Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2020, Vol. 46 ›› Issue (5): 661-667.doi: 10.3724/SP.J.1006.2020.94119

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Novel peanut genotype with low behenic acid developed from recombinant inbred lines

Jian-Bin GUO,Li HUANG,Nian LIU,Huai-Yong LUO,Xiao-Jing ZHOU,Wei-Gang CHEN,Bei WU,Dong-Xin HUAI,Xiao-Ping REN,Hui-Fang JIANG()   

  1. Oil Crops Research Institute, China Academy of Agricultural Sciences / Key Laboratory of Biology and Genetic Improvement of Oil Crops, the Ministry of Agriculture and Rural Affairs, Wuhan 430062, Hubei, China
  • Received:2019-08-14 Accepted:2019-12-26 Online:2020-05-12 Published:2020-01-16
  • Contact: Hui-Fang JIANG E-mail:peanutlab@oilcrops.cn
  • Supported by:
    This study was supported by the National Natural Science Foundation of China(31571713);This study was supported by the National Natural Science Foundation of China(31761143005);This study was supported by the National Natural Science Foundation of China(31801403);This study was supported by the National Natural Science Foundation of China(31871666);the Crop Germplasm Resources Protection Project(2017NWB033);the Plant Germplasm Resources Sharing Platform(NICGR2017-36);the China Agricultural Research System (CARS-13-Germplasm Resource Evaluation for Peanut)

Abstract:

Peanut is an important source of edible vegetable oil in China, and improving the quality of peanut oil is an important goal in peanut breeding. In this study, the contents of very long-chain saturated fatty acids (arachidic acid, behenic acid, and tetracosanoic acid) were determined by using RIL population containing 140 lines derived from the cross between Zhonghua 10 and ICG12625 with different genetic backgrounds. The content of very long- chain saturated fatty acid in the RILs was 4.27%-7.05%, with an average of 5.54%, the minimum value was 1.46 and 1.63 percentage points lower than that of male and female parents, with reduction rates of 25.27% and 27.62%, respectively. The behenic acid content ranged from 1.86% to 3.37%, with an average of 2.53%. Three lines of QT0002, QT0075, and QT0120 had behenic acid content lower than 2%, which was 0.57, 0.51, and 0.51 percentage points lower than that of Zhonghua10 with the reduction rate of 23.45%, 20.98%, and 20.98%, respectively. A stable QTL located in 13.31-16.34 M of B04 was detected using a linkage map and WinQTLcart software. In this region of 13.31-16.34 M contained 131 prediction genes. The results lay a foundation for the genetic improvement of low behenic acid and high-oleic peanut varieties.

Key words: peanut, recombined inbreed lines (RILs), fatty acid, behenic acid

Fig. 1

Parents’ difference in very long-chain saturated fatty acid "

Fig. 2

Correlationship in very long-chain saturated fatty acid"

Table 1

Statistical analysis of behenic acid in parents and RIL populations"

年份
Year
亲本 Parent (%) RIL群体 RIL population (%)
中花10号
Zhonghua 10
ICG12625 最小值
Min
最大值
Max
均值
Mean
标准差
SD
变异系数
CV
偏度
Skewness
峰度
Kurtosis
2015 2.17 2.70 1.80 3.51 2.53 0.31 12.39 0.44 0.34
2016 2.58 3.23 1.90 3.69 2.66 0.37 13.96 0.48 0
2017 2.52 2.81 1.68 3.21 2.40 0.29 11.99 0.08 -0.12

Table 2

Information of other fatty acids of the three lines with low behenic acid (%)"

