Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2020, Vol. 46 ›› Issue (5): 712-724.doi: 10.3724/SP.J.1006.2020.94098

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Genetic diversity of phenotypic traits in 257 Jerusalem artichoke accessions

Meng-Liang ZHAO1,2,Li-Hui WANG1,Yan-Jing REN1,Xue-Mei SUN1,Zhi-Qiang HOU2,Shi-Peng YANG1,Li LI1,Qi-Wen ZHONG1,2,*()   

  1. 1Academy of Agriculture and Forestry, Qinghai University / Key Laboratory of vegetable Genetics and Physiology, Xining 810016, Qinghai, China
    2State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining 810016, Qinghai, China
  • Received:2019-07-16 Accepted:2019-12-26 Online:2020-05-12 Published:2020-01-15
  • Contact: Qi-Wen ZHONG E-mail:13997135755@163.com
  • Supported by:
    This study was supported by the National Natural Science Foundation of China(31660569);the Project of Qinghai Key Laboratory of Vegetable Genetics and Physiology(2020-ZJ-Y02);CAS "Light of West China" Program of the Chinese Academy of Sciences (3-6).

Abstract:

In order to fully understand and effectively utilize the genetic diversity of Jerusalem artichoke accessions in China. 257 Jerusalem artichoke accessions were analyzed. Among them, 12 quantitative traits had 6%-50% of the coefficient of variation, with a mean of 24.75%, which was the highest in tuber weight per plant (50%) and the smallest in growth period (6%). The diversity index (H') of these 12 traits was 1.24-1.53, with a mean of 1.44, which was the highest in tuber number per plant (1.53) and the lowest in leaf width (1.24). The diversity index of the eight quality traits was 0.85-1.08, with a mean of 0.98, which was the highest in tuber habit and the lowest in tuber uniformity, showing rich genetic diversity in most traits. The subordinate function of 257 Jerusalem artichoke accessions was 0.12-0.58, in which the highest was in JA1095 (0.58) with the obvious advantages of flower number and tuber weight per plant. The correlation analysis of 12 quantitative traits indicated that stem diameter, leaf length, flower and disk size could be used as the main target traits for high yield Jerusalem artichoke varieties breeding in the future. The results of principal component analysis showed that the cumulative contribution rate of the seven principal component factors was 66.794%. Among them, the number of flowers, the tuber number per plant, the number of tuber hairs and the smoothness of tuber epidermis were the main factors contributing to the phenotypic difference of Jerusalem artichoke. By cluster analysis, 257 accessions materials were divided into five categories based on 20 traits,among them class I and class II accounted for 85% of the total germplasm resources. This results can provide an important reference for the utilization of Jerusalem artichoke accessions and variety breeding.

Key words: Jerusalem artichoke, accessions, phenotype, genetic diversity

Table 1

Description and data standard for Jerusalem artichoke germplasm..."

形态形状
Morphological character
级别
Grade
赋值标准
Assignment criterion
块茎毛根量
Number of tuber root
多More 1
中Middle 2
少Few 3
大小整齐度
Size uniformity
整齐Regular 1
较整齐Little orderly 2
不整齐Irregular 3
形状整齐度
Shape uniformity
整齐Regular 1
较整齐Little orderly 2
不整齐Irregular 3
块茎皮色
Tuber skin color
白或黄White or yellow 1
粉Pink 2
浅紫Light purple 3
紫色Purple 4
花数量
Number of flowers
少Few 1
中Middle 2
多More 3
块茎习性
Tuber habits
集中Concentrate 1
较集中Little concentrate 2
分散Disperse 3
块茎皮光滑度
Tuber skin smoothness
光滑Smooth 1
较光滑Little smooth 2
不光滑Rough 3
块茎形状
Tuber shape
纺锤形Fusiform 1
棒状Rod like 2
瘤状Warty 3

Table 2

Mean and coefficient of variation of different traits in Jerusalem artichoke resources..."

性状
Trait
平均值
Mean
标准差
SD
最大值
Max.
最小值
Min.
极差
Range
变异系数
CV (%)
多样性指数
H'
生育期Plant period (d) 149.51 9.28 166 109 57 6.00 1.35
株高 Plant height (cm) 228.21 36.60 323.1 94.03 229.07 16.00 1.44
茎粗Stem thickness (mm) 24.78 4.56 37.91 11.7 26.21 18.00 1.47
分枝数Branch number 3.25 1.33 7.67 1 6.67 41.00 1.45
叶长Leaf length (cm) 22.53 2.67 30.4 11.3 19.1 12.00 1.46
叶宽Leaf width (cm) 14.67 1.95 20.1 6.2 13.9 13.00 1.24
花大小Flower size (cm) 4.66 1.40 10.80 4.66 6.14 17.00 1.50
花盘大小Disk size (mm) 12.27 2.20 20.93 7.25 13.68 18.00 1.47
单株块茎数Tuber number per plant 50.61 23.77 138 9 129 47.00 1.35
单株块茎重Tuber weight per plant (kg) 2.94 1.47 6.872 0.18 6.692 50.00 1.53
干物质率Dry matter rate 0.22 0.03 0.3072 0.1582 0.149 13.00 1.48
单果重Single fruit weight (g) 95.29 43.89 239.65 15.73 223.92 46.00 1.50

Table 3

Diversity index and distribution of descriptive traits in Jerusalem artichoke..."

