[1] |
Yoshimoto K . Beginning to understand autophagy, an intracellular self-degradation system in plants. Plant Cell Physiol, 2012,53:1355-1365.
|
[2] |
Bassham D C . Plant autophagy: more than a starvation response. Curr Opin Plant Biol, 2007,10:587-593.
|
[3] |
Johansen T, Lamark T . Selective autophagy mediated by autophagic adapter proteins. Autophagy, 2011,7:279-296.
|
[4] |
Lamark T, Kirkin V, Dikic I, Johansen T . NBR1 and p62 as cargo receptors for selective autophagy of ubiquitinated targets. Cell Cycle, 2009,8:1986-1990.
|
[5] |
Kirkin V, Lamark T, Sou Y S, Bjørkøy G, Nunn J L, Bruun J A, Shvets E, McEwan D G, Clausen T H, Wild P, Bilusic I, Theurillat J P, Øvervatn A, Ishii T, Elazar Z, Komatsu M, Dikic I, Johansen T . A role for NBR1 in autophagosomal degradation of ubiquitinated substrates. Mol Cell, 2009,33:505-516.
|
[6] |
Katsuragi Y, Ichimura Y, Komatsu M . p62/SQSTM1 functions as a signaling hub and an autophagy adaptor. FEBS J, 2015,282:4672-4678.
|
[7] |
Waters S, Marchbank K, Solomon E, Whitehouse C, Gautel M . Interactions with LC3 and polyubiquitin chains link nbr1 to autophagic protein turnover. FEBS Lett, 2009,583:1846-1852.
|
[8] |
Svenning S, Lamark T, Krause K, Johansen T . Plant NBR1 is a selective autophagy substrate and a functional hybrid of the mammalian autophagic adapters NBR1 and p62/SQSTM1. Autophagy, 2011,7:993-1010.
|
[9] |
Zhou J, Wang J, Cheng Y, Chi Y J, Fan B, Yu J Q, Chen Z . NBR1-mediated selective autophagy targets insoluble ubiquitinated protein aggregates in plant stress responses. PLoS Genet, 2013,9:e1003196.
|
[10] |
Zientara-Rytter K, Lukomska J, Moniuszko G, Gwozdecki R, Surowiecki P, Lewandowska M, Liszewska F, Wawrzyńska A, Sirko A . Identification and functional analysis of Joka2, a tobacco member of the family of selective autophagy cargo receptors. Autophagy, 2011,7:1145-1158.
|
[11] |
Zientara-Rytter K, Sirko A . Significant role of PB1 and UBA domains in multimerization of Joka2, a selective autophagy cargo receptor from tobacco. Front Plant Sci, 2014,5:13.
|
[12] |
Dagdas Y F, Belhaj K, Maqbool A, Chaparro-Garcia A, Pandey P, Petre B, Tabassum N, Cruz-Mireles N, Hughes R K, Sklenar J, Win J, Menke F, Findlay K, Banfield M J, Kamoun S, Bozkurt T O . An effector of the Irish potato famine pathogen antagonizes a host autophagy cargo receptor. eLife, 2016,14:5.
|
[13] |
Li X, Zhang S, Ma J, Guo G, Zhang X, Liu X, Bi C . TaUBA, a UBA domain-containing protein in wheat (Triticum aestivum L.), is a negative regulator of salt and drought stress response in transgenic Arabidopsis. Plant Cell Rep, 2015,34:755-766.
|
[14] |
Lescot M, Déhais P, Moreau Y, De Moor B, Rouzé P, Rombauts S . PlantCARE: a database of plant cis-acting regulatory elements and a portal to tools for in silico analysis of promoter sequences. Nucleic Acids Res, 2002,30:325-327.
|
[15] |
Zhou J, Jiao F, Wu Z, Li Y, Wang X, He X, Zhong W, Wu P . OsPHR2 is involved in phosphate-starvation signaling and excessive phosphate accumulation in shoots of plants. Plant Physiol, 2008, 146:1673-1686.
|
[16] |
Livak K J, Schmittgen T D . Analysis of relative gene expression data using real-time quantitative PCR and the 2 -ΔΔCt method. Methods, 2001,25:402-408.
|
[17] |
孔德艳, 陈守俊, 周立国, 高欢, 罗利军, 刘灶长 . 水稻开花光周期调控相关基因研究进展. 遗传, 2016,38:532-542.
|
|
Kong D Y, Chen S J, Zhou L G, Gao H, Luo L J, Liu Z C . Research progress of photoperiod regulated genes on flowering time in rice. Hereditas (Beijing), 2016,38:532-542 (in Chinese with English abstract).
|
[18] |
Li L, Li X, Liu Y, Liu H . Flowering responses to light and temperature. Sci China Life Sci, 2016,59:403-408.