家系
Line
山嵛酸
Behenic acid
棕榈酸
Palmitic acid
硬脂酸
Stearic acid
油酸
Oleic acid
亚油酸
Linoleic acid
花生酸
Arachidic acid
花生烯酸
Arachidonic acid
二十四碳烷酸
Tetracosanoic acid
超长链饱和脂肪酸
Very long-chain
saturated fatty acid
QT0002 1.86 11.86 2.93 48.49 31.67 1.32 0.88 1.09 4.27
QT0075 1.92 12.73 3.51 42.92 35.78 1.41 0.66 1.13 4.46
QT0120 1.92 11.83 3.69 50.47 28.76 1.54 0.69 1.20 4.65
Zhonghua 10 2.43 10.45 5.30 48.54 29.29 2.09 0.65 1.39 5.90
ICG12625 2.91 13.48 2.48 40.02 37.29 1.32 1.13 1.49 5.73

Fig. 3

Phenotypic distribution of behenic acid in the RIL population across three years"

Table 3

Phenotypic effect of GM2246-2 and AGGS1236 on content of behenic acid in RIL population"

标记
Marker
基因型
Genotype
山嵛酸含量Content of behenic acid (%)
2015 2016 2017 均值 Mean
GM2246-2 AA 2.43±0.25 2.57±0.34 2.30±0.25 2.44±0.23
aa 2.67±0.35 2.81±0.39 2.52±0.31 2.66±0.31
aa-AA 0.24** 0.24** 0.22** 0.22**
AGGS1236 AA 2.42±0.28 2.58±0.67 2.31±0.45 2.45±0.25
aa 2.70±0.32 2.78±0.75 2.52±0.31 2.66±0.29
aa-AA 0.28** 0.20** 0.21** 0.21**

Fig. 4

Phenotypic effect of marker on content of VLCSFA in RIL population VLCSFA: very long-chain saturated fatty acid; a: GM2246-2; b: AGGS1236. "

Fig. 5

Analysis of gene ontology enrichments"

