Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2020, Vol. 46 ›› Issue (4): 557-570.doi: 10.3724/SP.J.1006.2020.94045

• TILLAGE & CULTIVATION·PHYSIOLOGY & BIOCHEMISTRY • Previous Articles     Next Articles

Estimation of total nitrogen content in sugarbeet leaves under drip irrigation based on hyperspectral characteristic parameters and vegetation index

LI Zong-Fei1,SU Ji-Xia1,FEI Cong1,LI Yang-Yang1,LIU Ning-Ning1,DAI Yu-Xiang1,ZHANG Kai-Xiang1,WANG Kai-Yong1,FAN Hua1,*(),CHEN Bing2,*()   

  1. 1 Agronomy College, Shihezi University, Shihezi 832003, Xinjiang, China
    2 Cotton Institute, Xinjiang Academy of Agricultural and Reclamation Science, Shihezi 832003, Xinjiang, China
  • Received:2019-03-20 Accepted:2019-12-26 Online:2020-04-12 Published:2020-01-17
  • Contact: Hua FAN,Bing CHEN E-mail:fanhua@shzu.edu.cn;zyrcb@126.com
  • Supported by:
    This study was supported by the National Natural Science Foundation of China(31660360);This study was supported by the National Natural Science Foundation of China(31771720);the Research and Innovation Projects of Postgraduates in Autonomous Region(XJGRI2016039);the International Science and Technology Cooperation Promotion Plan of Shihezi University(GJHZ201706)

Abstract:

The purpose of this paper is to clarify the quantitative relationship between total nitrogen content of sugar beet and high-resolution vegetation remote sensing, to explore the establishment of an optimal estimation model for total nitrogen content of sugar beet, and to monitor the growth of sugar beet. Xinjiang drip-irrigated sugar beet (Beta356) was selected to collect the reflectance spectra of leaf cluster during the leaves rapid growth period, root expansion period and sugar accumulation period by the ASD field hyperspectral apparatus. The total nitrogen content was also measured and the relationship between original spectral reflectance and total nitrogen content was analyzed. According to the correlation between the first-order differential spectral reflectance and total nitrogen content, a total nitrogen content estimation model was established. The model with spectral characteristic parameter Dr762 power function had a good ability to estimate total nitrogen content in leaves of beet, with the determination coefficient, relative error, and root mean square error of 0.747, 21.635, and 4.914, respectively. Various function estimation models were established based on vegetation index and leaf total nitrogen content. The linear function under vegetation index Dr762-Dr496 had better ability to estimate leaf total nitrogen content. Its determinant coefficient, relative error, and root mean square error were 0.794, 23.008, and 5.372, respectively.

Key words: total nitrogen, hyperspectral, characteristic parameters, vegetation index, estimation model

Table 1

Hyperspectral parameters and their definitions"

光谱特征参数与植被指数
Spectral characteristic parameter and Spectral index
定义
Definition
红边斜率
Red edge slope (Dr)
680-760 nm内最大一阶微分光谱值
Maximum first order differential spectrum in 680-760 nm
红边位置
Red edge position (λr)
680-760 nm内最大的一阶微分光谱值对应的波长
The wavelength corresponding to the largest first-order differential spectrum in 680-760 nm
红边面积
Red edge area (SDr)
680-760 nm内一阶微分光谱值的总和
The sum of the first-order differential spectral values in 680-760 nm
黄边斜率
Yellow edge slope (Dy)
560-640 nm内最大一阶微分光谱值
Maximum first order differential spectrum in 560-640 nm
黄边位置
Yellow edge position (Λy)
560-640 nm内最大一阶微分光谱值对应的波长
The wavelength corresponding to the largest first-order differential spectrum in 560-640 nm
黄边面积
Yellow edge area (SDy)
560-640 nm内一阶微分光谱值的总和
The sum of the first-order differential spectral values in 560-640 nm
蓝边斜率
Blue edge slope (Db)
490-530 nm内最大一阶微分光谱值
Maximum first order differential spectrum in 490-530 nm
蓝边位置
Blue edge position (λb)
490-530 nm内最大一阶微分光谱值对应的波长
The wavelength corresponding to the largest first-order differential spectrum in 490-530 nm
蓝边面积
Blue edge area (SDb)
490-530 nm内一阶微分光谱值的总和
The sum of the first-order differential spectral values in 490-530 nm
比值植被指数
Ratio vegetation index (RVI)
Rλ1/Rλ2
差值植被指数
Difference vegetation index (DVI)
Rλ1- Rλ2
归一化比值植被指数
Normalized ratio vegetation index (NDVI)
(RNIR-Rred)/(RNIR+Rred)
红边归一化差异指数
Red edge normalized difference index (NDI)
(DRλ1-DRλ2)/(DRλ1+DRλ2)

