Acta Agronomica Sinica ›› 2019, Vol. 45 ›› Issue (7): 969-981.doi: 10.3724/SP.J.1006.2019.84175
• REVIEW • Next Articles
SONG Song-Quan1,3,*(),LIU Jun2,XU Heng-Heng2,ZHANG Qi2,HUANG Hui3,WU Xian-Jin3
[1] | 徐恒恒, 黎妮, 刘树君, 王伟青, 王伟平, 张红, 程红焱, 宋松泉 . 种子萌发及其调控的研究进展. 作物学报, 2014,40:1141-1156. |
Xu H H, Li N, Liu S J, Wang W Q, Wang W P, Zhang H, Cheng H Y, Song S Q . Research progress in seed germination and its control. Acta Agric Sin, 2014,40:1141-1156 (in Chinese with English abstract). | |
[2] |
El-Maarouf-Bouteau H, Sajjad Y, Bazin J, Langlade N, Cristescu S M, Balzergue S, Baudouin E, Bailly C . Reactive oxygen species, abscisic acid and ethylene interact to regulate sunflower seed germination. Plant Cell Environ, 2015,38:364-374.
doi: 10.1111/pce.2015.38.issue-2 |
[3] | Bewley J D, Bradford K J, Hilhorst H W M, Nonogaki H . Physiology of Development, Germination and Dormancy, 3rd edn. New York: Springer, 2013. pp 247-297. |
[4] |
Finkelstein R, Reeves W, Ariizumi T, Sreber C . Molecular aspects of seed dormancy. Annu Rev Plant Biol, 2008,59:387-415.
doi: 10.1146/annurev.arplant.59.032607.092740 |
[5] | 宋松泉 . 种子休眠. 见: “10000个科学难题”农业科学编委会. 10000个科学难题 . 北京: 科学出版社, 2011. pp 31-35. |
Song S Q. Seed dormancy. In: The Editorial Board of Agricultural Science for 10000 Selected Problems in Sciences, eds. 10000 Selected Problems in Sciences. Beijing: Science Press, 2011. pp 31-35(in Chinese). | |
[6] |
Shu K, Liu X D, Xie Q, He Z H . Two faces of one seed: hormonal regulation of dormancy and germination. Mol Plant, 2016,9:34-45.
doi: 10.1016/j.molp.2015.08.010 |
[7] |
Lenser T, Theissen G . Molecular mechanisms involved in convergent crop domestication. Trends Plant Sci, 2013,18:704-714.
doi: 10.1016/j.tplants.2013.08.007 |
[8] | Meyer R S, Purugganan M D . Evolution of crop species: genetics of domestication and diversification. Nat Rev Genet, 2013,14:840-852. |
[9] |
Simsek S, Ohm J B, Lu H, Rugg M, Berzonsky W, Alamri M S, Mergoum M . Effect of pre-harvest sprouting on physicochemical changes of proteins in wheat. J Sci Food Agric, 2014,94:205-212.
doi: 10.1002/jsfa.2014.94.issue-2 |
[10] |
Graeber K, Nakabayashi K, Miatton E, Leubner-Metzger G, Soppe W J J . Molecular mechanisms of seed dormancy. Plant Cell Environ, 2012,35:1769-1786.
doi: 10.1111/pce.2012.35.issue-10 |
[11] | Hoang H H, Sechet J, Bailly C, Leymarie J, Corbineau F . Inhibition of germination of dormant barley (Hordeum vulgare L.) grains by blue light as related to oxygen and hormonal regulation. Plant Cell Environ, 2014,37:1393-1403. |
[12] |
Lee H G, Lee K, Seo P J . The Arabidopsis MYB96 transcription factors play a role in seed dormancy. Plant Mol Biol, 2015,87:371-381.
doi: 10.1007/s11103-015-0283-4 |
[13] | Arc E, Sechet J, Corbineau F, Rajjou L, Marion-Poll A . ABA crosstalk with ethylene and nitric oxide in seed dormancy and germination. Front Plant Sci, 2013,4:63. doi: 10.3389/fpls.2013.00063. |
[14] |
Linkies A, Leubner-Metzger G . Beyond gibberellins and abscisic acid: how ethylene and jasmonates control seed germination. Plant Cell Rep, 2012,31:253-270.
doi: 10.1007/s00299-011-1180-1 |
[15] |
Miransari M, Smith D L . Plant hormones and seed germination. Environ Exp Bot, 2014,99:110-121.
doi: 10.1016/j.envexpbot.2013.11.005 |
[16] | Corbineau F, Xia Q, Bailly C, EI-Maarouf-Bouteau H . Ethylene, a key factor in the regulation of seed dormancy. Front Plant Sci, 2014,5:539. doi: 10.3389/fpls.2014.00539. |
[17] |
Khan N A, Khan M I R, Ferrante A, Poor P . Editorial: Ethylene: a key regulatory molecule in plants. Front Plant Sci, 2017,8:1782. doi: 10.3389/fpls.2017.01782.
doi: 10.3389/fpls.2017.01782 |
[18] | Khan N A, Khan M I R . The Ethylene: from senescence hormone to key player in plant metabolism. J Plant Biochem Physiol, 2014,2:e124. doi: 10.4172/2329-9029.1000e124. |
[19] |
Lin Z, Zhong S, Grierson D . Recent advances in ethylene research. J Exp Bot, 2009,60:3311-3336.