[1] 廖伯寿 . 花生(中国种植业优质高产技术丛书). 武汉: 湖北科学技术出版社, 2003. pp 5-6.
Liao B S . Peanut (China’s Planting Industry High-quality and High-yield Technology Series). Wuhan: Hubei Scientific and Technical Publishers, 2003. pp 5-6(in Chinese).
[2] 顾黎 . 花生油中脂肪酸组成的气相色谱——质谱分析. 林区教学, 2007, ( 2):124-125.
Gu L . Gas chromatography: mass spectrometry analysis of fatty acid composition in peanut oil. Teach For Region, 2007, ( 2):124-125 (in Chinese).
[3] 熊秋芳, 张效明, 文静, 李兴华, 傅廷栋, 沈金雄 . 菜籽油与不同食用植物油营养品质的比较——兼论油菜品质的遗传改良. 中国粮油学报, 2014,29(6):122-128.
Xiong Q F, Zhang X M, Wen J, Li X H, Fu T D, Shen J X . Comparison of nutritional values between rapeseed oil and several other edible vegetable oils: discussion of rapeseed quality genetic improvement. J Chin Cereal Oil Ass, 2014,29(6):122-128 (in Chinese with English abstract).
[4] 郑畅, 杨湄, 周琦, 黄凤洪, 邓乾春, 郭萍梅, 刘昌盛 . 高油酸花生油与普通油酸花生油的脂肪酸、微量成分含量和氧化稳定性. 中国油脂, 2014,39(11):40-43.
Zheng C, Yang M, Zhou Q, Huang F H, Deng Q C, Guo P M, Liu C S . Contents of fatty acid and minor component and oxidative stability of high oleic peanut oil and normal oleic peanut oil. China Oil, 2014,39(11):40-43 (in Chinese with English abstract).
[5] Braddock J C, Sims C A, O’Keefe S F . Flavor and oxidative stability of roasted high oleic acid peanuts. J Food Sci, 1995,60:489-493.
[6] Bolton G E, Sanders T H . Effect of roasting oil composition on the stability of roasted high-oleic peanuts. J Am Oil Chem Soc, 2002,79:129-132.
[7] Talcott S T, Passeretti S, Duncan C E, Gorbet D W . Polyphenolic content and sensory properties of normal and high oleic acid peanuts. Food Chem, 2005,90:379-388.
doi: 10.1016/j.foodchem.2004.04.011
[8] 苏宜香, 郭艳 . 膳食脂肪酸构成及适宜推荐比值的研究概况. 中国油脂, 2003,28(1):31-34.
Su Y X, Guo Y . A review of dietary fatty acid composition and recommended optimal ratio. China Oil, 2003,28(1):31-34 (in Chinese with English abstract).
[9] 田永全 . 脂肪酸的营养功能. 中国食物与营养, 2007, ( 8):51-52.
Tian Y Q . Nutritional function of fatty acids. Food Nutr China, 2007, ( 8):51-52 (in Chinese).
[10] 姚云游 . 花生油与橄榄油营养价值的比较. 中国油脂, 2005,30(4):66-68.
Yao Y Y . Comparison of peanut oil and olive oil in nutritional value. China Oil, 2005,30(4):66-68 (in Chinese with English abstract).
[11] Wang M L, Khera P, Pandey M K, Wang H, Qiao L, Feng S, Tonnis B, Barkley N A, Pinnow D, Holbrook C C, Clubreath A K, Varshney R K, Guo B . Genetic mapping of QTLs controlling fatty acids provided insights into the genetic control of fatty acid synthesis pathway in peanut (Arachis hypogaea L.). PLoS One, 2015,10:e0119454.
doi: 10.1371/journal.pone.0119454 pmid: 25849082
[12] 郭建斌, 吴贝, 陈伟刚, 黄莉, 陈玉宁, 周小静, 罗怀勇, 刘念, 任小平, 姜慧芳 . 花生品种主要脂肪酸含量在不同生态区的稳定性. 作物学报, 2019,45:676-682.
doi: 10.3724/SP.J.1006.2019.84132
Guo J B, Wu B, Chen W G, Huang L, Chen Y N, Zhou X J, Luo H Y, Liu N, Ren X P, Jiang H F . Stability of major fatty acids of peanut varieties grown in different ecological regions. Acta Agron Sin, 2019,45:676-682 (in Chinese with English abstract).
doi: 10.3724/SP.J.1006.2019.84132
[13] 李丹阳, 刘凯歌, 卢济明, 杨鑫雷, 崔顺立, 穆国俊, 陈焕英, 刘立峰 . 花生SSR标记与品质性状的相关分析. 分子植物育种, 2017,15(7):226-232.
Li D Y, Liu K G, Lu J M, Yang X L, Cui S L, Mu G J, Chen H Y, Liu L F . Correlation analysis of SSR markers and quality traits in peanut (Arachis hypogaea L.). Mol Plant Breed, 2017,15(7):226-232 (in Chinese with English abstract).