Fig. 1

Canopy hyperspectral reflectance and red edge at different nitrogen levels N0: nitrogen application of 0 kg hm-2; N75: nitrogen application of 75 kg hm-2; N150: nitrogen application of 150 kg hm-2; N225: nitrogen application of 225 kg hm-2."

Fig. 2

Correlation between original spectral reflectance and total nitrogen content in sugar beet canopy F0.05: significant correlation (P < 0.05); F0.01: extremely significant correlation (P < 0.01)."

Fig. 3

Correlation between the first derivative spectra of sugar beet canopy and the total nitrogen content F0.05: significant correlation (P < 0.05); F0.01: extremely significant correlation (P < 0.01)."

Table 2

Correlation between spectral characteristic parameters and vegetation index in sensitive bands and total nitrogen content"

光谱特征参数
Spectral characteristic parameter
相关关系
Correlation
植被指数
Vegetation index
相关性Correlation
Dr 0.590** 原始光谱比值植被指数Ratio vegetation index R1104/R767 0.358**
λr 0.497** 原始光谱差值植被指数Difference vegetation index R1104-R767 0.280**
SDr 0.601** 原始光谱归一化植被指数Normalized ratio vegetation index (R1104-R767)/(R1104+R767) 0.364**
Dy 0.074 原始光谱比值植被指数Ratio vegetation index R767/R604 0.652**
Λy 0.089 原始光谱差值植被指数Difference vegetation index R767-R604 0.433**
SDy -0.086 一阶微分比值植被指数Ratio vegetation index Dr1138/Dr762 -0.169
Db 0.072 一阶微分差值植被指数Difference vegetation index Dr1138-Dr762 -0.744**
λb 0.506** 一阶微分归一化植被指Normalized ratio vegetation index (Dr1138-Dr762)/(Dr1138+Dr762) 0.500**
SDb -0.216 一阶微分比值植被指数Ratio vegetation index Dr762/Dr496 0.586**
R604 -0.267** 一阶微分差值植被指数Difference vegetation index Dr762-Dr496 0.721**
R1104 0.680** 红边比值植被指数Red edge ratio vegetation index Dr747/Dr687 0.431**
Dr1138 -0.715** 红边差值植被指数Red edge difference vegetation index Dr747-Dr687 0.589**
Dr762 0.703** 红边归一化差异指数Red edge normalized difference index (Dr747-Dr687)/( Dr747+Dr687) 0.545**

Table 3

Correlation between known hyperspectral vegetation index and total nitrogen content"

植被指数
Vegetation index
计算公式
Calculation formula
相关关系Correlation 文献来源
Source of literature
RSI R990/R720 0.528** [23]
NDSI (R860-R720)/(R860+R720) 0.582** [23]
NDVI (R790-R670)/(R790+R670) 0.332** [24]
FD-NDVI (R730-R525)/(R730+R525) 0.451** [25]
RENDVI (R750-R705/( R750+ R705) 0.367** [26]
mND705 (R750-R705)/(R750+2R445) 0.360** [27]
GNDVI (R790-R550)/(R790+R550) 0.464** [28]
SAVI 1.5(R870-R680)/(R870+R680+0.5) 0.692** [29]
OSAVI (1+0.16)(R810-R680)/(R810-R680+0.16) 0.633** [30]
MSAVI 0.5{2R800+1-[(2R800+1)2-8(R800-R670)]0.5} 0.623** [31]
DCNI (R720-R700/(R700-R670)/(R720-R670+0.03) 0.460** [32]
CIgreen [(R840-R870)/R550]-1 -0.493** [33]
NINI [lg(1/R1510)-lg(1/R1680)]/[lg(1/R1510)+lg(1/R1680)] 0.553** [34]
TVI 0.5[120(R750-R550)-200(R670-R550)] 0.538** [35]
DSI R800-R680 0.510** [36]

Table 4

Regression relationship model and verification of different spectral characteristic parameters and total nitrogen content"

