 2.13 a 0.20 a 0.54 b
平均值Mean 2.55 2.04 0.17 0.54
50 0 3.70 a 1.88 c 0.12 c 0.47 d
KT 3.47 b 1.96 b 0.14 b 0.55 a
GA3 3.36 c 1.99 ab 0.14 b 0.49 c
SA 3.24 d 2.04 a 0.14 b 0.51 bc
GABA 3.12 e 2.03 a 0.16 a 0.52 b
平均值Mean 3.38 1.98 0.14 0.51
100 0 4.75 a 1.87 c 0.11 c 0.46 d
KT 4.61 b 1.97 ab 0.12 b 0.52 a
GA3 4.50 c 2.00 a 0.13 a 0.48 b
SA 4.34 d 1.93 b 0.12 b 0.47 c
GABA 4.23 e 1.96 ab 0.12 b 0.47 c
平均值Mean 4.49 1.95 0.12 0.48
150 0 5.83 a 1.80 d 0.09 d 0.43 c
KT 5.47 c 1.85 c 0.10 c 0.47 a
GA3 5.21 d 1.95 a 0.12 a 0.45 b
SA 5.65 b 1.89 b 0.10 c 0.45 b
GABA 5.17 d 1.93 ab 0.11 b 0.46 ab
平均值Mean 5.47 1.88 0.10 0.45
[1] 赵可夫, 李法曾, 樊守金, 冯立田 . 中国的盐生植物. 植物学报, 1999,16:201-207
doi: 10.3969/j.issn.1674-3466.1999.03.002
Zhao K F, Li F Z, Fan S J, Feng L T . Halophytes in China. Acta Bot Sin, 1999,16:201-207 (in Chinese with English abstract)
doi: 10.3969/j.issn.1674-3466.1999.03.002
[2] 李彬, 王志春, 孙志高, 陈渊, 杨福 . 中国盐碱地资源与可持续利用研究. 干旱地区农业研究, 2005,23(2):154-158
Li B, Wang Z C, Sun Z G, Chen Y, Yang F . Resources and sustainable resource exploitation of salinized land in China. Agric Res Arid Areas, 2005,23(2):154-158 (in Chinese with English abstract)
[3] 孙德智, 韩晓日, 彭靖, 范富 . 外源水杨酸对NaCl胁迫下番茄幼苗PSII光化学效率及光能分配利用的影响. 园艺学报, 2016,43:1482-1492
doi: 10.16420/j.issn.0513-353x.2015-0906
Sun D Z, Han X R, Peng J, Fan F . The effect of exogenous salicylic acid on PSII photochemical efficiency and distribution and utilization of luminous energy in tomato seedlings. Acta Hort Sin, 2016,43:525-537 (in Chinese with English abstract)
doi: 10.16420/j.issn.0513-353x.2015-0906
[4] 孙健, 赵宏伟, 王敬国 . 水稻孕穗期剑叶形态和蒸腾特性与耐盐性的关系. 华北农学报, 2012,27(6):84-91
doi: 10.3969/j.issn.1000-7091.2012.06.018
Sun J, Zhao H W, Wang J G . Relationship of sword leaf morphology and transpiration characteristic at booting stage with salt tolerance. Acta Agric Bor-Sin, 2012,27(6):84-91 (in Chinese with English abstract)
doi: 10.3969/j.issn.1000-7091.2012.06.018
[5] 徐明岗, 李菊梅, 李志杰 . 利用耐盐植物改善盐土区农业环境. 中国土壤与肥料, 2006, ( 3):6-10
doi: 10.11838/sfsc.20060302
Xu M G, Li J M, Li Z J . Salt-tolerance plants used for improving agricultural environments in saline soil regions. Soil Fert Sci, 2006, ( 3):6-10 (in Chinese with English abstract)
doi: 10.11838/sfsc.20060302
[6] 马春红, 李运朝, 刘旭, 及增发, 李晓煜, 何晓棣, 崔四平, 王立安, 贾银锁 . 生物质能源研究进展与前景展望. 河北农业科学, 2011,15(3):117-121
doi: 10.3969/j.issn.1088-1631.2011.03.038
Ma C H, Li Y C, Liu X, Ji Z F, Li X Y, He X D, Cui S P, Wang L A, Jia Y S . Research progress and prospects on biomass energy. J Hebei Agric Sci, 2011,15(3):117-121 (in Chinese with English abscract)
doi: 10.3969/j.issn.1088-1631.2011.03.038
[7] Vasilakoglou I, Dhima K, Karagiannidis N, Gatsis T . Sweet sorghum productivity for biofuels under increased soil salinity and reduced irrigation. Field Crops Res, 2011,120:38-46
doi: 10.1016/j.fcr.2010.08.011
[8] 赵立欣, 张艳丽, 沈丰菊 . 能源作物甜高粱及其可供应性研究. 可再生能源, 2005,122(4):37-40