性状
Trait
级别
Grade
赋值标准
Assignment criterion
份数
Accessions
占总数的百分比Percentage (%) 多样性指数
(H°)
花数量
Number of flower
少Few 1 37 14.40 0.99
中Middle 2 132 51.36
多More 3 88 34.24
块茎习性
Tuber habits
集中Concentrate 1 98 38.13 1.08
较集中Little concentrate 2 96 37.35
分散Disperse 3 63 24.51
块茎毛根量
Number of tuber root
多More 1 55 21.40 1.04
中Middle 2 93 36.19
少Few 3 109 42.41
块茎大小整齐度Size uniformity 整齐Regular 1 105 40.86 0.97
较整齐Little orderly 2 122 47.47
不整齐Irregular 3 30 11.67
块茎形状
Tuber shape
整齐Regular 1 131 50.97 0.95
较整齐Little orderly 2 27 10.51
不整齐Irregular 3 99 38.52
块茎形状整齐度Shape uniformity 纺锤形Fusiform 1 78 30.35 0.85
棒状Rod like 2 160 62.26
瘤状Warty 3 19 7.39
块茎表皮光滑度Tuber skin
smoothness
光滑Smooth 1 63 24.51 0.89
较光滑Little smooth 2 161 62.64
不光滑Rough 3 31 12.06
块茎皮色
Tuber skin color
白或黄White or yellow 1 161 62.64 1.06
粉Pink 2 36 14.01
浅紫Light purple 3 21 8.17
紫色Purple 4 39 15.18

Table 4

Subordinate function of 12 index in 257 Jerusalem artichoke germplasm resources..."

