Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2020, Vol. 46 ›› Issue (5): 725-733.doi: 10.3724/SP.J.1006.2020.94145

• TILLAGE & CULTIVATION·PHYSIOLOGY & BIOCHEMISTRY • Previous Articles     Next Articles

Controlling efficiency against clubroot disease of rapeseed by mixed-cropping of susceptible and resistant cultivars

Qing-Yun GUO1,Bo WANG1,*(),Jie KUAI1,Chun-Yu ZHANG1,Gen-Ze LI2,Hui-Xian KANG3,Ting-Dong FU1,Guang-Sheng ZHOU1   

  1. 1Key Laboratory of Crop Physiology, Ecology and Cultivation (The Middle Reaches of the Yangtze River) of Ministry of Agriculture / College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, China
    2Industrial Crop Research Institute, Yunnan Academy of Agricultural Sciences, Kunming 650205, Yunnan, China
    3Linxiang Agricultural Technique Extension Station, Lincang City, Linxiang 677000, Yunnan, China
  • Received:2019-09-28 Accepted:2019-12-26 Online:2020-05-12 Published:2020-01-13
  • Contact: Bo WANG E-mail:wangbo@mail.hzau.edu.cn
  • Supported by:
    This study was supported by the National Key Research and Development Program of China(2018YFD1000900);the Technological Innovation Major Project of the Science and Technology Department of Hubei Province(2017ABA064);and the Fundamental Research Funds for the Central Universities.(2662017JC005)

Abstract:

In recent years, rapeseed clubroot disease has spread widely in China, and the cost of the chemical control is high while the efficiency is low. Using resistant varieties is the most economical and efficient way to control this disease. Mixed-cropping different resistant varieties can improve the control efficiency of crop diseases, but the research on it has not been reported. In two naturally-infested locations of clubroot diseases in Jixi of Anhui province and Linxiang of Yunnan province, two pairs of susceptible and resistant cultivars were used (highly resistant variety Huashuang 5R mixed with highly susceptible variety Huashuang 5 and highly resistant variety Huayouza 62R mixed with highly susceptible variety Huayouza 62). Seeds of each pair were mixed at different ratios (10:0, 1:9, 2:8, 3:7, and 0:10) and sown in the two locations respectively. The incidence rate was surveyed after occurrence of clubroot disease. The mixed-cropping at different ratios of susceptible and resistant cultivars decreased the incidence and disease index of clubroot disease, and stabilized the yield and quality of rapeseed. The actual incidence rate in the mixed cropping treatment increased with the decrease of resistant cultivar proportion, which was from 5.7% to 17.1% at Jixi and from 4.4% to 32.1% at Linxiang for Huashuang 5R/Huashang 5, while from 5.7% to 18.6% at Jixi and from 2.1% to 12.0% at Linxiang for Huayouza 62R/Huayouza 62 respectively, and significantly lower than the theoretical disease incidence rate. The relative effectiveness of mixture of the two pairs of cultivars were lower than 1, which indicates that the mixed-cropping of susceptible and resistant cultivars has positive effect. This study mainly clarified the control effect of mixed-cropping two different Near-isogenic lines with different resistance levels on clubroot disease, which can provide new ideas and countermeasures for the prevention of clubroot disease.

Key words: rapeseed, clubroot disease, near-isogenic lines, mixed-cropping

Table 1

Incidence under different treatments in different plaeas"