高光谱特征参数
Characteristic parameter
拟合模型 Fitting model 验证模型 Performance model
拟合方程 Equation R2 RE(%) RMSE
R1104 y = 63.88x-8.167 0.516 21.429 4.762
y = -30.27x2+96.39-16.64 0.519 22.299 4.829
y = 58.24x1.296 0.513 20.898 4.766
y = 7.555e2.277x 0.493 22.904 4.898
Dr1138 y = 64.73x-1.144 0.643 19.893 4.874
y = -47.08x2+104.7x-9.162 0.648 20.625 4.945
y = 63.68x1.031 0.643 19.909 4.881
y = 9.629e2.313x 0.615 23.265 5.010
Dr762 y = 157.8x-147 0.770 20.877 5.038
y = -192.3x2+578.8x-377.1 0.772 21.518 5.137
y = 13.96x6.461 0.747 21.635 4.914
y = 0.04302e5.813x 0.740 22.103 4.928

Fig. 4

Verification of the total nitrogen content estimation model under the spectral characteristic parameters Dr762 (maximum positive correlation of first order differential) of sugar beet"

Table 5

Regression model and verification of different vegetation indexes and total nitrogen content"

高光谱特征参数
Characteristic parameter
拟合模型 Fitting model 验证模型 Performance model
拟合方程 Equation R2 RE(%) RMSE
SAVI y = 114.7x-105.7 0.541 24.492 5.092
y = 104.5x2-122.1x+28.18 0.544 23.153 4.926
y = 12.39x5.208 0.539 21.878 4.830
y = 0.1489e4.474x 0.535 21.514 4.829
Dr1138-Dr762 y = 49.36x+0.4913 0.732 19.708 4.709
y = -1.864x2+51.27x+0.04145 0.732 19.777 4.721
y = 49.73x0.9814 0.732 19.746 4.715
y = 9.737e1.842x 0.714 20.934 4.656
Dr762-Dr496 y = 12.85x+5.673 0.794 23.008 5.372
y = -2.828x2+21.68x-0.3212 0.804 22.996 5.608
y = 18.64x0.755 0.799 23.025 5.447
y = 11.91e0.4736x 0.759 24.623 5.288

Fig. 5

Validation of the estimation model of total nitrogen content under vegetation index Dr1138-Dr762"

Fig. 6

Validation of the estimation model of total nitrogen content under vegetation index Dr762-Dr496"