doi: 10.1093/jxb/erp204 |
[20] |
Schaller G E . Ethylene and the regulation of plant development. BMC Biol, 2012,10:9. doi: 10.1186/1741-7007-10-9.
doi: 10.1186/1741-7007-10-9 |
[21] |
Müller M, Munné-Bosch S . Ethylene response factors: a key regulatory hub in hormone and stress signaling. Plant Physiol, 2015,169:32-41.
doi: 10.1104/pp.15.00677 |
[22] |
Thao N P, Khan M I R, Thu N B A, Hoang X L T, Asgher M, Khan N A, Tran L S P . Role of ethylene and its cross talk with other signaling molecules in plant responses to heavy metal stress. Plant Physiol, 2015,169:73-84.
doi: 10.1104/pp.15.00663 |
[23] |
Arraes F B M, Beneventi M A, de Sa M E L, Paixao J F R, Albuquerque E V S, Marin S R R, Purgatto E, Nepomuceno A L, Grossi-de-Sa M F . Implications of ethylene biosynthesis and signaling in soybean drought stress tolerance. BMC Plant Biol, 2015,15:213. doi: 10.1186/s12870-015-0597-z.
doi: 10.1186/s12870-015-0597-z |
[24] |
Habben J E, Bao X, Bate N J, DeBruin J L, Dolan D, Hasegawa D, Helentjaris T G, Lafitte R H, Lovan N, Mo H, Reimann K, Schussler J R . Transgenic alteration of ethylene biosynthesis increases grain yield in maize under field drought-stress conditions. Plant Biotechnol J, 2014,12:685-693.
doi: 10.1111/pbi.2014.12.issue-6 |
[25] |
Lieberman M, Mapson L W . Genesis and biogenesis of ethylene. Nature, 1964,204:343-345.
doi: 10.1038/204343a0 |
[26] | Lieberman M, Kunishi A, Mapson L W, Wardale D A . Stimulation of ethylene production in apple tissue slices by methionine. Plant Physiol, 1966,41:76-82. |
[27] |
Yang S F, Hoffman N E . Ethylene biosynthesis and its regulation in higher plants. Annu Rev Plant Physiol, 1984,35:155-189.
doi: 10.1146/annurev.pp.35.060184.001103 |
[28] | Iglesias-Fernandez R, Matilla A . Genes involved in ethylene and gibberellins metabolism are required for endosperm-limited germination of Sisymbrium officinale L. seeds. Planta, 2010,231:653-664. |
[29] |
Yamagami T, Tsuchisaka A, Yamada K, Haddon W F, Harden L A, Theologis A . Biochemical diversity among the 1-aminocyclopropane-1-carboxylate synthase isozymes encoded by the Arabidopsis gene family. J Biol Chem, 2003,278:49102-49112.
doi: 10.1074/jbc.M308297200 |
[30] | Tsuchisaka A, Yu G, Jin H, Alonso J M, Ecker J R, Zhang X, Gao S, Theologis A . A combinatorial interplay among the 1-aminocyclopropane-1-carboxylate isoforms regulates ethylene biosynthesis in Arabidopsis thaliana. Genetics, 2009,183:979-1003. |
[31] | Van de Poel B, Van Der Straeten D . 1-aminocyclopropane-1- carboxylic acid (ACC) in plants: more than just the precursor of ethylene! Front Plant Sci, 2014,5:640. doi: 10.3389/fpls.2014. 00640. |
[32] | Yoon G M, Kieber J J . 1-Aminocyclopropane-1-carboxylic acid as a signalling molecule in plants. AOB Plants, 2013, 5: plt017. doi: 10.1093/aobpla/plt017. |
[33] |
Christians M J, Gingerich D J, Hansen M, Binder B M, Kieber J J, Vierstra R D . The BTB ubiquitin ligases ETO1, EOL1, and EOL2 act collectively to regulate ethylene biosynthesis in Arabidopsis by controlling type-2 ACC synthase levels. Plant J, 2009,57:332-345.
doi: 10.1111/tpj.2009.57.issue-2 |
[34] |
Lyzenga W J, Booth J K, Stone S L . The Arabidopsis RING- type E3 ligase XBAT32 mediates the proteasomal degradation of the ethylene biosynthetic enzyme, 1-aminocyclopropane- 1-carboxylate synthase 7. Plant J, 2012,71:23-34.
doi: 10.1111/tpj.2012.71.issue-1 |
[35] | Kamiyoshihara Y, Iwata M, Fukaya T, Tatsuki M, Mori H . Turnover of LeACS2, a wound-inducible 1-aminocyclopropane- 1-carboxylic acid synthase in tomato, is regulated by phosphorylation/dephosphorylation. Plant J, 2010,64:140-150. |
[36] |
Ludwikow A, Ciesla A, Kasprowicz-Maluski A, Mitula F, Tajdel M, Galganski L, Ziolkowski P A, Kubiak P, Maleck A, Piechalak A, Szabat M, Gorska A, Dabrowski M, Ibragimow I, Sadoqski J . Arabidopsis protein phosphatase 2C ABI1 interacts with type I ACC synthases and is involved in the regulation of ozone-induced ethylene biosynthesis. Mol Plant, 2014,7:960-967.