序号
No.
种质名称
Germplasm name
来源
Origin
隶属函数均值
Subordinate
function
序号
No.
种质名称
Germplasm
name
来源
Origin
隶属函数均值
Subordinate
function
1 JA1001 中国China 0.401 130 JA1156 中国China 0.429
2 JA1002 中国China 0.450 131 JA1157 中国China 0.521
3 JA1003 中国China 0.409 132 JA1158 中国China 0.500
4 JA1004 中国China 0.402 133 JA1159 中国China 0.388
5 JA1005 中国China 0.455 134 JA1160 中国China 0.468
6 JA1006 中国China 0.417 135 JA1161 中国China 0.356
7 JA1007 中国China 0.501 136 JA1162 中国China 0.497
8 JA1008 中国China 0.482 137 JA1163 中国China 0.449
9 JA1009 中国China 0.405 138 JA1164 中国China 0.493
10 JA1010 中国China 0.440 139 JA1165 中国China 0.458
11 JA1011 中国China 0.477 140 JA1166 中国China 0.409
12 JA1012 中国China 0.408 141 JA1167 中国China 0.395
13 JA1013 中国China 0.466 142 JA1168 中国China 0.543
14 JA1014 中国China 0.510 143 JA1169 中国China 0.501
15 JA1015 中国China 0.460 144 JA2001 丹麦Denmark 0.462
16 JA1016 中国China 0.437 145 JA2002 丹麦Denmark 0.522
17 JA1017 中国China 0.492 146 JA2003 丹麦Denmark 0.379
18 JA1018 中国China 0.375 147 JA2004 丹麦Denmark 0.392
19 JA1019 中国China 0.397 148 JA2005 丹麦Denmark 0.453
20 JA1020 中国China 0.420 149 JA2006 丹麦Denmark 0.373
21 JA1021 中国China 0.471 150 JA2007 丹麦Denmark 0.490
22 JA1022 中国China 0.455 151 JA2008 丹麦Denmark 0.410
23 JA1023 中国China 0.365 152 JA2009 丹麦Denmark 0.479
24 JA1024 中国China 0.363 153 JA2010 丹麦Denmark 0.123
25 JA1025 中国China 0.420 154 JA2011 丹麦Denmark 0.165
26 JA1026 中国China 0.341 155 JA2012 丹麦Denmark 0.180
27 JA1027 中国China 0.379 156 JA2013 丹麦Denmark 0.292
28 JA1028 中国China 0.340 157 JA2014 丹麦Denmark 0.504
29 JA1029 中国China 0.441 158 JA2015 丹麦Denmark 0.465
30 JA1030 中国China 0.517 159 JA2016 丹麦Denmark 0.446
31 JA1031 中国China 0.378 160 JA2017 法国France 0.504
32 JA1032 中国China 0.409 161 JA2018 法国France 0.478
33 JA1033 中国China 0.336 162 JA2019 法国France 0.488
34 JA1034 中国China 0.457 163 JA2020 法国France 0.456
35 JA1039 中国China 0.483 164 JA2021 法国France 0.498
36 JA1040 中国China 0.502 165 JA2022 法国France 0.496
37 JA1060 中国China 0.524 166 JA2023 法国France 0.486
38 JA1061 中国China 0.428 167 JA2024 法国France 0.459
39 JA1062 中国China 0.418 168 JA2025 法国France 0.472
40 JA1063 中国China 0.455 169 JA2026 法国France 0.452
41 JA1064 中国China 0.497 170 JA2027 法国France 0.468
42 JA1065 中国China 0.534 171 JA2028 法国France 0.358
43 JA1066 中国China 0.450 172 JA2029 法国France 0.463
44 JA1067 中国China 0.514 173 JA2030 法国France 0.459
45 JA1068 中国China 0.437 174 JA2031 法国France 0.459
46 JA1069 中国China 0.381 175 JA2032 法国France 0.472
47 JA1070 中国China 0.419 176 JA2033 法国France 0.483
48 JA1071 中国China 0.434 177 JA2034 法国France 0.564
49 JA1072 中国China 0.473 178 JA2035 法国France 0.306
50 JA1073 中国China 0.451 179 JA2036 法国France 0.472
51 JA1074 中国China 0.498 180 JA2037 法国France 0.423
52 JA1075 中国China 0.486 181 JA2038 法国France 0.490
53 JA1076 中国China 0.498 182 JA2039 法国France 0.378
54 JA1077 中国China 0.491 183 JA2040 法国France 0.481
55 JA1078 中国China 0.447 184 JA2041 法国France 0.447
56 JA1079 中国China 0.530 185 JA2042 法国France 0.409
57 JA1080 中国China 0.449 186 JA2043 法国France 0.437
58 JA1081 中国China 0.540 187 JA2044 泰国Thailand 0.383
59 JA1082 中国China 0.377 188 JA2046 泰国Thailand 0.382
60 JA1083 中国China 0.438 189 JA2047 泰国Thailand 0.528
61 JA1084 中国China 0.442 190 JA2048 泰国Thailand 0.387
62 JA1085 中国China 0.491 191 JA2049 泰国Thailand 0.471
63 JA1086 中国China 0.485 192 JA2050 泰国Thailand 0.328
64 JA1087 中国China 0.559 193 JA2051 泰国Thailand 0.524
65 JA1088 中国China 0.478 194 JA2052 泰国Thailand 0.537
66 JA1089 中国China 0.505 195 JA2053 泰国Thailand 0.290
67 JA1090 中国China 0.448 196 JA2054 泰国Thailand 0.437
68 JA1091 中国China 0.449 197 JA2055 泰国Thailand 0.469
69 JA1092 中国China 0.482 198 JA2056 泰国Thailand 0.421
70 JA1093 中国China 0.475 199 JA2057 泰国Thailand 0.384
71 JA1094 中国China 0.436 200 JA2058 泰国Thailand 0.446
72 JA1095 中国China 0.580 201 JA2059 泰国Thailand 0.330
73 JA1096 中国China 0.507 202 JA2060 泰国Thailand 0.458
74 JA1097 中国China 0.463 203 JA2061 泰国Thailand 0.263
75 JA1098 中国China 0.493 204 JA2062 泰国Thailand 0.329
76 JA1099 中国China 0.504 205 JA2063 泰国Thailand 0.342
77 JA1100 中国China 0.449 206 JA2064 泰国Thailand 0.373
78 JA1101 中国China 0.419 207 JA2065 泰国Thailand 0.362
79 JA1102 中国China 0.475 208 JA2066 泰国Thailand 0.286
80 JA1103 中国China 0.488 209 JA2067 泰国Thailand 0.410
81 JA1104 中国China 0.462 210 JA2068 泰国Thailand 0.355
82 JA1105 中国China 0.517 211 JA2069 泰国Thailand 0.340
83 JA1106 中国China 0.394 212 JA2070 泰国Thailand 0.468
84 JA1108 中国China 0.445 213 JA2071 泰国Thailand 0.390
85 JA1109 中国China 0.426 214 JA2072 加拿大Canada 0.506
86 JA1111 中国China 0.460 215 JA2074 中国China 0.474
87 JA1112 中国China 0.514 216 JA2076 中国China 0.445
88 JA1113 中国China 0.427 217 JA2077 中国China 0.434
89 JA1114 中国China 0.428 218 JA2080 中国China 0.514
90 JA1115 中国China 0.376 219 JA3001 中国China 0.417
91 JA1116 中国China 0.452 220 JA3003 中国China 0.496
92 JA1117 中国China 0.488 221 JA3013 中国China 0.435
93 JA1118 中国China 0.485 222 JA3014 中国China 0.445
94 JA1119 中国China 0.445 223 JA3021 中国China 0.551
95 JA1120 中国China 0.485 224 JA3022 中国China 0.494
96 JA1121 中国China 0.454 225 JA3034 中国China 0.386
97 JA1122 中国China 0.464 226 JA3035 中国China 0.395
98 JA1123 中国China 0.451 227 JA3036 中国China 0.391
99 JA1124 中国China 0.423 228 JA3052 中国China 0.459
100 JA1125 中国China 0.485 229 JA3053 中国China 0.481
101 JA1126 中国China 0.432 230 JA3055 中国China 0.416
102 JA1127 中国China 0.393 231 JA3061 中国China 0.380
103 JA1128 中国China 0.457 232 JA3062 中国China 0.425
104 JA1129 中国China 0.511 233 JA3063 中国China 0.349
105 JA1130 中国China 0.456 234 JA3065 中国China 0.404
106 JA1131 中国China 0.443 235 JA3071 中国China 0.441
107 JA1132 中国China 0.532 236 JA3073 中国China 0.468
108 JA1133 中国China 0.382 237 JA3082 中国China 0.342
109 JA1134 中国China 0.465 238 JA3087 中国China 0.396
110 JA1136 中国China 0.430 239 JA3088 中国China 0.439
111 JA1137 中国China 0.339 240 JA3090 中国China 0.448
112 JA1138 中国China 0.480 241 JA4001 中国China 0.445
113 JA1139 中国China 0.480 242 JA4002 中国China 0.447
114 JA1140 中国China 0.422 243 JA4003 中国China 0.363
115 JA1141 中国China 0.522 244 JA4004 中国China 0.353
116 JA1142 中国China 0.480 245 JA4005 中国China 0.403
117 JA1143 中国China 0.520 246 JA4006 中国China 0.457
118 JA1144 中国China 0.215 247 JA4007 中国China 0.463
119 JA1145 中国China 0.481 248 JA4008 中国China 0.388
120 JA1146 中国China 0.495 249 JA4009 中国China 0.407
121 JA1147 中国China 0.487 250 JA4010 中国China 0.484
122 JA1148 中国China 0.506 251 JA2082 中国China 0.467
123 JA1149 中国China 0.401 252 JA3091 中国China 0.482
124 JA1150 中国China 0.522 253 JA3092 中国China 0.396
125 JA1151 中国China 0.405 254 JA3094 中国China 0.325
126 JA1152 中国China 0.454 255 JA3095 中国China 0.329
127 JA1153 中国China 0.491 256 JA4011 中国China 0.444
128 JA1154 中国China 0.473 257 JA4012 中国China 0.439
129 JA1155 中国China 0.383