[1] Lee Y J, Yang C M, Chang K W, Shen Y . A simple spectral index using reflectance of 735 nm to assess nitrogen status of rice canopy. Agron J, 2008,100:205-212.
[2] 苏继霞, 王开勇, 费聪, 李阳阳, 樊华 . 氮肥运筹对滴灌甜菜产量、氮素吸收和氮素平衡的影响. 土壤通报, 2016,47:1404-1407.
Su J X, Wang K Y, Fei C, Li Y Y, Fan H . Effects of nitrogen management on sugar beet yield, Nitrogen uptake and soil nitrogen balance under drip irrigation. Chin J Soil Sci, 2016,47:1404-1407 (in Chinese with English abstract).
[3] 费聪, 王维成, 李阳阳, 樊华 . 氮素运筹对滴灌甜菜叶片光合特性的影响. 江苏农业科学, 2016,44(12):227-229.
Fei C, Wang W C, Li Y Y, Fan H . Effects of nitrogen management on photosynthetic characteristics of sugarbeet leaves under drip irrigation. Jiangsu Agric Sci, 2016,44(12):227-229 (in Chinese).
[4] 高雨茜 . 夏玉米叶绿素、叶面积指数高光谱估测研究. 西北农林科技大学硕士学位论文, 陕西杨凌, 2016.
Gao Y Q . Chlorophyll and Leaf Area Indexstimation Based on Hyperspectrum of Summer Corn. MS Thesis of Northwest A&F University, Yangling, Shaanxi, China, 2016 (in Chinese with English abstract).
[5] 刘冰峰 . 夏玉米不同生育时期生理生态参数的高光谱遥感监测模型. 西北农林科技大学博士学位论文, 陕西杨凌, 2016.
Liu B F . Monitoring Models of Physiological and Ecological Parameters of Summer Maize Based on Hyperspectral Remote Sensing at Different Growth Stages. PhD Dissertation of Northwest A&F University, Yangling, Shaanxi, China, 2016 (in Chinese with English abstract).
[6] Shibayama M, Akiyama T . Seasonal visible, near-infra-red and mid-infrared spectra of rice canopies in relation to LAI and above-ground dry biomass. Remote Sense Environ, 1989,27:119-127.
[7] Smith M L, Ollinger S V, Martin M E, Aber J D, Hallett R A, Goodale C L . Direct estimation of aboveground forest productivity through hyperspectral remote sensing of canopy nitrogen. Ecol Appl, 2002,12:1286-1302.
[8] Stone M L, Soile J B, Raun R . Use of spectral radiance for correcting in-season fertilizer nitrogen deficiencies in winter wheat. Trans ASAE, 1996,39:1623-1631.
[9] Thomas J R, Oerther G F . Estimating nitrogen content of sweet pepper leaves by reflectance measurements. Agron J, 1972,64:11-13.
[10] Tian Y C, Yao X, Yang J, Cao W X, Hannaway D B, Zhu Y . Assessing newly developed and published vegetation indices for estimating rice leaf nitrogen concentration with ground and spacebased hyperspectral reflectance. Field Crops Res, 2011,120:299-310.
[11] Wang W, Yao X, Yao X F, Tian Y C, Liu X J, Ni J, Cao W X, Zhu Y . Estimating leaf nitrogen concentration with three-band vegetation indices in rice and wheat. Field Crops Res, 2012,129:90-98.
[12] Menesatti P, Antonucci F, Pallottino F, Roccuzzo M, Allegra M, Stagno F, Intrigliolo F . Estimation of plant nutritional status by Vis-NIR spectrophotometric analysis on orange leaves. Biosyst Eng, 2010,105:448-454.
[13] Zhang G C, Li Z, Yan X M, Cheng C G, Zhou P, Lin G L, Zhou C J, Liu N, Han X R . Rapid analysis of apple leaf nitrogen using near infrared spectroscopy and multiple linear regression. Commun Soil Sci Plant Anal, 2012,43:1768-1772.
[14] 张潇元, 张立福, 张霞, 王树东, 田静国, 翟涌光 . 不同光谱植被指数反演冬小麦叶氮含量的敏感性研究. 中国农业科学, 2017,50:474-485.
Zhang X Y, Zhang L F, Zhang X, Wang S D, Tian J G, Zhai Y G . Sensitivity of different spectral vegetation index for estimating winter wheat leaf nitrogen. Sci Agric Sin, 2017,50:474-485 (in Chinese with English abstract).
[15] 王仁红, 宋晓宇, 李振海, 杨贵军, 郭文善, 谭昌伟, 陈立平 . 基于高光谱冬小麦氮素营养指数估测. 农业工程学报, 2014,30(19):191-198.