doi: 10.1093/mp/ssu025 |
[37] |
Skottke K R, Yoon G M, Kieber J J, DeLong A . Protein phosphatase 2A controls ethylene biosynthesis by differentially regulating the turnover of ACC synthase isoforms. PLoS Genet, 2011,7:e1001370. doi: 10.1371/journal.pgen.10 01370.
doi: 10.1371/journal.pgen.1001370 |
[38] |
Van de Poel B, Bulens I, Markoula A, Hertog M L A T M, Dreesen R, Wirtz M, Vandoninck S, Oppermann Y, Keulemans J, Hell R, Waelkens E, De Proft M P, Sauter M, Nicolai B M, Geeraerd A H . Targeted systems biology profiling of tomato fruit reveals coordination of the Yang cycle and a distinct regulation of ethylene biosynthesis during postclimacteric ripening. Plant Physiol, 2012,160:1498-1514.
doi: 10.1104/pp.112.206086 |
[39] |
Matilla A J, Matilla-Vazquez M A . Involvement of ethylene in seed physiology. Plant Sci, 2008,175:87-97.
doi: 10.1016/j.plantsci.2008.01.014 |
[40] |
Ververidis P, John P . Complete recovery in vitro of ethylene- forming enzyme-activity. Phytochemistry, 1991,30:725-727.
doi: 10.1016/0031-9422(91)85241-Q |
[41] |
Murphy L J, Robertson K N, Harroun S G, Brosseau C L, Werner-Zwanziger U, Moilanen J, Tuononen H M, Clyburne J A C . A simple complex on the verge of breakdown: isolation of the elusive cyanoformate ion. Science, 2014,344:75-78.
doi: 10.1126/science.1250808 |
[42] | 叶永健, 宋松泉 . Fe 2+和CO2对番木瓜ACC氧化酶活性的影响 . 中山大学学报, 1997,36(2):18-21. |
Ye Y J, Song S Q . Effect of Fe 2+ and CO2 on 1-aminocyclopropane-1-carboxylate oxidase from papaya (Carica papaya L.) fruit. Acta Sci Nat Univ Sunyatseni, 1997,36(2):18-21. | |
[43] |
Dong J G, Fernandezmaculet J C, Yang S F . Purification and characterization of 1-aminocyclopropane-1-carboxylate oxidase from apple fruit. Proc Natl Acad Sci USA, 1992,89:9789-9793.
doi: 10.1073/pnas.89.20.9789 |
[44] | Song S Q, Ye Y J . Effect of O2, ACC and CO2 concentration on the activity of partially purified ACC oxidase from papaya. Acta Phytophysiol Sin, 2001,27:387-392. |
[45] |
Hudgins J W, Ralph S G, Franceschi V R, Bohlmann J . Ethylene in induced conifer defense: cDNA cloning, protein expression, and cellular and subcellular localization of 1-aminocyclopropane- 1-carboxylate oxidase in resin duct and phenolic parenchyma cells. Planta, 2006,224:865-877.
doi: 10.1007/s00425-006-0274-4 |
[46] | Ramassamy S, Olmos E, Bouzayen M, Pech J C, Latche A . 1-aminocyclopropane-1-carboxylate oxidase of apple fruitis periplasmic. J Exp Bot, 1998,49:1909-1915. |
[47] |
De Paepe A, Vuylsteke M, van Hummelen P, Zabeau M, van Der Staeten D . Transcriptional profiling by cDNA-AFLP and microarray analysis reveals novel insights into the early response to ethylene in Arabidopsis. Plant J, 2004,39:537-559.
doi: 10.1111/tpj.2004.39.issue-4 |
[48] | Van de Poel B, Bulens I, Hertog M L A T M, Nicolai B, Geeraerd A . A transcriptomics-based kinetic model for ethylene biosynthesis in tomato (Solanum lycopersicum) fruit: development, validation and exploration of novel regulatory mechanisms. New Phytol, 2014,202:952-963. |
[49] | Binder B M, Chang C, Schaller G E . Perception of ethylene by plants-ethylene receptors. Annu Plant Rev, 2012,44:117-145. |
[50] |
Stepanova A N, Alonso J M . Ethylene signaling and response: where different regulatory modules meet. Curr Opin Plant Biol, 2009,12:548-555.
doi: 10.1016/j.pbi.2009.07.009 |
[51] | Merchante C, Alonso J, Stepanova A N . Ethylene signaling: simple ligand, complex regulation. Curr Opin Plant Biol, 2013, 16: 554‒560. |
[52] |
Bakshi A, Piya S, Fernandez J C, Chervin C, Hewezi T, Bindera B M . Ethylene receptors signal via a noncanonical pathway to regulate abscisic acid responses. Plant Physiol, 2018,176:910-929.
doi: 10.1104/pp.17.01321 |
[53] | Ju C, Chang C . Advances in ethylene signalling: protein complexes at the endoplasmic reticulum membrane. AOB Plants, 2012, 2012: pls031. doi: 10.1093/aobpla/pls031. |
[54] | Shakeel S N, Wang X, Binder B M, Schaller G E . Mechanisms of signal transduction by ethylene: overlapping and non-overlapping signalling roles in a receptor family. AOB Plants, 2013, 5: plt010. doi: 10.1093/aobpla/plt010. |
[55] |
Chen Y F, Gao Z, Kerris R J, Wang W, Binder B M, Schaller G E . Ethylene receptors function as components of high-molecular- mass protein complexes in Arabidopsis. PLoS One, 2010,5:e8640. doi: 10.1371/journal.pone.0008640.