Table 5

Correlation coefficient among quantitative characters of Jerusalem artichoke germplasm resources..."

生育期Growing period duration (d) 株高
Plant height (cm)
茎粗
Stem thickness (mm)
分枝数
Branch number
叶长
Leaf length (cm)
叶宽
Leaf width (cm)
花大小
Flower size (cm)
花盘大小Disk size (mm) 单株块茎数Tuber number per plant 单株块茎重Tuber weight per plant (kg) 干物质率
Dry matter rate
单果重
Single fruit weight (g)
生育期
Growing period duration
1
株高
Plant height
0.195** 1
茎粗
Stem thickness
0.435** 0.421** 1
分枝数
Branch number
-0.028 0.050 -0.170** 1
叶长
Leaf length
0.305** 0.570** 0.367** 0.049 1
叶宽
Leaf width
0.312 0.661** 0.322** 0.064 0.735** 1
花大小
Flower size
0.194** -0.217** 0.249** 0.304** 0.280** 0.227** 1
花盘大小
Disk size
-0.126* -0.038 -0.113 -0.279** -0.081 -0.167** 0.166** 1
单株块茎数
Tuber number per plant
-0.012 0.028 -0.106 0.189** -0.119 0.087 0.030 -0.039 1
单株块茎重
Tuber weight per plant
0.272** 0.130* 0.425 0.246** 0.220** 0.131* 0.294** -0.275** 0.294** 1
干物质率
Dry matter rate
-0.235** 0.106 -0.338** -0.115 -0.068 0.100 -0.174** 0.371** 0.120 -0.549** 1**
单果重
Single fruit weight
0.212** 0.167** 0.382** 0.086 0.232** 0.097 -0.156* -0.224** -0.222** 0.574** -0.576** 1

Table 6

Principle components analysis of morphological traits of Jerusalem artichoke germplasm resources..."