doi: 10.3969/j.issn.1671-5292.2005.04.013
Zhao L X, Zhang Y L, Shen F J . A study on sweet sorghum and its availability. Renew Energy Res, 2005,122(4):37-40 (in Chinese with English abstract)
doi: 10.3969/j.issn.1671-5292.2005.04.013
[9] 邱晓, 张孝峰, 林志城, 张玉贵 . 不同含盐量的田间自然土下甜高粱耐盐性初探. 中国农学通报, 2012,28(3):66-70
Qiu X, Zhang X F, Lin Z C, Zhang Y G . Study of salt tolerance in different varieties of sweet sorghum under different salt soil. Chin Agric Sci Bull, 2012,28(3):66-70 (in Chinese with English abstract)
[10] 高建明, 夏卜贤, 袁庆华, 罗峰, 韩芸, 桂枝, 裴忠有, 孙守均 . 高粱种质材料幼苗期耐盐碱性评价. 应用生态学报, 2012,23:1303-1310
Gao J M, Xia B X, Yuan Q H, Luo F, Han Y, Gui Z, Pei Z Y, Sun S J . Salt-alkaline tolerance of sorghum germplasm at seedling stage. Chin J Appl Ecol, 2012,23:1303-1310 (in Chinese with English abstract)
[11] 高凤菊 . 盐度对不同类型甜高粱品种萌发、生长发育及产量的影响. 山东农业大学硕士学位论文, 山东泰安, 2011
doi: 10.7666/d.d144050
Gao F J . Effects of Salinity on Germination, Growth and Development, and Yield of Sweet Sorghum. MS Thesis of Shandong Agricultural University, Tai’an, Shandong, China, 2011 ( in Chinese with English abstract)
doi: 10.7666/d.d144050
[12] Farooq M, Gogoi N, Hussain M, Barthakur S, Paul S, Bharadwaj N, Migdadi H M, Alghamdi S S , Siddique K H M. Effects, tolerance mechanisms and management of salt stress in grain legumes. Plant Physiol & Biochem, 2017,118:199-217
doi: 10.1016/j.plaphy.2017.06.020 pmid: 28648997
[13] 葛江丽, 石雷, 谷卫彬, 唐宇丹, 张金政, 姜闯道, 任大明 . 盐胁迫条件下甜高梁幼苗的光合特性及光系统Ⅱ功能调节. 作物学报, 2007,33:1272-1278
doi: 10.3321/j.issn:0496-3490.2007.08.009
Ge J L, Shi L, Gu W B, Tang Y D, Zhang J Z, Jiang C D, Ren D M . Photosynthetic characteristic and the regulation of photosystem II function in salt-stressed sweet sorghum seedlings. Acta Agron Sin, 2007,33:1272-1278 (in Chinese with English abstract)
doi: 10.3321/j.issn:0496-3490.2007.08.009
[14] 杨帆, 魏晓岑, 张士超, 王宝山 . 不同甜高粱品种萌发期抗盐和抗旱性比较. 植物生理学报, 2015,51:1604-1610
Yang F, Wei X C, Zhang S C, Wang B S . Comparison on salt and drought resistances of different varieties of sorghum bicolor at germination stage. Plant Physiol J, 2015,51:1604-1610 (in Chinese with English abstract)
[15] 穆静, 刘小京, 徐进, 毛任钊, 魏巍, 杨莉琳 . 氮素对NaCl胁迫下甜高粱种子萌发及芽苗生长与生理的影响. 中国生态农业学报, 2012,20:1303-1303
doi: 10.3724/SP.J.1011.2012.01303
Mu J, Liu X J, Xu J, Mao R Z, Wei W, Yang L L . Effects of nitrogen on sweet sorghum seed germination, seedling growth and physiological traits under NaCl stress. Chin J Eco-Agric, 2012,20:1303-1309 (in Chinese with English abstract)
doi: 10.3724/SP.J.1011.2012.01303
[16] 禤维言, 张涛, 黄永禄, 冯斗, 胡蔚东 . 喷施多效唑对甜高粱生长及生理特性的影响. 作物杂志, 2011, ( 5):73-76
doi: 10.3969/j.issn.1001-7283.2011.05.017
Xuan W Y, Zhang T, Huang Y L, Feng D, Hu W D . Effects of paclobutrazol on development and physiological properties of sweet sorghum. Crops, 2011, ( 5):73-76 (in Chinese with English abstract)