doi: 10.1371/journal.pone.0008640 |
[56] |
Gao Z, Wen C K, Binder B M, Chen Y F, Chang J, Chiang Y H, Kerris R J, Chang C, Schaller G E . Heteromeric interactions among ethylene receptors mediate signaling in Arabidopsis. J Biol Chem, 2008,283:23801-23810.
doi: 10.1074/jbc.M800641200 |
[57] |
Hirayama T, Kieber J J, Hirayama N, Kogan M, Guzman P, Nourizadeh S, Alonso J M, Dailey W P, Dancis A, Ecker J R . RESPONSIVE-TO-ANTAGONIST1, a Menkes/Wilson disease related copper transporter, is required for ethylene signaling in Arabidopsis. Cell, 1999,97:383-393.
doi: 10.1016/S0092-8674(00)80747-3 |
[58] |
Binder B M, Rodriguez F I, Bleecker A B . The copper transporter RAN1 is essential for biogenesis of ethylene receptors in Arabidopsis. J Biol Chem, 2010,285:37263-37270.
doi: 10.1074/jbc.M110.170027 |
[59] |
Resnick J S, Wen C K, Shockey J A, Chang C . REVERSION-TO ETHYLENE SENSITIVITY 1, a conserved gene that regulates ethylene receptor function in Arabidopsis. Proc Natl Acad Sci USA, 2006,103:7917-7922.
doi: 10.1073/pnas.0602239103 |
[60] | Dong C H, Rivarola M, Resnick J S, Maggin B D, Chang C . Subcellular colocalization of Arabidopsis RTE1 and ETR1 supports a regulatory role for RTE1 in ETR1 ethylene signaling. Plant J, 2008,53:275-286. |
[61] |
Resnick J S, Rivarola M, Chang C . Involvement of RTE1 in conformational changes promoting ETR1 ethylene receptor signaling in Arabidopsis. Plant J, 2008,56:423-431.
doi: 10.1111/tpj.2008.56.issue-3 |
[62] | Mayerhofer H, Panneerselvam S, Mueller-Dieckmann J . Protein kinase domain of CTR1 from Arabidopsis thaliana promotes ethylene receptor cross talk. J Mol Biol, 2012,415:768-779. |
[63] |
Alonso J M, Hirayama T, Roman G, Nourizadeh S, Ecker J R . EIN2, a bifunctional transducer of ethylene and stress responses in Arabidopsis. Science, 1999,284:2148-2152.
doi: 10.1126/science.284.5423.2148 |
[64] |
Wen X, Zhang C, Ji Y, Zhao Q, He W, An F, Jiang L, Guo H . Activation of ethylene signaling is mediated by nuclear translocation of the cleaved EIN2 carboxyl terminus. Cell Res, 2012,22:1613-1616.
doi: 10.1038/cr.2012.145 |
[65] | Cho Y H, Lee S, Yoo S D . EIN2 and EIN3 in ethylene signaling. Annu Plant Rev, 2012,44:169-187. |
[66] |
Bisson M M A, Groth G . New insight in ethylene signaling: autokinase activity of ETR1 modulates the interaction of receptors and EIN2. Mol Plant, 2010,3:882-889.
doi: 10.1093/mp/ssq036 |
[67] |
An F, Zhao Q, Ji Y, Li W, Jiang Z, Yu X, Zhang C, Han Y, He W, Liu Y, Zhang S, Ecker J R, Guo H . Ethylene-induced stabilization of ETHYLENE INSENSITIVE 3 and EIN3-LIKE1 is mediated by proteasomal degradation of EIN3 binding F-box 1 and 2 that requires EIN2 in Arabidopsis. Plant Cell, 2010,22:2384-2401.
doi: 10.1105/tpc.110.076588 |
[68] |
Ju C, Yoon G M, Shemansky J M, Lin D Y, Ying Z I, Chang J, Garrett W M, Kessenbrock M, Groth G, Tucker M L, Cooper B, Kieber J J, Chang C . CTR1 phosphorylates the central regulator EIN2 to control ethylene hormone signaling from the ER membrane to the nucleus in Arabidopsis. Proc Natl Acad Sci USA, 2012,109:19486-19491.
doi: 10.1073/pnas.1214848109 |
[69] |
Qiao H, Shen Z, Huang S C, Schmitz R J, Urich M A, Briggs S P, Ecker J R . Processing and subcellular trafficking of ER-tethered EIN2 control response to ethylene gas. Science, 2012,338:390-393.
doi: 10.1126/science.1225974 |
[70] | Chen R, Binder B M, Garrett W M, Tucker M L, Chang C, Cooper B . Proteomic responses in Arabidopsis thaliana seedlings treated with ethylene. Mol Biosyst, 2011,7:2637-2650. |
[71] |
Ji Y, Guo H . From endoplasmic reticulum (ER) to nucleus: EIN2 bridges the gap in ethylene signaling. Mol Plant, 2013,6:11-14.
doi: 10.1093/mp/sss150 |
[72] |
Li J, Li Z, Tang L, Yang Y, Zouine M, Bouzayen M . A conserved phosphorylation site regulates the transcriptional function of ETHYLENE-INSENSITIVE3-like1 in tomato. J Exp Bot, 2012,63:427-439.