主成分特征 Eigenvector of the principal component
PC1 PC2 PC3 PC4 PC5 PC6 PC7
生育期Growing period duration 0.133 -0.007 0.144 0.131 -0.268 0.097 -0.249
株高Plant height 0.138 0.192 0.190 0.063 0.102 -0.118 0.015
茎粗Stem thickness 0.178 -0.027 0.188 -0.010 -0.134 0.145 0.006
分枝数Branch number 0.063 0.020 -0.308 0.186 0.165 -0.237 0.018
叶长Leaf length 0.172 0.164 0.143 -0.028 -0.001 -0.142 0.141
叶宽Leaf width 0.155 0.225 0.118 0.040 0.073 -0.157 -0.044
花大小Flower size 0.134 0.064 -0.166 0.173 -0.213 0.143 0.345
花盘大小Disk size -0.112 0.059 0.183 -0.054 -0.020 0.169 0.254
花数量Number of flower 0.025 0.095 -0.177 0.062 0.127 0.355 0.606
块茎习性Tuber habits -0.098 0.065 0.078 0.259 -0.100 0.045 -0.246
块茎毛根量Number of tuber root -0.028 0.001 -0.088 0.340 -0.458 -0.110 0.104
块茎大小整齐度Size uniformity -0.103 -0.097 0.287 0.211 0.128 0.010 0.260
块茎形状Tuber shape -0.051 -0.136 0.278 0.290 0.169 0.002 0.208
单株块茎数Tuber number per plant -0.009 0.042 -0.092 0.384 0.421 0.145 -0.290
单株块茎重Tuber weight per plant 0.183 -0.137 -0.058 0.146 0.227 0.118 -0.130
块茎形状整齐度Shape uniformity 0.035 -0.207 0.017 -0.123 0.229 -0.267 0.173
块茎表皮光滑度Tuber skin smoothness 0.027 0.084 0.023 -0.155 0.130 0.621 -0.185
块茎皮色Tuber skin color -0.024 0.225 -0.008 -0.057 0.207 -0.243 0.096
干物质率Dry matter rate -0.142 0.238 0.052 -0.011 0.070 -0.062 -0.012
单果重Single fruit weight 0.168 -0.182 0.057 -0.086 0.072 -0.046 0.090
特征值Eigenvalue 3.763 2.664 1.976 1.600 1.234 1.122 1.000
方差贡献率Variance contribution 18.816 13.318 9.878 7.998 6.170 5.612 5.001
累计贡献率Accumulative contribution 18.816 32.134 42.012 50.010 56.180 62.350 67.960

Supplementary Fig. 1

Dendrogram of 257 Jerusalem artichoke resources..."