[14] 刘芳, 王积军, 汤松 . 我国高油酸花生品种选育与推广应用. 中国农技推广, 2017,33(1):14-15.
Liu F, Wang J J, Tang S . Breeding, extension and application of high oleic peanut varieties in China. China Agric Technol Extension, 2017,33(1):14-15 (in Chinese).
[15] Worthington R E, Hammons R O, Allison J R . Varietal differences and seasonal effects on fatty acid composition and stability of oil from 82 peanut genotypes. J Agric Food Chem, 1972,20:729-730.
doi: 10.1021/jf60181a032
[16] Huang L, Ren X P, Wu B, Li X P, Chen W G, Zhou X J, Chen Y N, Pandey M K, Jiao Y Q, Luo H Y, Lei Y, Varsheny R K, Liao B S, Jiang H F . Development and deployment of a high-density linkage map identified quantitative trait loci for plant height in peanut (Arachis hypogaea L.). Sci Rep, 2016,6:39478.
doi: 10.1038/srep39478 pmid: 27995991
[17] Bertioli D J, Cannon S B, Froenicke L, Huang G, Farmer A D, Cannon E K, Liu X, Gao Y D, Clevenger J, Dash S, Ren L H, Moretzsohn M C, Shirasawa K, Huang W, Vidigal B, Abernathy B, Chu Y, Niederhuth C E, Umale P, Araújo A C G, Kozik A, Kim K D, Burow M D, Varshney R K, Wang X J, Zhang X Y, Barkley N, Guimarães P M, Isobe S, Guo B Z, Liao B S, Stalker H T, Schmitz R J, Scheffler B E, Leal-Bertioli S C M, Xun X, Jackson S A, Michelmore R, Ozias-Akins P . The genome sequences of Arachis duranensis and Arachis ipaensis, the diploid ancestors of cultivated peanut. Nat Genet, 2016,48:438-446.
doi: 10.1038/ng.3517 pmid: 26901068
[18] 廖伯寿, 雷永, 王圣玉, 李栋, 黄家权, 姜慧芳, 任小平 . 花生重组近交系群体的遗传变异与高油种质的创新. 作物学报, 2008,34:999-1004.
doi: 10.3724/SP.J.1006.2008.00999
Liao B S, Lei Y, Wang S Y, Li D, Huang J Q, Jiang H F, Ren X P . Genetic diversity of peanut RILs and enhancement for high oil genotypes. Acta Agron Sin, 2008,34:999-1004 (in Chinese with English abstract).
doi: 10.3724/SP.J.1006.2008.00999
[19] 廖伯寿, 雷永, 李栋, 王圣玉, 黄家权, 任小平, 姜慧芳, 晏立英 . 利用RIL群体创造抗黄曲霉兼抗青枯病的高油花生新种质. 作物学报, 2010,36:1296-1301.
Liao B S, Lei Y, Li D, Wang S Y, Huang J Q, Ren X P, Jiang H F, Yan L Y . Novel high oil germplasm with resistance to Aspergillus flavus and bacterial wilt developed from recombinant inbred lines. Acta Agron Sin, 2010,36:1296-1301 (in Chinese with English abstract).
[20] 郭建斌 . 花生含油量及脂肪酸组成的QTL分析. 华中农业大学硕士学位论文, 湖北武汉, 2016.
Guo J B . QTL Analysis for Oil Content and Fatty Ocid Traits in Peanut (Arachis hypogaea L.). MS Thesis of Huazhong Agricultural University, Wuhan, Hubei, China, 2016 (in Chinese with English abstract).
[1] YANG Huan, ZHOU Ying, CHEN Ping, DU Qing, ZHENG Ben-Chuan, PU Tian, WEN Jing, YANG Wen-Yu, YONG Tai-Wen. Effects of nutrient uptake and utilization on yield of maize-legume strip intercropping system [J]. Acta Agronomica Sinica, 2022, 48(6): 1476-1487.
[2] LI Hai-Fen, WEI Hao, WEN Shi-Jie, LU Qing, LIU Hao, LI Shao-Xiong, HONG Yan-Bin, CHEN Xiao-Ping, LIANG Xuan-Qiang. Cloning and expression analysis of voltage dependent anion channel (AhVDAC) gene in the geotropism response of the peanut gynophores [J]. Acta Agronomica Sinica, 2022, 48(6): 1558-1565.
[3] DING Hong, XU Yang, ZHANG Guan-Chu, QIN Fei-Fei, DAI Liang-Xiang, ZHANG Zhi-Meng. Effects of drought at different growth stages and nitrogen application on nitrogen absorption and utilization in peanut [J]. Acta Agronomica Sinica, 2022, 48(3): 695-703.