doi: 10.1093/jxb/err289 |
[73] |
Chang K N, Zhong S, Weirauch M T, Hon G, Pelizzola M, Li H, Huang S S C, Schmitz R J, Urich M A, Kuo D, Nery J R, Qiao H, Yang A, Jamali A, Chen H, Ideker T, Ren B, Bar-Joseph Z, Hughes T R, Ecker J R . Temporal transcriptional response to ethylene gas drives growth hormone cross-regulation in Arabidopsis. eLife, 2013,2:e00675. doi: 10.7554/eLife.00675.
doi: 10.7554/eLife.00675 |
[74] |
Chen Y F, Shakeel S N, Bowers J, Zhao X C, Etheridge N, Schaller G E . Ligand-induced degradation of the ethylene receptor ETR2 through a proteasome-dependent pathway in Arabidopsis. J Biol Chem, 2007,282:24752-24758.
doi: 10.1074/jbc.M704419200 |
[75] |
Gagne J M, Smalle J, Gingerich D J, Walker J M, Yoo S D, Yanagisawa S, Vierstra R D . Arabidopsis EIN3-binding F-box 1 and 2 form ubiquitin-protein ligases that repress ethylene action and promote growth by directing EIN3 degradation. Proc Natl Acad Sci USA, 2004,101:6803-6808.
doi: 10.1073/pnas.0401698101 |
[76] |
Qiao H, Chang K N, Yazaki J, Ecker J R . Interplay between ethylene, ETP1/ETP2 F-box proteins, and degradation of EIN2 triggers ethylene responses in Arabidopsis. Genes Dev, 2009,23:512-521.
doi: 10.1101/gad.1765709 |
[77] |
Potuschak T, Lechner E, Parmentier Y, Yanagisawa S, Grava S, Koncz C, Genschik P . EIN3-dependent regulation of plant ethylene hormone signaling by two Arabidopsis F box proteins: EBF1 and EBF2. Cell, 2003,115:679-689.
doi: 10.1016/S0092-8674(03)00968-1 |
[78] |
Konishi M, Yanagisawa S . Ethylene signaling in Arabidopsis involves feedback regulation via the elaborate control of EBF2 expression by EIN3. Plant J, 2008,55:821-831.
doi: 10.1111/tpj.2008.55.issue-5 |
[79] |
Kevany B M, Tieman D M, Taylor M G, Cin V D, Klee H J . Ethylene receptor degradation controls the timing of ripening in tomato fruit. Plant J, 2007,51:458-467.
doi: 10.1111/j.1365-313X.2007.03170.x |
[80] |
Fu J R, Yang S F . Release of heat pretreatment-induced dormancy in lettuce seeds by ethylene or cytokinin in relation to the production of ethylene and the synthesis of 1-aminocyclopropane-1- carboxylic acid during germination. J Plant Growth Regul, 1983,2:185-192.
doi: 10.1007/BF02042247 |
[81] |
Siriwitayawan G, Geneve R L, Downie A B . Seed germination of ethylene perception mutants of tomato and Arabidopsis. Seed Sci Res, 2003,13:303-314.
doi: 10.1079/SSR2003147 |
[82] | Kępczyński J, Sznigir P . Participation of GA3, ethylene, NO and HCN in germination of Amaranthus retroflexus L. seeds with various dormancy levels. Acta Physiol Plant, 2014,36:1463-1472. |
[83] |
Van de Poel, Smet D, Van Der Straeten D . Ethylene and hormonal cross talk in vegetative growth and development. Plant Physiol, 2015,169:61-72.
doi: 10.1104/pp.15.00724 |
[84] | Wood L A, Kester S T, Geneve R L . The physiological basis for ethylene-induced dormancy release in three Echinacea species with special reference to the influence of the integumentary tapetum. Sci Hortic, 2013: 156:63-72. |
[85] |
Lin Y, Yang L, Paul M, Zu Y, Tang Z . Ethylene promotes germination of Arabidopsis seed under salinity by decreasing reactive oxygen species: evidence for the involvement of nitric oxide simulated by sodium niroprusside. Plant Physiol Biochem, 2013,73:211-218.
doi: 10.1016/j.plaphy.2013.10.003 |
[86] | Silva P O, Medina E F, Barros R S, Ribeiro D M . Germination of salt-stressed seeds as related to ethylene biosynthesis ability in three Stylosanthes species. J Plant Physiol, 2014,171:14-22. |
[87] |
Sinska I . Interaction of ethephon with cytokinin and gibberellin during the removal of apple seed dormancy and germination of embryos. Plant Sci, 1989,64:39-44.
doi: 10.1016/0168-9452(89)90149-0 |
[88] | Corbineau F, Côme D. Germination of sunflower seeds as related to ethylene synthesis and sensitivity: an overview. In: Vendrell M, Klee H, Pech J C, Romojaro F, eds. Biology and Biotechnology of the Plant Hormone Ethylene III. Amsterdam: IOS Press, 2003. pp 216-221. |
[89] | Ribeiro D M, Barros R S . Sensitivity to ethylene as a major component in the germination of seeds of Stylosanthes humilis. Seed Sci Res, 2006,16:37-45. |
[90] |
Gniazdowska A, Krasuska U, Bogatek R . Dormancy removal in apple embryos by nitric oxide or cyanide involves modifications in ethylene biosynthetic pathway. Planta, 2010,232:1397-1407.