doi: 10.3969/j.issn.1001-7283.2011.05.017
[17] 陆世渊 . 盐分胁迫下甜高粱对水杨酸调节的响应. 扬州大学硕士学位论文, 江苏扬州, 2015
Lu S Y . Responses of Sweet Sorghum to Exogenous Salicylic Acid under Salinity Stress Condition. MS Thesis of Yangzhou University, Yangzhou, Jiangsu, China, 2015 (in Chinese with English abstract)
[18] Ravikovitch R . Effects of brackish irrigation water and fertilizers on millet and corn. Exp Agric, 1973,9:181-188
doi: 10.1017/S0014479700005640
[19] Papadopoulos I, Rendig V V . Interactive effects of salinity and nitrogen on growth and yield of tomato plants. Plant & Soil, 1983,73(1):47-57
doi: 10.1007/BF02197756
[20] Awad A S, Edwards D G, Campbell L C . Phosphorus enhancement of salt tolerance of tomato. Crop Sci, 1990,30:123-128
doi: 10.2135/cropsci1990.0011183X003000010028x
[21] 李彦, 张英鹏, 孙明, 高弼模 . 盐分胁迫对植物的影响及植物耐盐机制研究进展. 中国农学通报, 2008,24(1):25-265
Li Y, Zhang Y P, Sun M, Gao B M . Research advance in the effects of salt stress on plant and the mechanism of plant resistance. Chin Agric Sci Bull, 2008,24(1):258-265 (in Chinese with English abstract)
[22] 乔旭, 黄爱军, 褚贵新 . 植物对盐分胁迫的响应及其耐盐机制研究进展. 新疆农业科学, 2011,48:2089-2094
Qiao X, Huang A J, Chu G X . Research progress in the effects of salt stress on plant and the mechanism of plant resistance. Xinjiang Agric Sci, 2011,48:2089-2094 (in Chinese with English abstract)
[23] Mohammad H I, Javad R, Yahya E, Mohammad P, Ahmad T . Effects of salinity stress on physiological performance of various wheat and barley cultivars. J Plant Nutr, 2014,37:520-531
doi: 10.1080/01904167.2013.867980
[24] 沙汉景, 胡文成, 贾琰, 王新鹏, 田雪飞, 于美芳, 赵宏伟 . 外源水杨酸、脯氨酸和γ-氨基丁酸对盐胁迫下水稻产量的影响. 作物学报, 2017,43:1677-1688
Sha H J, Hu W C, Jia Y, Wang X P, Tian X F, Yu M F, Zhao H W . Effect of exogenous salicylic acid, proline and γ-aminobutyric acid on yield of rice under salt stress. Acta Agron Sin, 2017,43:1677-1688 (in Chinese with English abstract)
[25] 周桂生, 安琳琳, 童晨, 刘贵娟, 夏玉荣, 陆建飞, 封超年 . 盐胁迫对甜高粱种子吸水和萌发的影响. 江苏农业科学, 2012,40(12):84-86
doi: 10.3969/j.issn.1002-1302.2012.12.028
Zhou G S, An L L, Tong C, Liu G J, Xia Y R, Lu J F, Feng C N . Effects of salt stress on water uptake and germination of sweet sorghum seeds. Jiangsu Agric Sci, 2012,40(12):84-86 (in Chinese with English abstract)
doi: 10.3969/j.issn.1002-1302.2012.12.028
[26] Papastylianou P, Bakogianni N N, Travlos I, Travlos I, Roussis I . Sensitivity of seed germination to salt stress in black cumin (Nigella sativa L.). Not Bot Hort Agrobot, 2018,46:202-205
[27] Nimir N E, Zhou G S, Guo W S, Ma B L, Lu S Y, Wang Y H . Effect of foliar application of GA3, kinetin, and salicylic acid on ions content, membrane permeability, and photosynthesis under salt stress of sweet sorghum [ Sorghum bicolor( L.) Moench]. Can J Plant Sci, 2017,97:525-535
[28] Sudhir P , Murthy S D S. Effects of salt stress on basic processes of photosynthesis. Photos ynthetica 2004,42:481-486