地点
Place
组合
Combination
比例
Ratio
发病率A
Incidence rateA (%)
病情分级A
Disease scaleA
病情
指数A
Disease indexA
发病率B
Incidence rateB (%)
病情分级B
Disease scaleB
病情
指数B
Disease indexB
理论值Theoretical 实际值Actual 0 1 2 3 理论值Theoretical 实际值
Actual
0 1 2 3
绩溪
Jixi
华双5号:华双5 R
Huashuang 5(S): Huashuang 5R(R)
0:10 0 0 c 30 0 0 0 0 d 0.3 0.3 b 30 0 0 0 0 d
1:9 10.0 5.7 c 28 0 2 0 4.4 c 10.3 0.6 b 28 0 1 1 5.6 b
2:8 20.0 16.1 b 25 1 1 3 13.3 b 20.2 0.8 b 28 1 0 1 4.4 c
3:7 30.0 17.1 b 25 10 3 1 11.1 b 30.2 1.4 b 29 0 0 1 3.3 c
10:0 100.0 100.0 a 0 0 2 28 97.8 a 100.0 100.0 a 0 0 0 30 100.0 a
理论值Theoretical 实际值Actual 0 1 2 3 理论值Theoretical 实际值
Actual
0 1 2 3
华油杂62号:
华油杂62 R
Huayouza 62(S): Huayouza 62R(R)
0:10 0 0 e 30 0 0 0 0 e 0 0 d 30 0 0 0 0 d
1:9 10.0 5.7 d 28 1 1 0 3.3 d 10.0 3.6 c 29 0 1 0 2.2 c
2:8 20.0 10.9 c 27 2 1 0 4.4 c 20.0 4.1 c 29 0 1 0 2.2 c
3:7 30.0 18.6 b 25 4 1 1 10.0 b 30.0 12.4 b 27 2 1 0 4.5 d
10:0 100.0 100.0 a 0 0 0 30 100.0 a 100.0 100.0 a 0 0 0 30 100.0 a
临翔
Linxiang
华双5号:华双5 R Huashuang 5(S): Huashuang 5R(R) 0:10 2.0 2.0 c 29 1 0 0 1.0 c 2.2 2.2 b 29 0 0 1 3.3 d
1:9 5.0 4.4 bc 28 0 1 1 5.6 b 8.1 4.4 b 29 0 0 1 3.3 d
2:8 8.0 7.2 bc 28 0 0 2 6.7 b 14.0 7.8 b 28 0 0 2 6.7 c
3:7 11.0 10.1 b 27 1 1 1 6.7 b 20.0 11.1 b 27 0 1 2 8.9 b
10:0 32.1 32.1 a 20 0 0 10 33.3 a 61.1 61.1 a 12 0 1 17 58.9 a
华油杂62号:
华油杂62 R
Huayouza 62(S): Huayouza 62R(R)
0:10 0 0 e 30 0 0 0 0 e 8.4 8.4 d 27 1 2 0 5.6 d
1:9 7.7 2.1 d 29 1 0 0 1.1 d 16.5 12.0 c 26 2 1 1 7.8 c
2:8 15.5 8.0 c 28 2 0 0 2.2 c 24.5 13.4 c 26 1 2 1 8.9 b
3:7 23.3 12.0 b 26 3 1 0 5.6 b 32.6 16.0 b 25 3 1 1 8.9 b
10:0 77.5 77.5 a 7 0 1 22 75.6 a 88.9 88.9 a 3 0 27 27 90.0 a

Table 2

Relative effectiveness of mixture (REM) under different treatments"

组合
Combination
比例
Ratio
绩溪Jixi 临翔 Linxiang
苗期Seedling 蕾薹期Budding 蕾薹期Budding 成熟期Maturation
华双5号:华双5 R Huashuang 5(S): Huashuang 5R(R) 0:10
1:9 0.57 0.06 0.88 0.54
2:8 0.81 0.04 0.90 0.56
3:7 0.57 0.05 0.92 0.56
10:0
华油杂62号:华油杂62 R
Huayouza 62(S):
Huayouza 62R(R)
0:10
1:9 0.57 0.36 0.27 0.73
2:8 0.56 0.21 0.52 0.55
3:7 0.62 0.41 0.52 0.50
10:0

Table 3

Yield and yield components under different treatments in Jixi and Linxiang"