doi: 10.1007/s00425-010-1262-2 |
[91] |
Argyris J, Dahal P, Hayashi E, Still D W, Bradford K J . Genetic variation for lettuce seed thermoinhibition is associated with temperature-sensitive expression of abscisic acid, gibberellin, and ethylene biosynthesis, metabolism, and response genes. Plant Physiol, 2008,148:926-947.
doi: 10.1104/pp.108.125807 |
[92] | Hermann K, Meinhard J, Dobrev P, Linkies A, Pesek B, Hess B, Macháčková I M, Fischer U, Leubner-Metzger G . 1-Amynocyclopropane-1-carboxylic acid and abscisic acid during the germination of sugar beet (Beta vulgaris L.): a comparative study of fruits and seeds. J Exp Bot, 2007,58:3047-3060. |
[93] | Krasuska U, Ciacka K, Debska K, Bogatek R, Gniazdowska A . Dormancy alleviation by NO or HCN leading to decline of protein carbonylation levels in apple (Malus domestica Borkh.) embryos. J Plant Physiol, 2014,171:1132-1141. |
[94] |
Oracz K, El-Maarouf-Bouteau H, Bogatek R, Corbineau F, Bailly C . Release of sunflower seed dormancy by cyanide: cross-talk with ethylene signaling pathway. J Exp Bot, 2008,59:2241-2251.
doi: 10.1093/jxb/ern089 |
[95] | Chiwocha S D S, Cutler A J, Abrams S R, Ambrose S J, Yang J, Kermode A R . The ert1-2 mutation in Arabidopsis thaliana affects the abscisic acid, auxin, cytokinin and gibberellin metabolic pathways during main tenance of seed dormancy, moist-chilling and germination. Plant J, 2005,42:35-48. |
[96] |
Subbiah V, Reddy K J . Interactions between ethylene, abscisisc acid and cytokinin during germination and seedling establishment in Arabidopsis. J Biosci, 2010,35:451-458.
doi: 10.1007/s12038-010-0050-2 |
[97] |
Wang Y, Liu C, Li K, Sun F, Hu H, Li X, Zhao Y, Han C, Zhang W, Duan Y, Liu M, Li X . Arabidopsis EIN2 modulates stress response through abscisic acid response pathway. Plant Mol Biol, 2007,64:633-644.
doi: 10.1007/s11103-007-9182-7 |
[98] | Jimenez J A, Rodriguez D, Calvo A P, Mortensen L C, Nicolas G, Nicolas C . Expression of a transcription factor (FsERF1) involved in ethylene signaling during the breaking of dormancy in Fagus sylvatica seeds. Physiol Plant, 2005,125:373-380. |
[99] |
Pirrello J, Jaimes-Miranda F, Sanchez-Ballesta M T, Tournier B, Khalil-Ahmad Q, Regad F, Latché A, Pech J C, Bouzayen M . Sl-ERF2, a tomato ethylene response factor involved in ethylene response and seed germination. Plant Cell Physiol, 2006,47:1195-1205.
doi: 10.1093/pcp/pcj084 |
[100] |
Cadman C S C, Toorop P E, Hilhorst H W M, Finch-Savage W E . Gene expression profiles of Arabidopsis Cvi seeds during dormancy cycling indicate a common underlying dormancy control mechanism. Plant J, 2006,46:805-822.
doi: 10.1111/tpj.2006.46.issue-5 |
[101] | Linkies A, Müller K, Morris K, Turečková V, Wenk M, Cadman C S C, Corbineau F, Strnad M, Lynn J R, Finch-Savage W E, Leubner-Metzger G . Ethylene interacts with abscisic acid to regulate endosperm rupture during germination: a comparative approach using Lepidium sativum and Arabidopsis thaliana. Plant Cell, 2009,21:3803-3822. |
[102] | Nonogaki H . Seed dormancy and germination-emerging mechanism and new hypotheses. Front Plant Sci, 2014,e5:233. doi: 10.3389/fpls.2014.00233. |
[103] |
Liu X, Hou X L . Antagonistic regulation of ABA and GA in metabolism and signaling pathways. Front Plant Sci, 2018,9:251. doi: 10.3389/fpls.2018.00251.
doi: 10.3389/fpls.2018.00251 |
[104] |
Dong T T, Tong J H, Xiao L T, Cheng H Y, Song S Q . Nitrate, abscisic acid and gibberellin interactions on the thermoinhibition of lettuce seed germination. Plant Growth Regul, 2012,66:191-202.
doi: 10.1007/s10725-011-9643-5 |
[105] | Dong Z, Yu Y, Li S, Wang J, Tang S, Huang R . Abscisic acid antagonizes ethylene production through the ABI4-mediated transcriptional repression of ACS4 and ACS8 in Arabidopsis. Mol Plant, 2016,9:126-135. |
[106] |
Penfield S, Li Y, Gilday A D, Graham S, Graham I A . Arabidopsis ABA INSENSITIVE 4 regulates lipid mobilization in the embryo and reveals repression of seed germination by the endosperm. Plant Cell, 2006,18:1887-1899.
doi: 10.1105/tpc.106.041277 |
[107] |
Cheng W H, Chiang M H, Hwang S G, Lin P C . Antagonism between abscisic acid and ethylene in Arabidopsis acts inparallel with the reciprocal regulation of their metabolism and signaling pathways. Plant Mol Biol, 2009,71:61-80.