Wang R H, Song X Y, Li Z H, Yang G J, Guo W S, Tan C W, Chen L P . Estimation of winter wheat nitrogen nutrition index using hyperspectral remote sensing. Trans CSAE, 2014,30(19):191-198 (in Chinese with English abstract).
[16] 田永超, 杨杰, 姚霞, 朱艳, 曹卫星 . 利用红边面积形状参数估测水稻叶层氮浓度. 植物生态学报, 2009,33:791-801.
Tian Y C, Yang J, Yao X, Zhu Y, Cao W X . Estimation of leaf canopy nitrogen concentration with red edge area shape parameter in rice. Chin J Plant Ecol, 2009,33:791-801 (in Chinese with English abstract).
[17] 顾清, 邓劲松, 陆超, 石媛媛, 王珂, 沈掌门 . 基于光谱和形状特征的水稻扫描叶片氮素营养诊断. 农业机械学报, 2012,43(8):170-174.
Gu Q, Deng J X, Lu C, Shi Y Y, Wang K, Shen Z M . Diagnosis of rice nitrogen nutrition based on spectral and shape characteristics of scanning leaves. Trans CSAM, 2012,43(8):170-174 (in Chinese with English abstract).
[18] 黄春燕, 王登伟, 闫杰, 张煜星, 曹连莆, 程诚 . 棉花叶绿素密度和叶片氮积累量的高光谱监测研究. 作物学报, 2007,33:931-936.
Huang C Y, Wang D W, Yan J, Zhang Y X, Cao L P, Cheng C . Monitoring of cotton canopy chlorophyll density and leaf nitrogen accumulation status by using hyperspectral data. Acta Agron Sin, 2007,33:931-936 (in Chinese with English abstract).
[19] 吴华兵, 朱艳, 田永超, 姚霞, 刘晓军, 周治国, 曹卫星 . 棉花冠层高光谱参数与叶片氮含量的定量关系. 植物生态学报, 2007,31:903-909.
Wu H B, Zhu Y, Tian Y C, Yao X, Liu X J, Zhou Z G, Cao W X . Relationship between canopy hyperspectra parameter and leaf nitrogen concentration in cotton. Chin J Plant Ecol, 2007,31:903-909 (in Chinese with English abstract).
[20] 赵春江, 黄文江, 王纪华, 杨敏华, 薛绪掌 . 不同品种、肥水条件下冬小麦光谱红边参数研究. 中国农业科学, 2002,35:980-987.
Zhao C J, Huang W J, Wang J H, Yang M H, Xue X Z . Studies on the red edge parameters of spectrum in winter wheat under different varieties, Fertilizer and water treatments. Sci Agric Sin, 2002,35:980-987 (in Chinese with English abstract).
[21] 王树文, 赵越, 王丽凤, 王润涛, 宋玉柱, 张长利, 苏中滨 . 基于高光谱的寒地水稻叶片氮素含量预测. 农业工程学报, 2016,32(20):187-194.
Wang S W, Zhao Y, Wang L F, Wang R T, Song Y Z, Zhang C L, Su Z B . Prediction for nitrogen content of rice leaves in cold region based on hyperspectrum. Trans CSAE, 2016,32(20):187-194 (in Chinese with English abstract).
[22] 陈兵, 王方永, 韩焕勇, 刘政, 邓福军, 林海, 余渝, 李少昆, 王克如, 肖春华 . 基于光谱红边参数的棉花黄萎病叶片氮素含量诊断研究. 棉花学报, 2013,25:254-261.
Chen B, Wang F Y, Han H Y, Liu Z, Deng F J, Lin H, Yu Y, Li S K, Wang K R, Xiao C H . Monitoring nitrogen contents in leaves of cotton under verticillium wilt stress based on spectra red-edge parameters. Cotton Sci, 2013,25:254-261 (in Chinese with English abstract).
[23] Yao X, Zhu Y, Tian Y C, Cao W X . Exploring hyperspectral bands and estimation indices for leaf nitrogen accumulation in wheat. Int J Appl Earth Obs, 2010,12:89-100.
[24] Rouse J W, Haas R H, Schell J A, Deering D W . Monitoring vegetation systems in the Great Plains with ERTS. NASA SP, 1974,351:309.
[25] 梁亮, 杨敏华, 邓凯东, 张连蓬, 林卉, 刘志霄 . 一种估测小麦冠层氮含量的新高光谱指数. 生态学报, 2011,31:6594-6605.
Liang L, Yang M H, Deng K D, Zhang L P, Lin H, Liu Z X . A new hyperspectral index for the estimation of nitrogen contents of wheat canopy. Acta Ecol Sin, 2011,31:6594-6605 (in Chinese with English abstract).
[26] Gitelson A A, Merzlyak M N . Spectral reflectance changes associated with autumn senescence of Aesculus hippocastanum L. and Acer platanoides L. leaves. Spectral features and relation to chlorophyll estimation. J Plant Physiol, 1994,143:286-292.
[27] Daniel A S, John A G . Relationships between leaf pigment content and spectral reflectance across a wide range of species, leaf structures and developmental stages. Remote Sense Environ, 2008,81:337-354.