组合
Combination
地点
Place
比例
Proportion
产量
Yield
(kg hm-2)
实收密度
Density (×104 plants hm-2)
单株产量
Yield per plant
(g plant-1)
单株角果数
Silique no.
per plant
每角果粒数
Seed no. per silique
千粒重
1000-seed weight (g)
华双5号:华双5号R
Huashuang 5(S): Huashuang 5R(R)
绩溪
Jixi
0:10 2719.5 a 28.1 a 11.5 b 176.0 b 18.8 b 3.48 d
1:9 2545.5 ab 26.9 a 12.6 ab 181.7 ab 19.9 a 3.53 c
2:8 2506.5 ab 22.7 b 13.5 a 187.3 ab 20.0 a 3.61 a
3:7 2466.0 b 22.1 b 13.7 a 192.7 a 20.1 a 3.58 b
10:0 0 c 0 c 0 c 0 c 0 c 0 e
临翔Linxiang 0:10 3019.5 a 30.1 a 10.8 c 187.0 d 19.6 b 2.95 b
1:9 2981.4 a 29.2 a 11.2 b 194.7 b 20.1 ab 2.87 b
2:8 2938.2 a 26.7 b 14.3 a 190.7 c 20.6 ab 3.63 a
3:7 2846.7 a 26.0 b 14.5 a 202.3 a 21.0 a 3.41 a
10:0 2579.1 b 24.7 c 10.6 c 149.7 e 19.4 b 3.65 a
华油杂62号:华油杂62R
Huayouza 62(S):
Huayouza 62R(R)
绩溪
Jixi
0:10 3383.3 a 25.7 a 13.2 b 180.7 b 20.6 c 3.54 b
1:9 3142.2 ab 22.3 b 14.1 a 186.5 a 21.2 b 3.57 b
2:8 2904.4 b 20.8 b 13.9 ab 176.0 c 21.6 b 3.68 a
3:7 3092.2 b 20.7 b 14.9 a 180.0 b 22.7 a 3.66 a
10:0 0 c 0 c 0 c 0 d 0 d 0 c
临翔
Linxiang
0:10 3413.7 a 31.5 a 10.8 b 180.7 c 19.4 a 3.08 b
1:9 3158.8 b 28.1 b 11.3 a 191.7 a 19.2 a 3.07 b
2:8 3058.1 b 28.5 b 10.7 b 184.5 b 19.2 a 3.02 c
3:7 2776.3 c 28.0 b 9.9 c 177.2 d 18.5 b 3.02 c
10:0 2527.3 d 26.6 b 9.5 c 160.5 e 18.5 b 3.20 a

Table 4

Difference of rapeseed quality under different treatments in Jixi and Linxiang (%)"

组合
Combination
比例
Ratio
绩溪 Jixi 临翔 Linxiang
含油量
Oil content
蛋白质
Protein
含油量
Oil content
蛋白质
Protein
华双5号:华双5号R
Huashuang 5(S) : Huashuang 5R(R)
0:10 48.30 a 21.17 a 44.16 b 23.25 a
1:9 49.31 a 20.71 a 44.59 ab 22.44 ab
2:8 49.05 a 19.22 a 45.65 a 21.96 b
3:7 48.61 a 19.00 a 44.60 ab 21.98 b
10:0 44.88 ab 22.60 ab
华油杂62号:华油杂62 R
Huayouza 62(S) : Huayouza 62R(R)
0:10 45.12 a 20.26 a 42.04 b 25.21 a
1:9 45.05 a 20.24 a 42.20 ab 24.08 a
2:8 45.91 a 19.15 a 42.31 ab 24.34 a
3:7 46.22 a 19.06 a 43.22 a 24.28 a
10:0 43.07 ab 24.33 a

Table 5

Amino acid content in rapeseed under different treatments for Huashuang 5(S):Huashuang 5R(R) "