doi: 10.1007/s11103-009-9509-7 |
[108] |
Kucera B, Cohn M A, Leubner-Metzger G . Plant hormone interactions during seed dormancy release and germination. Seed Sci Res, 2005,15:281-307.
doi: 10.1079/SSR2005218 |
[109] |
Beaudoin N, Serizet C, Gosti F, Giraudat J . Interactions between abscisic acid and ethylene signaling cascades. Plant Cell, 2000,12:1103-1115.
doi: 10.1105/tpc.12.7.1103 |
[110] | Alonso-Ramirez A, Rodriguez D, Reyes D, Jimenez J A, Nicolas G, Nicolas C . Functional analysis in Arabidopsis of FsPTP1, a tyrosine phosphatase from beechnuts, reveals its role as a negative regulator of ABA signaling and seed dormancy and suggests its involvement in ethylene signaling modulation. Planta, 2011,234:589-597. |
[111] | Calvo A P, Nicolas C, Lorenzo O, Nicolas G, Rodriguez D . Evidence for positive regulation by gibberellins and ethylene of ACC oxidase expression and activity during transition from dormancy to germination in Fagus sylvatica L. seeds. J Plant Growth Regul, 2004,23:44-53. |
[112] |
Ogawa M, Hanada A, Yamauchi Y, Kuwahara A, Kamiya Y, Yamaguchi S . Gibberellin biosynthesis and response during Arabidopsis seed germination. Plant Cell, 2003,15:1591-1604.
doi: 10.1105/tpc.011650 |
[113] | Calvo A P, Nicolas C, Nicolas G, Rodriguez D . Evidence of a crosstalk regulation of a GA 20-oxidase (FsGA20ox1) by gibberellins and ethylene during the breaking of dormancy in Fagus sylvatica seeds. Physiol Plant, 2004,120:623-630. |
[114] | Lorenzo O, Rodriguez D, Nicolas C, Nicolas G. Characterization and expression of two protein kinase and an EIN3-like genes, which are regulated by ABA and GA3 in dormant Fagus sylvatica seeds. In: Black M, Bradford K J, Vazquez-Ramos J, eds. Seed Biology: Advances and Applications. Wallingford: CAB International, 2000. pp 329-340. |
[115] |
Davière J M, Achard P . Gibberellin signaling in plants. Development, 2013,140:1147-1151.
doi: 10.1242/dev.087650 |
[116] |
Dill A, Thomas S G, Steber C M, Sun T P . The Arabidopsis F-box protein SLEEPY1 targets gibberellin signaling repressors for gibberellin-induced degradation. Plant Cell, 2004,16:1392-1405.
doi: 10.1105/tpc.020958 |
[117] |
Achard P, Baghour M, Chapple A, Hedden P, Van Der Straeten D, Genschik P, Moritz T, Harberd N P . The plant stress hormone ethylene controls floral transition via DELLA-dependent regulation of floral meristem-identity genes. Proc Natl Acad Sci USA, 2007,104:6484-6489.
doi: 10.1073/pnas.0610717104 |
[118] |
Piskurewicz U, Jikumaru Y, Kinoshita N, Nambara E, Kamiya Y, Lopez-Molina L . The gibberellic acid signaling repressor RGL2 inhibits Arabidopsis seed germination by stimulating abscisic acid synthesis and ABI5 activity. Plant Cell, 2008,20:2729-2745.
doi: 10.1105/tpc.108.061515 |
[119] |
Schwechheimer C . Understanding gibberellic acid signaling: are we there yet? Curr Opin Plant Biol, 2008,11:9-15.
doi: 10.1016/j.pbi.2007.10.011 |
[120] | Zhang J, Yu J, Wen C-K . An alternate route of ethylene receptor signaling. Front Plant Sci, 2014,5:648. doi: 10.3389/fpls.2014.00648. |
[121] |
Nambara E, Okamoto M, Tatematsu K, Yano R, Seo M, Kamiya Y . Abscisic acid and the control of seed dormancy and germination. Seed Sci Res, 2010,20:55-67.
doi: 10.1017/S0960258510000012 |
[122] |
Liu S J, Song S H, Wang W Q, Song S Q . De novo assembly and characterization of germinating lettuce seed transcriptome using Illumina paired-end sequencing. Plant Physiol Biochem, 2015,96:154-162.
doi: 10.1016/j.plaphy.2015.07.020 |
[123] | Wang W Q, Song B Y, Deng Z J, Wang Y, Liu S J, Møller I M, Song S Q . Proteomic analysis of Lactuca sativa seed germination and thermoinhibition by sampling of individual seeds at germination and removal of storage proteins by PEG fractionation. Plant Physiol, 2015,167:1332-1350. |
[124] |
Xu H H, Liu S J, Song S H, Wang W Q, Møller I M, Song S Q . Proteome changes associated with dormancy release of Dongxiang wild rice seeds. J Plant Physiol, 2016,206:68-86.