[1] 赵孟良, 孙雪梅, 王丽慧, 李莉 . 43份菊芋种质资源遗传多样性的ISSR分析. 西北农林科技大学学报(自然科学版). 2015,43(9):150-156.
Zhao M L, Sun X M, Wang L H, Li L . ISSR based genetic diversity of 43 Helianthus tuberosus L. J Northwest A&F Univ( Nat Sci Edn), 2015,43(9):150-156 (in Chinese with English abstract).
[2] Kays S J, Kultur F . Genetic variation in Jerusalem artichoke (Helianthus tuberosus L.) flowering date and duration. HortScience, 2005,40:1675-1678.
[3] Kays S J, Nottingham F S. Biology and chemistry of Jerusalem artichoke (Helianthus tuberosus L.). London: CRC Press/Taylor and Francis Group, 2007, 478, ISBN-13: 978-1-4200-4495-9.
[4] Seiler G J . Protein and mineral concentrations in tubers of selected genotypes of wild and cultivated Jerusalem artichoke (Helianthus tuberosus, Asteraceae). Econ Bot, 1990,44:322-335.
[5] Vasić D, Miladinović J, Marjanović-Jeromela A, Skorić D . Variability between Helianthus tuberosus accessions collected in the USA and Montenegro. Helia, 2002,25:79-84.
[6] Berenji J, Sikora V . Variability and stability of tuber yield of Jerusalem artichoke ( Helianthus tuberosus L.). Helia, 2001,24:25-32.
[7] 兴旺, 崔平, 潘荣, 苏宝忠 . 不同国家甜菜种质资源遗传多样性研究. 植物遗传资源学报, 2018,19:76-86.
Xing W, Cui P, Pan R, Su B Z . Genetic diversity of sugar beet from different countries. J Plant Genet Resour, 2018,19:76-86(in Chinese with English abstract).
[8] 黎裕, 李英慧, 杨庆文, 张锦鹏, 张金梅, 邱丽娟, 王天宇 . 基于基因组学的作物种质资源研究: 现状与展望. 中国农业科学, 2015,48:3333-3353.
Li Y, Li Y H, Yang Q W, Zhang J P, Zhang J M, Qiu L J, Wang T Y . Genomics-based crop germplasm research: advances and perspectives. Sci Agric Sin, 2015,48:3333-3353 (in Chinese with English abstract).
[9] 陈雪燕, 王亚娟, 雒景吾, 吉万全 . 陕西省小麦地方品种主要性状的遗传多样性研究. 麦类作物学报, 2007,27:456-460.
Chen X Y, Wang Y J, Luo J W, Ji W Q . Genetic diversity in main characters of wheat landraces in Shaanxi province. J Triticeae Crops, 2007,27:456-460 (in Chinese with English abstract).
[10] 杨丽娟 . 硫代葡萄糖苷标记鉴定萝卜种质资源遗传多样性的研究. 安徽农业大学硕士学位论文, 安徽合肥, 2010.
Yang L J . Studies on Glucosinolates Marker Identify Genetic Diversity of Raphanus sativus Germplasm. MS Thesis of Anhui Agricultural University, Hefei, Anhui, China, 2010 (in Chinese with English abstract).
[11] 李晓曼, 段蒙蒙, 王鹏, 汪精磊, 张晓辉, 邱杨, 王海平, 宋江萍, 李锡香 . 栽培萝卜植株地上部表型多样性分析. 植物遗传资源学报, 2018,19:668-675.
Li X M, Duan M M, Wang P, Wang J L, Zhang X H, Qiu Y, Wang H P, Song J P, Li X X . Phenotypic diversity analysis of cultivated radish ( Raphanus sativus L.). J Plant Genet Resour, 2018,19:668-675 (in Chinese with English abstract).
[12] 赵孟良, 韩睿, 李莉 . 24个菊芋品种(系)遗传多样性的ISSR标记分析. 植物资源与环境学报, 2013,22(4):44-49.
Zhao M L, Han R, Li L . ISSR marker analysis on genetic diversity of twenty-four cultivars (lines) of Helianthus tuberosus. J Plant Resour Environ, 2013,22(4):44-49 (in Chinese with English abstract).
[13] 马胜超, 韩睿, 任鹏鸿, 杨世鹏, 李莉 . 三十份菊芋资源亲缘关系的SRAP分析. 浙江农业学报, 2014,26:1212-1217.
Ma S C, Han R, Ren P H, Yang S P, Li L . Analysis of genetic relationship of 30 Jerusalem artichoke germplasm resources by SRAP markers. Acta Agric Zhejiangensis, 2014,26:1212-1217 (in Chinese with English abstract).
[14] 薛志忠, 杨雅华, 李海山, 张国新, 刘淑君 . 五十八份菊芋种质资源遗传多样性SRAP分析. 北方园艺, 2017,41(21):31-36.
Xue Z Z, Yang Y H, Li H S, Zhang G X, Liu S J . Genetic diversity of fifty-eight Jerusalem artichoke germplasm resources revealed by sequence related amplified polymorphism (SRAP). Northern Hortic, 2017,41(21):31-36 (in Chinese with English abstract).
[15] 韩睿, 赵孟良, 李莉 . 3个菊芋品种的ISSR引物筛选及分子鉴别. 西南农业学报, 2013,26:290-293.
Han R, Zhao M L, Li L . Primers screening and identification of three samples in Helianthus tuberosus L. by ISSR molecular marker. Southwest China J Agric Sci, 2013,26:290-293 (in Chinese with English abstract).
[16] 赵孟良, 刘明池, 钟启文, 何洪巨, 季延海, 李莉 . 不同来源菊芋种质资源品质性状多样性分析. 西北农林科技大学学报(自然科学版), 2018,46(2) : 104-112.
Zhao M L, Liu M C, Zhong Q W, He H J, Ji Y H, Li L . Diversity analysis of quality characters of Helianthus tuberosus Linn from different sources. J Northwest A&F Univ(Nat Sci Edn), 2018,46(2):104-112(in Chinese with English abstract).
[17] 赵孟良, 刘明池, 钟启文, 何洪巨, 季延海, 李莉 . 29份菊芋种质资源氨基酸含量和营养价值评价. 种子, 2018,37(3):55-59.