|
[19] |
Song Y H, Ito S, Imaizumi T . Flowering time regulation: photoperiod- and temperature-sensing in leaves. Trends Plant Sci, 2013,18:575-583.
|
[20] |
Gangappa S N, Maurya J P, Yadav V, Chattopadhyay S . The regulation of the Z- and G-box containing promoters by light signaling components, SPA1 and MYC2, in Arabidopsis. PLoS One, 2013,8:e62194.
|
[21] |
Jiao Y, Lau O S, Deng X W . Light-regulated transcriptional networks in higher plants. Nat Rev Genet, 2007,8:217-230.
|
[22] |
Harrison-Lowe N J, Olsen L J . Autophagy protein 6 (ATG6) is required for pollen germination in Arabidopsis thaliana. Autophagy, 2008,4:339-348.
|
[23] |
Kurusu T, Koyano T, Kitahata N, Kojima M, Hanamata S, Sakakibara H, Kuchitsu K . Autophagy-mediated regulation of phytohormone metabolism during rice anther development. Plant Signal Behav, 2017,12:e1365211.
|
[24] |
Kurusu T, Koyano T, Hanamata S, Kubo T, Noguchi Y, Yagi C, Nagata N, Yamamoto T, Ohnishi T, Okazaki Y, Kitahata N, Ando D, Ishikawa M, Wada S, Miyao A, Hirochika H, Shimada H, Makino A, Saito K, Ishida H, Kinoshita T, Kurata N, Kuchitsu K . OsATG7 is required for autophagy-dependent lipid metabolism in rice postmeiotic anther development. Autophagy, 2014,10:878-888.
|
[25] |
North H, Baud S, Debeaujon I, Dubos C, Dubreucq B, Grappin P, Jullien M, Lepiniec L, Marion-Poll A, Miquel M, Rajjou L, Routaboul J M, Caboche M . Arabidopsis seed secrets unravelled after a decade of genetic and omics-driven research. Plant J, 2010,61:971-981.
|
[26] |
Salem M A, Li Y, Wiszniewski A, Giavalisco P . Regulatory-associated protein of TOR (RAPTOR) alters the hormonal and metabolic composition of Arabidopsis seeds, controlling seed morphology, viability and germination potential. Plant J, 2017,92:525-545.
|
[27] |
Shu K, Liu X D, Xie Q, He Z H . Two faces of one seed: Hormonal regulation of dormancy and germination. Mol Plant, 2016,9:34-45.
|
[28] |
Steinbrecher T, Leubner-Metzger G . The biomechanics of seed germination. J Exp Bot, 2017,68:765-783.
|
[29] |
徐恒恒, 黎妮, 刘树君, 王伟青, 王伟平, 张红, 程红焱, 宋松泉 . 种子萌发及其调控的研究进展. 作物学报, 2014,40:1141-1156.
|
|
Xu H H, Li N, Liu S J, Wang W Q, Wang W P, Zhang H, Cheng H Y, Song S Q . Research progress in seed germination and its control. Acta Agron Sin, 2014,40:1141-1156 (in Chinese with English abstract).
|
[30] |
伍静辉, 谢楚萍, 田长恩, 周玉萍 . 脱落酸调控种子休眠和萌发的分子机制. 植物学报, 2018,53:542-555.
|
|
Wu J H, Xie C P, Tian C E, Zhou Y P . Molecular mechanism of abscisic acid regulation during seed dormancy and germination. Chin Bull Bot, 2018,53:542-555 (in Chinese with English abstract).
|
[31] |
Kucera B, Cohn M A, Leubner-Metzger G L . Plant hormone interactions during seed dormancy release and germination. Seed Sci Res, 2005,15:282-307.
|
[32] |
Honig A, Avin-Wittenberg T, Galili G . Selective autophagy in the aid of plant germination and response to nutrient starvation. Autophagy, 2012,8:838-839.
|
[33] |
Han C, Zhen S, Zhu G, Bian Y, Yan Y . Comparative metabolome analysis of wheat embryo and endosperm reveals the dynamic changes of metabolites during seed germination. Plant Physiol Biochem, 2017,115:320-327.
|
[34] |
Wasternack C, Hause B . Jasmonates: biosynthesis, perception, signal transduction and action in plant stress response, growth and development. an update to the 2007 review in Annals of Botany. Ann Bot, 2013,111:1021-1058.
|
[35] |
Kumar D . Salicylic acid signaling in disease resistance. Plant Sci, 2014,228:127-134.
|
[36] |
Vishwakarma K, Upadhyay N, Kumar N, Yadav G, Singh J, Mishra R K, Kumar V, Verma R, Upadhyay R G, Pandey M, Sharma S . Abscisic acid signaling and abiotic stress tolerance in plants: a review on current knowledge and future prospects. Front Plant Sci, 2017,8:161.
|