氨基酸
Amino acid
绩溪Jixi 临翔Linxiang
比例Ratio 变异系数
CV (%)
比例Ratio 变异系数
CV (%)
0:10 3:7 0:10 3:7 10:0
中性 Phe 0.82 0.80* 1.51 0.90 ab 0.86 b 0.92 a 3.51
Neutral Lle 0.81 0.78* 2.07 0.85 ab 0.82 b 0.88 a 3.87
Thr 0.75 0.70* 3.58 0.73 b 0.67 c 0.85 a 10.27
Ser 0.61 0.56* 6.11 0.53 b 0.44 b 0.74 a 22.50
Met 0.25 0.23* 3.49 0.23 b 0.24 b 0.25 a 3.15
Val 1.03 1.00* 1.85 1.14 a 1.12 a 1.15 a 2.73
Leu 1.26 1.24 1.20 1.40 ab 1.33 b 1.44 a 4.54
Tyr 0.52 0.52 1.60 0.52 a 0.48 c 0.60 a 9.61
Pro 1.19 1.19 1.92 1.40 a 1.30 b 1.33 b 3.76
Gly 1.02 1.00 1.08 1.11 a 1.07 a 1.10 a 2.88
Ala 0.85 0.84 1.54 0.96 a 0.93 a 0.95 a 2.18
碱性 Lys 1.38 1.35* 1.20 1.51 a 1.40 b 1.53 a 4.62
Basic Arg 1.22 1.16* 2.41 1.43 a 1.34 b 1.46 a 3.71
His 0.61 0.57* 3.48 0.64 a 0.62 a 0.63 a 5.42
酸性 Glu 3.37 3.46 3.00 3.89 a 3.65 b 3.65 b 3.72
Acidic Asp 1.36 1.29* 2.69 1.55 a 1.49 a 1.54 a 2.72
总量Total 17.00 16.66 18.74 17.74 18.97
[1] Dixon G R . Clubroot (Plasmodiophora brassicae Woronin): an agricultural and biological challenge worldwide. Can J Plant Pathol, 2014,36(S1):5-18.
[2] Kageyama K, Asano T . Life cycle of Plasmodiophora brassicae. J Plant Growth Regul, 2009,28:203-211.
[3] Devos S, Vissenberg K, Verbelen J P, Prinsen E . Infection of Chinese cabbage by Plasmodiophora brassicae leads to a stimulation of plant growth: impacts on cell wall metabolism and hormone balance. New Phytol, 2010,166:241-250.
doi: 10.1111/j.1469-8137.2004.01304.x pmid: 15760367
[4] Ludwing-Müller J, Prinsen E, Rolfe S A, Scholes J D . Metabolism and plant hormone action during clubroot disease. J Plant Growth Regul, 2009,28:229-244.
[5] Dixon G R . The occurrence and economic impact of Plasmodiophora brassicae and clubroot disease. J Plant Growth Regul, 2009,28:194-202.
[6] Chai A L, Xie X W, Shi Y X, Li B J . Research status of clubroot (Plasmodiophora brassicae) on cruciferous crops in China. Can J Plant Pathol, 2014,36(S1):142-153.
[7] Peng G, Pageau D, Strelkov S E, Grossen B D, Hwang S F, Lahlali R . A >2-year crop rotation reduces resting spores of Plasmodiophora brassicae in soil and the impact of clubroot on canola. Eur J Agron, 2015,70:78-84.
[8] Friberg H, Lagerlöf J, Rämert B . Germination of Plasmodiophora brassicae resting spores stimulated by a non-host plant. Eur J Plant Pathol, 2005,113:275-281.
[9] 费维新, 王淑芬, 李强生, 吴晓芸, 陈凤祥, 侯树敏, 荣松柏, 郝仲萍, 高智谋 . 冬油菜适当迟播有效减轻油菜根肿病. 中国油料作物学报, 2016,38:502-507.
Fei W X, Wang S F, Li Q S, Wu X Y, Chen F X, Hou S M, Rong S B, Hao Z P, Gao Z M . Reducing clubroot disease by late sowing of winter rapeseed. Chin J Oil Crop Sci, 2016,38:502-507 (in Chinese with English abstract).
[10] Niwa R, Kumei T, Nomura Y, Yoshida S, Osaki M, Ezawa T . Increase in soil pH due to Ca-rich organic matter application causes suppression of the clubroot disease of crucifers. Soil Biol Biochem, 2007,39:778-785.
[11] 杨进, 殷丽琴, 王晓, 付绍红, 王学贵, 李云, 王继胜, 邹琼, 陶兰荣, 康泽明, 唐蓉 . 4种杀菌剂对油菜根肿病的防治潜力及对幼苗防御酶活性的影响. 中国油料作物学报, 2017,39:546-550.