[4] HUANG Li, CHEN Yu-Ning, LUO Huai-Yong, ZHOU Xiao-Jing, LIU Nian, CHEN Wei-Gang, LEI Yong, LIAO Bo-Shou, JIANG Hui-Fang. Advances of QTL mapping for seed size related traits in peanut [J]. Acta Agronomica Sinica, 2022, 48(2): 280-291.
[5] ZHANG Yan-Bo, WANG Yuan, FENG Gan-Yu, DUAN Hui-Rong, LIU Hai-Ying. QTLs analysis of oil and three main fatty acid contents in cottonseeds [J]. Acta Agronomica Sinica, 2022, 48(2): 380-395.
[6] WANG Ying, GAO Fang, LIU Zhao-Xin, ZHAO Ji-Hao, LAI Hua-Jiang, PAN Xiao-Yi, BI Chen, LI Xiang-Dong, YANG Dong-Qing. Identification of gene co-expression modules of peanut main stem growth by WGCNA [J]. Acta Agronomica Sinica, 2021, 47(9): 1639-1653.
[7] WANG Jian-Guo, ZHANG Jia-Lei, GUO Feng, TANG Zhao-Hui, YANG Sha, PENG Zhen-Ying, MENG Jing-Jing, CUI Li, LI Xin-Guo, WAN Shu-Bo. Effects of interaction between calcium and nitrogen fertilizers on dry matter, nitrogen accumulation and distribution, and yield in peanut [J]. Acta Agronomica Sinica, 2021, 47(9): 1666-1679.
[8] SHI Lei, MIAO Li-Juan, HUANG Bing-Yan, GAO Wei, ZHANG Zong-Xin, QI Fei-Yan, LIU Juan, DONG Wen-Zhao, ZHANG Xin-You. Characterization of the promoter and 5'-UTR intron in AhFAD2-1 genes from peanut and their responses to cold stress [J]. Acta Agronomica Sinica, 2021, 47(9): 1703-1711.
[9] GAO Fang, LIU Zhao-Xin, ZHAO Ji-Hao, WANG Ying, PAN Xiao-Yi, LAI Hua-Jiang, LI Xiang-Dong, YANG Dong-Qing. Source-sink characteristics and classification of peanut major cultivars in North China [J]. Acta Agronomica Sinica, 2021, 47(9): 1712-1723.
[10] ZHANG He, JIANG Chun-Ji, YIN Dong-Mei, DONG Jia-Le, REN Jing-Yao, ZHAO Xin-Hua, ZHONG Chao, WANG Xiao-Guang, YU Hai-Qiu. Establishment of comprehensive evaluation system for cold tolerance and screening of cold-tolerance germplasm in peanut [J]. Acta Agronomica Sinica, 2021, 47(9): 1753-1767.
[11] XUE Xiao-Meng, WU JIE, WANG Xin, BAI Dong-Mei, HU Mei-Ling, YAN Li-Ying, CHEN Yu-Ning, KANG Yan-Ping, WANG Zhi-Hui, HUAI Dong-Xin, LEI Yong, LIAO Bo-Shou. Effects of cold stress on germination in peanut cultivars with normal and high content of oleic acid [J]. Acta Agronomica Sinica, 2021, 47(9): 1768-1778.
[12] HAO Xi, CUI Ya-Nan, ZHANG Jun, LIU Juan, ZANG Xiu-Wang, GAO Wei, LIU Bing, DONG Wen-Zhao, TANG Feng-Shou. Effects of hydrogen peroxide soaking on germination and physiological metabolism of seeds in peanut [J]. Acta Agronomica Sinica, 2021, 47(9): 1834-1840.
[13] ZHANG Wang, XIAN Jun-Lin, SUN Chao, WANG Chun-Ming, SHI Li, YU Wei-Chang. Preliminary study of genome editing of peanut FAD2 genes by CRISPR/Cas9 [J]. Acta Agronomica Sinica, 2021, 47(8): 1481-1490.
[14] DAI Liang-Xiang, XU Yang, ZHANG Guan-Chu, SHI Xiao-Long, QIN Fei-Fei, DING Hong, ZHANG Zhi-Meng. Response of rhizosphere bacterial community diversity to salt stress in peanut [J]. Acta Agronomica Sinica, 2021, 47(8): 1581-1592.
[15] HUANG Bing-Yan, SUN Zi-Qi, LIU Hua, FANG Yuan-Jin, SHI Lei, MIAO Li-Juan, ZHANG Mao-Ning, ZHANG Zhong-Xin, XU Jing, ZHANG Meng-Yuan, DONG Wen-Zhao, ZHANG Xin-You. Genetic analysis of fat content based on nested populations in peanut (Arachis hypogaea L.) [J]. Acta Agronomica Sinica, 2021, 47(6): 1100-1108.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!