doi: 10.1007/S11099-005-0001-6
[29] Wang J Z . Changes in photosynthetic properties and antioxidative system of pear leaves to boron toxicity. Afr J Biotech, 2011,10:19693-19700
[30] 丛靖宇, 张烨, 杨冠宇, 田瑞华, 段开红, 王瑞刚 . 不同品种甜高粱幼苗的耐盐能力. 中国农学通报, 2010,26(19):128-135
Cong J Y, Zhang Y, Yang G Y, Tian R H, Duan K H, Wang R G . Salt-tolerance in different varieties of sweet sorghum seeding. Chin Agric Sci Bull, 2010,26(19):128-135 (in Chinese with English abstract)
[31] Gong J, Zhao A, Zhang L, Zhang X . A comparative study on anti-oxidative ability of several desert plants under drought stress. Acta Bot Boreali-Occident Sin, 2004,24:1570-1577
doi: 10.1088/1009-0630/6/5/011
[32] Cervilla L M, Blasco B, Ríos J J, Romero L, Ruiz J M . Oxidative stress and antioxidants in tomato (Solanum lycopersicum ) plants subjected to boron toxicity. Anal Bot, 2007,100:747-756
[33] Varier R A, Outchkourov N S, Graaf P D , Schaik F M A V, Ensing H J L, Wang F W, Higgins J M G, Kops J P L, Timmers H M. A phospho/methyl switch at histone H3 regulates TFIID association with mitotic chromosomes. EMBO J, 2010,29:3967-3978
doi: 10.1038/emboj.2010.261
[34] Bonilla I, El-Hamdaoui A, Bolańos L . Boron and calcium increase Pisum sativum seed germination and seedling development under salt stress. Plant Soil, 2004,267:97-107
[35] Qin J, Dong W Y, He K N, Yu Y, Tan G D, Han L, Dong M, Zhang Y Y, Zhang D, Li A Z, Wang Z L . NaCl salinity-induced changes in water status, ion contents and photosynthetic properties of Shepherdia argentea( Pursh) Nutt. seedlings. Plant Soil Environ, 2010,56:325-332
[36] Cha-Um S, Kirdmanee C . Effect of glycinebetaine on proline, water use, and photosynthetic efficiencies, and growth of rice seedlings under salt stress. Turk J Agric For, 2010,34:517-527
[37] Kaya C, Tuna A L, Okant A M . Effect of foliar applied kinetin and indole acetic acid on maize plants grown under saline conditions. Turk J Agric For, 2010,34:529-538
[1] YAN Jia-Qian, GU Yi-Biao, XUE Zhang-Yi, ZHOU Tian-Yang, GE Qian-Qian, ZHANG Hao, LIU Li-Jun, WANG Zhi-Qin, GU Jun-Fei, YANG Jian-Chang, ZHOU Zhen-Ling, XU Da-Yong. Different responses of rice cultivars to salt stress and the underlying mechanisms [J]. Acta Agronomica Sinica, 2022, 48(6): 1463-1475.
[2] LEI Xin-Hui, WAN Chen-Xi, TAO Jin-Cai, LENG Jia-Jun, WU Yi-Xin, WANG Jia-Le, WANG Peng-Ke, YANG Qing-Hua, FENG Bai-Li, GAO Jin-Feng. Effects of soaking seeds with MT and EBR on germination and seedling growth in buckwheat under salt stress [J]. Acta Agronomica Sinica, 2022, 48(5): 1210-1221.
[3] ZHANG Hai-Yan, XIE Bei-Tao, JIANG Chang-Song, FENG Xiang-Yang, ZHANG Qiao, DONG Shun-Xu, WANG Bao-Qing, ZHANG Li-Ming, QIN Zhen, DUAN Wen-Xue. Screening of leaf physiological characteristics and drought-tolerant indexes of sweetpotato cultivars with drought resistance [J]. Acta Agronomica Sinica, 2022, 48(2): 518-528.