doi: 10.1016/j.jplph.2016.08.016 |
[1] | YANG De-Wei, WANG Xun, ZHENG Xing-Xing, XIANG Xin-Quan, CUI Hai-Tao, LI Sheng-Ping, TANG Ding-Zhong. Functional studies of rice blast resistance related gene OsSAMS1 [J]. Acta Agronomica Sinica, 2022, 48(5): 1119-1128. |
[2] | ZHOU Hui-Wen, QIU Li-Hang, HUANG Xing, LI Qiang, CHEN Rong-Fa, FAN Ye-Geng, LUO Han-Min, YAN Hai-Feng, WENG Meng-Ling, ZHOU Zhong-Feng, WU Jian-Ming. Cloning and functional analysis of ScGA20ox1 gibberellin oxidase gene in sugarcane [J]. Acta Agronomica Sinica, 2022, 48(4): 1017-1026. |
[3] | LIU Lei, ZHAN Wei-Min, DING Wu-Si, LIU Tong, CUI Lian-Hua, JIANG Liang-Liang, ZHANG Yan-Pei, YANG Jian-Ping. Genetic analysis and molecular characterization of dwarf mutant gad39 in maize [J]. Acta Agronomica Sinica, 2022, 48(4): 886-895. |
[4] | Bo-Wen CHANG,Peng ZHONG,Jie LIU,Zhong-Hua TANG,Ya-Bing GAO,Hong-Jiu YU,Wei GUO. Effect of low-temperature stress and gibberellin on seed germination and seedling physiological responses in peanut [J]. Acta Agronomica Sinica, 2019, 45(1): 118-130. |
[5] | XU Xue-Zhong,WANG Ting,WAN Wang,LI Si-Hui,ZHU Guo-Hui*. ABA Biosynthesis Gene OsNCED3 Confers Drought Stress Tolerance in Rice [J]. Acta Agron Sin, 2018, 44(01): 24-31. |
[6] | YU Jian,LIU Chang-Ying,ZHAO Ai-Chun,WANG Chuan-Hong,CAI Yu-Xiang,YU Mao-De*. Functional Analysis of 1-Aminocyclopropane-1-carboxylate Oxidase Gene’s Promoter in Mulberry [J]. Acta Agron Sin, 2017, 43(06): 839-848. |
[7] | LI Shuai,ZHAO Qiu-Ling,PENG Yang,XU Yi,LI Jia-Na,NI Yu*. Effects of SA, MeJA, and ACC on Leaf Cuticular Wax Constituents, Structure and Permeability in Brassica napus [J]. Acta Agron Sin, 2016, 42(12): 1827-1833. |
[8] | LU Lin,DONG Zhi-Qiang*,DONG Xue-Rui,LI Guang-Yan. Effects of Ethylene-Chlormequat-Potassium on Characteristics of Leaf Senescence at Different Plant Positionsafter Anthesis under Different Planting Densities [J]. Acta Agron Sin, 2016, 42(04): 561-573. |
[9] | LU Lin,DONG Zhi-Qiang,DONG Xue-Rui,JIAO Liu,LI Guang-Yan,GAO Jiao. Effects of Ethylene-Chlormequat-Potassium on Leaf Nitrogen Assimilation after Anthesis and Early Senescence under Different Planting Densities [J]. Acta Agron Sin, 2015, 41(12): 1870-1879. |
[10] | LI Chen-Chen,HOU Lei,YIN Liang,ZHAO Jin-Feng,YUAN Shou-Jiang,ZHANG Wen-Hui,LI Xue-Yong. Gibberellin Responsiveness and Gene Mapping of the Rice Extreme Dwarf Mutant s2-47 [J]. Acta Agron Sin, 2013, 39(10): 1766-1774. |
[11] | SANG Xian-Chun,DU Chuan,WANG Xiao-Wen,YANG Zheng-Lin,LING Ying-Hua,ZHAO Fang-Ming,LI Yun-Feng,HE Guang-Hua. Identification and Gene Mapping of Dwarf and Brittle Culm Mutant dbc1 in Oryza sativa [J]. Acta Agron Sin, 2013, 39(04): 626-631. |
[12] | YUE Chuan,ZENG Jian-Ming,CAO Hong-Li,HAO Xin-Yuan,ZHANG Zhi-Fang,WANG Xin-Chao,YANG Ya-Jun. Cloning and Expression Analysis of Gibberellin Receptor Gene CsGID1a in Tea Plant (Camellia sinensis) [J]. Acta Agron Sin, 2013, 39(04): 599-608. |
[13] | LIU Yang,WEN Xiao-Xia,GU Dan-Dan,GUO Qiang,ZENG Ai,LI Chang-Jiang,LIAO Yun-Cheng. Effect of Polyamine on Grain Filling of Winter Wheat and Its Physiological Mechanism [J]. Acta Agron Sin, 2013, 39(04): 712-719. |
[14] | ZHOU Jing-Hua,YU Wei-Lin,XING Hu-Cheng,JIE Yu-Cheng,ZHONG Ying-Li,JING Li-Heng. Cloning and Characterization of ACC Synthase Gene (BnACS1) from Ramie (Boehmeria nivea) [J]. Acta Agron Sin, 2012, 38(12): 2306-2311. |
[15] | LI Zhao, PENG Hong-Chao, DU Li-Pu, ZHOU Miao-Beng, CA Shi-Bin, XU Hui-Jun, LI Shi-Shen, ZHANG Ceng-Yan. Utilization of Tissue Specific Expressing Promoter RSS1P in TiERF1 Transgenic Wheat [J]. Acta Agron Sin, 2011, 37(10): 1897-1903. |
|