[28] Gitelson A A, Merzlyak M N . Signature analysis of leaf reflectance spectra: algorithm development for remote sensing of chlorophyll. J Plant Physiol, 1996,148:494-500.
[29] Huete A R . A soil-adjusted vegetation index (SAVI). Remote Sense Environ, 1988,25:295-309.
[30] Rondeaux G, Steven M, Baret F . Optimization of soil-adjusted vegetation indices. Remote Sense Environ, 1996,55:95-107.
[31] Haboudane D, Miller J R, Pattey E, Zarco P J, Strachan I B . Hyperspectral vegetation indices and novel algorithms for predicting green LAI of crop canopy: monitoring and validation in the context of precision agriculture. Remote Sense Environ, 2004,90:337-352.
[32] Chen P F, Haboudane D, Trembley N, Wang J H, Vigneault P, Li B G . New spectral indicator assessing the efficiency of crop nitrogen treatment in corn and wheat, Remote Sense Environ, 2010,114:1987-1997.
[33] Gitelson A A, Vina A, Ciganda V, Rundquist D C, Arkebauer T J . Remote estimation of canopy chlorophyll content in crops. Geophys Res Lett, 2005,32:1-4.
[34] Serrano L, Penuelas J, Ustin S L . Remote sensing of nitrogen and lignin in Mediterranean vegetation decomposing biochemical from structural signals. Remote Sense Environ, 2002,81:355-364.
[35] Broge N H, Leblanc E . Comparing prediction power and stability of broadband and hyperspectral vegetation indices for estimation of green leaf area index and canopy chlorophyll density. Remote Sense Environ, 2001,76:156-172.
[36] 谌俊旭, 黄山, 范元芳, 王锐, 刘沁林, 杨文钰, 杨峰 . 单作套作大豆叶片氮素积累与光谱特征. 作物学报, 2017,43:1835-1844.
Chen J X, Huang S, Fan Y F, Wang R, Liu Q L, Yang W Y, Yang F . Remote detection of canopy leaf nitrogen status in soybean by hyperspectral data under monoculture and intercropping systems. Acta Agron Sin, 2017,43:1835-1844 (in Chinese with English abstract).
[37] 杨福芹, 冯海宽, 李振海, 杨贵军, 戴华阳 . 基于可见光-近红外光谱特征参数的苹果叶片氮含量预测. 农业机械学报, 2017,48(9):143-151.
Yang F Q, Feng H K, Li Z H, Yang G J, Dai H Y . Prediction for nitrogen content of apple leaves using spectral features parameters from visible and near infrared lights. Trans CSAM, 2017,48(9):143-151 (in Chinese with English abstract).
[38] 徐道青, 刘小玲, 王维, 陈敏, 阚画春, 李常凤, 郑曙峰 . 淹水胁迫下棉花叶片高光谱特征及叶绿素含量估算模型. 应用生态学报, 2017,28:3289-3296.
Xu D Q, Liu X L, Wang W, Chen M, Kan H C, Li C F, Zheng S F . Hyper-spectral characteristics and estimation model of leaf chlorophyll content in cotton under waterlogging stres. Chin J Appl Ecol, 2017,28:3289-3296 (in Chinese with English abstract).
[39] Knyazikhin Y, Mitchell A, Schull, Stenberg P, Mottus M, Rautiaien M, Yang Y, Marshak A, Carmona P L, Kaufmann R K, Lewis P, Disney M I, Vanderbilt V, Davis A B, Baret F, Jacquemoud S J, Lyapustin A, Myneni R B . Hyperspectral remote sensing of foliar nitrogen content. Proc Natl Acad Sci USA, 2013,110:E185-E192.
[40] Ollinger S V, Reich P B, Frolking S, Lepine L C, Hollinger D Y, Richardson A D . Nitrogen cycling, forest canopy reflectance, and emergent properties of ecosystems. Proc Natl Acad Sci USA, 2013,110:E2437.
[41] Townsen P A, Serbin S P, Kruger E L, Gamon J A . Disentangling the contribution of biological and physical properties of leaves and canopies in imaging spectroscopy data. Proc Natl Acad Sci USA, 2013,110:E1704.
[42] Ustin S L . Remote sensing of canopy chemistry. Proc Natl Acad Sci USA, 2013,110:804-805.
[1] LI Jin-Min, CHEN Xiu-Qing, YANG Qi, SHI Liang-Sheng. Deep learning models for estimation of paddy rice leaf nitrogen concentration based on canopy hyperspectral data [J]. Acta Agronomica Sinica, 2021, 47(7): 1342-1350.