[4] LI Zhen-Hua, WANG Xian-Ya, LIU Yi-Ling, ZHAO Jie-Hong. NtPHYB1 interacts with light and temperature signal to regulate seed germination in Nicotiana tabacum L. [J]. Acta Agronomica Sinica, 2022, 48(1): 99-107.
[5] DAI Liang-Xiang, XU Yang, ZHANG Guan-Chu, SHI Xiao-Long, QIN Fei-Fei, DING Hong, ZHANG Zhi-Meng. Response of rhizosphere bacterial community diversity to salt stress in peanut [J]. Acta Agronomica Sinica, 2021, 47(8): 1581-1592.
[6] LIU Ya-Wen, ZHANG Hong-Yan, CAO Dan, LI Lan-Zhi. Prediction of drought and salt stress-related genes in rice based on multi-platform gene expression data [J]. Acta Agronomica Sinica, 2021, 47(12): 2423-2439.
[7] WANG Shi-Ya, ZHENG Dian-Feng, FENG Nai-Jie, LIANG Xi-Long, XIANG Hong-Tao, FENG Sheng-Jie, JIN Dan, LIU Mei-Ling, MU Bao-Min. Effects of uniconazole on physiological characteristics and microstructure under waterlogging stress at seedling stage in soybean [J]. Acta Agronomica Sinica, 2021, 47(10): 1988-2000.
[8] Hui LI, De-Fang LI, Yong DENG, Gen PAN, An-Guo CHEN, Li-Ning ZHAO, Hui-Juan TANG. Cloning of the key enzyme gene HcTPPJ in trehalose biosynthesis of kenaf and its expression in response to abiotic stress in kenaf [J]. Acta Agronomica Sinica, 2020, 46(12): 1914-1922.
[9] LI Run-Zhi, JIN Qing, LI Zhao-Hu, WANG Ye, PENG Zhen, DUAN Liu-Sheng. Salicylic acid improved salinity tolerance of Glycyrrhiza uralensis Fisch during seed germination and seedling growth stages [J]. Acta Agronomica Sinica, 2020, 46(11): 1810-1816.
[10] ZHANG Shuang-Shuang,WANG Li-Wei,YAO Nan,GUO Guang-Yan,XIA Yu-Feng,BI Cai-Li. Expression of OsUBA and its function in promoting seed germination and flowering [J]. Acta Agronomica Sinica, 2019, 45(9): 1327-1337.
[11] CHEN Xiao-Jing,LIU Jing-Hui,YANG Yan-Ming,ZHAO Zhou,XU Zhong-Shan,HAI Xia,HAN Yu-Ting. Effects of salt stress on physiological indexes and differential proteomics of oat leaf [J]. Acta Agronomica Sinica, 2019, 45(9): 1431-1439.
[12] LI Xu-Kai,LI Ren-Jian,ZHANG Bao-Jun. Identification of rice stress-related gene co-expression modules by WGCNA [J]. Acta Agronomica Sinica, 2019, 45(9): 1349-1364.
[13] SONG Song-Quan,LIU Jun,XU Heng-Heng,ZHANG Qi,HUANG Hui,WU Xian-Jin. Biosynthesis and signaling of ethylene and their regulation on seed germination and dormancy [J]. Acta Agronomica Sinica, 2019, 45(7): 969-981.
[14] TIAN Wen-Gang,ZHU Xue-Feng,SONG Wen,CHENG Wen-Han,XUE Fei,ZHU Hua-Guo. Ectopic expression of S-adenosylmethionine decarboxylase (GhSAMDC1) in cotton enhances salt tolerance in Arabidopsis thaliana [J]. Acta Agronomica Sinica, 2019, 45(7): 1017-1028.
[15] Hai-Ming TANG,Xiao-Ping XIAO,Chao LI,Wen-Guang TANG,Li-Jun GUO,Ke WANG,Kai-Kai CHENG,Xiao-Chen PAN,Gen SUN. Effects of different soil tillage systems on physiological characteristics and yield of double-cropping rice [J]. Acta Agronomica Sinica, 2019, 45(5): 740-754.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!