Zhao M L, Liu M C, Zhong Q W, He H J, Ji Y H, Li L . 29 Jerusalem aritichoke germplasm resources amino acid content and nutritional value evaluation. Seed, 2018,37(3):55-59 (in Chinese with English abstract).
[18] 赵孟良, 刘明池, 钟启文, 何洪巨, 季延海, 李莉 . 菊芋种质资源主要矿质营养元素含量特征与分析评价. 河北农业大学学报, 2017,40(4):31-36.
Zhao M L, Liu M C, Zhong Q W, He H J, Ji Y H, Li L . Content characteristics and analysis valuation of main mineral nutrient elements in 29 Helianthus tuberosus. J Agric Univ Hebei, 2017,40(4):31-36 (in Chinese with English abstract).
[19] 范君华, 刘明, 吴全忠, 艾买尔江·吾斯曼 . 南疆引进的52份菊芋品种资源叶片生理性状主成分和聚类分析. 农学学报, 2016,6(1):66-72.
Fan J H, Liu M, Wu Q Z , Aimaierjiang W S M. Principal component and cluster analysis of leaf physiological traits of 52 Helianthus tuberosus germplasm resources in southern Xinjiang. J Agric, 2016,6(1):66-72 (in Chinese with English abstract).
[20] 赵孟良, 钟启文, 刘明池, 李莉 . 二十二份引进菊芋种质资源的叶片性状分析. 浙江农业学报, 2017,29:1151-1157.
Zhao M L, Zhong Q W, Liu M C, Li L . Leaf traits analysis of 22 Helianthus tuberosus germplasm resources introduced from abroad. Acta Agric Zhejiangensis, 2017,29:1151-1157 (in Chinese with English abstract).
[21] 朱菊华, 孙星, 许斌, 梁婷, 刘明, 缪建, 赵耕毛 . 不同基因型菊芋耐盐生理及其生态适应性研究. 草业学报, 2018,27(6):120-127.
Zhu J H, Sun X, Xu B, Liang T, Liu M, Miao J, Zhao G M . Physiological response and ecological adaptability of different Jerusalem artichoke genotypes to salt stress. Acta Pratac Sin, 2018,27(6):120-127 (in Chinese with English abstract).
[22] 王瑞雄 . 菊芋种质资源耐盐性筛选及遗传多样性分析. 兰州大学硕士学位论文,甘肃兰州, 2018.
Wang R X . Salt Tolerance Screening and Genetic Diversity Analysis of Helianthus tuberosus L. MS Thesis of Lanzhou University, Lanzhou, Gansu, China, 2018 (in Chinese with English abstract).
[23] 韩睿, 熊国富, 钟启文, 李莉, 赵孟良, 李全辉 . 植物新品种特异性,一致性和稳定性测试指南菊芋. NY/T 2503-2013, 2013.
Han R, Xiong G F, Zhong Q W, Li L, Zhao M L, Li Q H . Guidelines for the conduct of tests fro distinctness, uniformity and stability-Jerusalem artichoke, Helianthus tuberosus L. NY/T 2503-2013, 2013.
[24] 都真真, 李锡香, 宋江萍, 武亚红, 赵青, 徐婷, 张晓辉, Barbara H, Hu J G, 王海平, . 228份引进大蒜资源的表型多样性分析及适应性初步评价. 植物遗传资源学报, 2019,20:1186-1196.
Du Z Z, Li X X, Song J P, Wu Y H, Zhao Q, Xu T, Zhang X H, Barbara H, Hu J G, Wang H P . Phenotypic diversity and adaptability analysis of 228 accessions of introduced garlic genetic resources. J Plant Genet Resour, 2019,20:1186-1196 (in Chinese with English abstract).
[25] 梁吉业, 冯晨娇, 宋鹏 . 大数据相关分析综述. 计算机学报, 2016, ( 1):1-18.
Liang J Y, Feng C Q, Song P . A Survey on correlation analysis of big data. J Computers, 2016, ( 1):1-18 (in Chinese with English abstract).
[26] 吴欣明, 郭璞, 池惠武, 方志红, 石永红, 王运琦, 刘建宁, 王赞, 王学敏 . 国外紫花苜蓿种质资源表型性状与品质多样性分析. 植物遗传资源学报, 2018,19:103-111.
Wu X M, Guo P, Chi H W, Fang Z H, Shi Y H, Wang Y Q, Liu J N, Wang Z, Wang X M . Diversity analysis of phenotypic traits and quality characteristics of alfalfa ( Medicago sativa) introduced from abroad germplasm resources. J Plant Genet Resour, 2018,19:103-111 (in Chinese with English abstract).
[27] 江锡兵, 龚榜初, 刘庆忠, 陈新, 吴开云, 邓全恩, 汤丹 . 中国板栗地方品种重要农艺性状的表型多样性. 园艺学报, 2014,41:641-652.
Jiang X B, Gong B C, Liu Q Z, Chen X, Wu K Y, Deng Q E, Tang D . Phenotypic diversity of important agronomic traits of local cultivars of Chinese chestnut. Acta Hortic Sin, 2014,41:641-652 (in Chinese with English abstract).
[28] 马啸 . 老芒麦野生种质资源的遗传多样性及群体遗传结构研究. 四川农业大学博士学位论文,四川雅安, 2006.
Ma X . Studies on Genetic Diversity and Population Structure in Wild Germplasm Collections of Elymus sibiricus L. PhD Dissertation of Sichuan Agricultural University, Ya'an, Sichuan,China, 2006 (in Chinese with English abstract).
[29] 文珊娜 . 灰木莲种质资源遗传多样性研究. 中国林业科学研究院博士学位论文,北京, 2017.
Wen S N . Genetic Diversity of Germplasm Resource of Manglietia conifera Dandy. PhD Dissertation of Chinese Academy of Forestry, Beijing,China, 2017 (in Chinese with English abstract).
[30] 胡志昂, 王洪新 . 遗传多样性研究的原则和方法. 北京: 中国科技出版社, 1994. pp 118-122.
Hu Z A, Wang H X. Principles and Methods of Genetic Diversity Research. Beijing: China Science and Technology Publishing House, 1994. pp 118-122(in Chinese).
[31] 张永明, 孟令国, 张跃伟 . 遗传多样性研究在种质资源保护和利用中的应用. 西藏科技, 2005, ( 4):11-13.