[2] LI Yan-Da, CAO Zhong-Sheng, SHU Shi-Fu, SUN Bin-Feng, YE Chun, HUANG Jun-Bao, ZHU Yan, TIAN Yong-Chao. Model for monitoring leaf dry weight of double cropping rice based on crop growth monitoring and diagnosis apparatus [J]. Acta Agronomica Sinica, 2021, 47(10): 2028-2035.
[3] HASAN Umut,SAWUT Mamat,Shui-Sen CHEN,Dan LI. Inversion of leaf area index of winter wheat based on GF-1/2 image [J]. Acta Agronomica Sinica, 2020, 46(5): 787-797.
[4] WU Ya-Peng,HE Li,WANG Yang-Yang,LIU Bei-Cheng,WANG Yong-Hua,GUO Tian-Cai,FENG Wei. Dynamic model of vegetation indices for biomass and nitrogen accumulation in winter wheat [J]. Acta Agronomica Sinica, 2019, 45(8): 1238-1249.
[5] LI Yan-Xia,YANG Wei-Bing,YIN Yan-Ping,ZHENG Meng-Jing,CHEN Jin,YANG Dong-Qing,LUO Yong-Li,PANG Dang-Wei,LI Yong,WANG Zhen-Lin. Difference of physiological characteristics of grain weight at various kernel positions in wheat spikelets [J]. Acta Agronomica Sinica, 2019, 45(11): 1715-1724.
[6] ABLET Ershat,SAWUT Mamat,MAIMAITIAILI Baidengsha,Shen-Qun AN,Chun-Yue MA. Estimation of leaf chlorophyll content in cotton based on the random forest approach [J]. Acta Agronomica Sinica, 2019, 45(1): 81-90.
[7] CHEN Jun-Xu, HUANG Shan, FAN Yuan-Fang, WANG Rui, LIU Qin-Lin, YANG Wen-Yu*,YANG Feng*. Remote Detection of Canopy Leaf Nitrogen Status in Soybean by Hyperspectral Data under Monoculture and Intercropping Systems [J]. Acta Agron Sin, 2017, 43(12): 1835-1844.
[8] GAO Lin,YANG Gui-Jun,LI Chang-Chun,FENG Hai-Kuan,XU Bo,WANG Lei,DONG Jin-Hui,FU Kui. Application of an Improved Method in Retrieving Leaf Area Index Combined Spectral Index with PLSR in Hyperspectral Data Generated by Unmanned Aerial Vehicle Snapshot Camera [J]. Acta Agron Sin, 2017, 43(04): 549-557.
[9] QI Bo,ZHANG Ning,ZHAO Tuan-Jie,XING Guang-Nan,ZHAO Jing-Ming*,GAI Jun-Yi*. Prediction of Leaf Area Index Using Hyperspectral Remote Sensing in Breeding Programs of Soybean [J]. Acta Agron Sin, 2015, 41(07): 1073-1085.
[10] FENG Wei,WANG Xiao-Yu,SONG Xiao,HE Li,WANG Yong-Hua,GUO Tian-Cai. Estimation of Severity Level of Wheat Powdery Mildew Based on Canopy Spectral Reflectance [J]. Acta Agron Sin, 2013, 39(08): 1469-1477.
[11] WU Qiong,QI Bo,ZHAO Tuan-Jie,YAO Xin-Feng,ZHU Yan,GAI Jun-Yi. A Tentative Study on Utilization of Canopy Hyperspectral Reflectance to Esti-mate Canopy Growth and Seed Yield in Soybean [J]. Acta Agron Sin, 2013, 39(02): 309-318.
[12] WANG Lei, BAI You-Lu, LU Yan-Li, WANG He, YANG Li-Ping. NDVI Analysis and Yield Estimation in Winter Wheat based on GreenSeeker [J]. Acta Agron Sin, 2012, 38(04): 747-753.
[13] SHI Hong-Zhi,DI Hui-Hui,ZHAO Xiao-Dan,LIU Guo-Shun,MA Yong-Jian,et al. Relationship of Nicotine and Total Nitrogen Contents with Neutral Aroma Components in Flue-Cured Tobacco in Central Area of Henan Province [J]. Acta Agron Sin, 2009, 35(7): 1299-1305.
[14] SUN Jin-Ying,CAO Hong-Xin,HUANG Yun. Correlation between Canopy Spectral Vegetation Index and Leaf Stomatal Conductance in Rapeseed(Brassica napus L.) [J]. Acta Agron Sin, 2009, 35(6): 1131-1138.
[15] YANG Fei; ZHANG Bai;SONG Kai-Shan;WANG Zong-Ming;LIU Huan-Jun;DU Jia. Relationship between Fraction of Photosynthetically Active Radiation and Vegetation Indices, Leaf Area Index of Corn and Soybean [J]. Acta Agron Sin, 2008, 34(11): 2046-2052.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!