Zhang Y M, Meng L G, Zhang Y W . Application of genetic diversity research in the protection and utilization of germplasm resources. Tibetan Sci Technol, 2005, ( 4):11-13 (in Chinese with English abstract).
[1] XIAO Ying-Ni, YU Yong-Tao, XIE Li-Hua, QI Xi-Tao, LI Chun-Yan, WEN Tian-Xiang, LI Gao-Ke, HU Jian-Guang. Genetic diversity analysis of Chinese fresh corn hybrids using SNP Chips [J]. Acta Agronomica Sinica, 2022, 48(6): 1301-1311.
[2] WANG Ze, ZHOU Qin-Yang, LIU Cong, MU Yue, GUO Wei, DING Yan-Feng, NINOMIYA Seishi. Estimation and evaluation of paddy rice canopy characteristics based on images from UAV and ground camera [J]. Acta Agronomica Sinica, 2022, 48(5): 1248-1261.
[3] WANG Yan-Yan, WANG Jun, LIU Guo-Xiang, ZHONG Qiu, ZHANG Hua-Shu, LUO Zheng-Zhen, CHEN Zhi-Hua, DAI Pei-Gang, TONG Ying, LI Yuan, JIANG Xun, ZHANG Xing-Wei, YANG Ai-Guo. Construction of SSR fingerprint database and genetic diversity analysis of cigar germplasm resources [J]. Acta Agronomica Sinica, 2021, 47(7): 1259-1274.
[4] HAN Bei, WANG Xu-Wen, LI Bao-Qi, YU Yu, TIAN Qin, YANG Xi-Yan. Association analysis of drought tolerance traits of upland cotton accessions (Gossypium hirsutum L.) [J]. Acta Agronomica Sinica, 2021, 47(3): 438-450.
[5] LIU Shao-Rong, YANG Yang, TIAN Hong-Li, YI Hong-Mei, WANG Lu, KANG Ding-Ming, FANG Ya-Ming, REN Jie, JIANG Bin, GE Jian-Rong, CHENG Guang-Lei, WANG Feng-Ge. Genetic diversity analysis of silage corn varieties based on agronomic and quality traits and SSR markers [J]. Acta Agronomica Sinica, 2021, 47(12): 2362-2370.
[6] SUN Qian, ZOU Mei-Ling, ZHANG Chen-Ji, JIANG Si-Rong, Eder Jorge de Oliveira, ZHANG Sheng-Kui, XIA Zhi-Qiang, WANG Wen-Quan, LI You-Zhi. Genetic diversity and population structure analysis by SNP and InDel markers of cassava in Brazil [J]. Acta Agronomica Sinica, 2021, 47(1): 42-49.
[7] Hong-Yan ZHANG,Tao YANG,Rong LIU,Fang JIN,Li-Ke ZHANG,Hai-Tian YU,Jin-Guo HU,Feng YANG,Dong WANG,Yu-Hua HE,Xu-Xiao ZONG. Assessment of genetic diversity by using EST-SSR markers in Lupinus [J]. Acta Agronomica Sinica, 2020, 46(3): 330-340.
[8] MA Yan-Ming, FENG Zhi-Yu, WANG Wei, ZHANG Sheng-Jun, GUO Ying, NI Zhong-Fu, LIU Jie. Genetic diversity analysis of winter wheat landraces and modern bred varieties in Xinjiang based on agronomic traits [J]. Acta Agronomica Sinica, 2020, 46(12): 1997-2007.
[9] MA Yan-Ming, LOU Hong-Yao, CHEN Zhao-Yan, XIAO Jing, XU Lin, NI Zhong-Fu, LIU Jie. Genetic diversity assessment of winter wheat landraces and cultivars in Xinjiang via SNP array analysis [J]. Acta Agronomica Sinica, 2020, 46(10): 1539-1556.
[10] XIE Yuan-Hua,LI Feng-Fei,MA Xiao-Hui,TAN Jia,XIA Sai-Sai,SANG Xian-Chun,YANG Zheng-Lin,LING Ying-Hua. Phenotype characterization and gene mapping of the semi-outcurved leaf mutant sol1 in rice (Oryza sativa L.) [J]. Acta Agronomica Sinica, 2020, 46(02): 204-213.
[11] LIU Yi-Ke,ZHU Zhan-Wang,CHEN Ling,ZOU Juan,TONG Han-Wen,ZHU Guang,HE Wei-Jie,ZHANG Yu-Qing,GAO Chun-Bao. Revealing the genetic diversity of wheat varieties (lines) in China based on SNP markers [J]. Acta Agronomica Sinica, 2020, 46(02): 307-314.
[12] YE Wei-Jun,CHEN Sheng-Nan,YANG Yong,ZHANG Li-Ya,TIAN Dong-Feng,ZHANG Lei,ZHOU Bin. Development of SSR markers and genetic diversity analysis in mung bean [J]. Acta Agronomica Sinica, 2019, 45(8): 1176-1188.
[13] Mi WU,Nian WANG,Chao SHEN,Cong HUANG,Tian-Wang WEN,Zhong-Xu LIN. Development and evaluation of InDel markers in cotton based on whole-genome re-sequencing data [J]. Acta Agronomica Sinica, 2019, 45(2): 196-203.
[14] Yuan LU,Wei-Da AI,Qing HAN,Yi-Fa WANG,Hong-Yang LI,Yu-Ji QU,Biao SHI,Xue-Fang SHEN. Genetic diversity and population structure analysis by SSR markers in waxy maize [J]. Acta Agronomica Sinica, 2019, 45(2): 214-224.
[15] XUE Yan-Tao,LU Ping,SHI Meng-Sha,SUN Hao-Yue,LIU Min-Xuan,WANG Rui-Yun. Genetic diversity and population genetic structure of broomcorn millet accessions in Xinjiang and Gansu [J]. Acta Agronomica Sinica, 2019, 45(10): 1511-1521.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!