Yang J, Yin L Q, Wang X, Fu X H, Wang X G, Li Y, Wang J S, Zou Q, Tao L R, Kang Z M, Tang R . Preventive potential of 4 fungicids on clubroot ( Plasmodiophora brassicae) and rapeseed defense enzyme activity. Chin J Oil Crop Sci, 2017,39:546-550 (in Chinese with English abstract).
[12] 陈坤荣, 任莉, 刘凡, 徐理, 孙超超, 方小平 . 三种杀菌剂防治油菜根肿病技术研究. 中国油料作物学报, 2013,35:424-427.
Chen K R, Ren L, Liu F, Xu L, Sun C C, Fang X P . Controlling effects of three fungicides on rapeseed clubroot. Chin J Oil Crop Sci, 2013,35:424-427 (in Chinese with English abstract).
[13] 王王靖, 黄云, 张艳, 张艳, 姚佳 . 油菜根肿病菌拮抗微生物的筛选及其防治效果测定. 中国油料作物学报, 2011,33:169-174.
Wang J, Huang Y, Zhang Y, Yao J . Control of rapeseed clubroot by screened antagonistic against Plasmodiophora brassicae. Chin J Oil Crop Sci, 2011,33:169-174 (in Chinese with English abstract).
[14] Liu C M, Yang Z F, He P F, Munir S, Wu Y X, Ho H H, He Y Q . Deciphering the bacterial and fungal communities in clubroot-affected cabbage rhizosphere treated withBacillus subtilis XF-1. Agric Ecosyst Environ, 2018,256:12-22.
doi: 10.1016/j.agee.2018.01.001
[15] Peng G, Falk K C, Gugel R K, Franke C, Yu F Q, James B, Strelkov S E, Hwang S F, Gregor L M . Sources of resistance to Plasmodiophora brassicae( clubroot) pathotypes virulent on canola. Can J Plant Pathol, 2014,36:89-99.
doi: 10.1080/07060661.2013.863805
[16] 战宗祥, 江莹芬, 朱紫媛, 张春沙, 杨庆勇, 李倩, 侯照科, 龚建芳, 程雨贵, 吴江生, 傅廷栋, 周永明, 朴钟云, 张椿雨 . 与位点PbBa8.1紧密连锁分子标记的开发及甘蓝型油菜根肿病抗性育种. 中国油料作物学报, 2015,37:766-771.
doi: 10.7505/j.issn.1007-9084.2015.06.005
Zhan Z X, Jiang Y F, Zhu Z Y, Zhang C S, Yang Q Y, Li Q, Hou Z K, Gong J F, Cheng Y G, Wu J S, Fu T D, Zhou Y M, Piao Z Y, Zhan C Y . Development of close linked marker to PbBa8.1 conferring canola resistance to Plasmodiophora brassicae. Chin J Oil Crop Sci, 2015,37:766-771 (in Chinese with English abstract).
doi: 10.7505/j.issn.1007-9084.2015.06.005
[17] Wallenhammar A C . Prevalence of Plasmodiophora brassicae in a spring oilseed rape growing area in central Sweden and factors influencing soil infestation levels. Plant Pathol, 1996,45:710-719.
[18] Diederichsen E, Frauen M, Ludwing-Müller J . Clubroot disease management challenges from a German perspective. Can J Plant Pathol, 2014,36(S1):85-98.
doi: 10.1080/07060661.2013.861871
[19] 吕学静, 康晓慧, 陈万权, 刘太国, 刘博, 高利 . 小麦近等基因系多品种混播对条锈病控制效果研究. 中国植保导刊, 2014,34(4):5-9.
Lyu X J, Kang X H, Chen W Q, Liu T G, Liu B, Gao L . Controlling efficiency against wheat stripe rust by near-isogenic lines cultivarsa at mix-planting condition. China Plant Protect, 2014,34(4):5-9.
[20] 刘志贤, 肖一龙, 刘二明, 罗峰 . 利用水稻品种抗性遗传多样性持续控制稻瘟病研究进展. 作物研究, 2003,17(2):103-105.
Liu Z X, Xiao Y L, Liu E M, Luo F . Advances in susyainable control of rice blast by using composite varieties resistant to different physiologic race blast diseases. Crop Res, 2003,17(2):103-105 (in Chinese with English abstract).
[21] Hariri D, Fouchard M, Prud’homme H . Incidence of soil-borne wheat mosaic virus in mixtures of susceptible and resistant wheat cultivars. Eur J Plant Pathol, 2001,107:625-631.
doi: 10.1023/A:1017980809756
[22] 郭世保, 黄丽丽, 康振生, 程晶晶, 陆宁海, 杨之为, 陈银潮 . 小麦多品种混播控制条锈病的效果和机理研究. 中国农业科学, 2009,42:3485-3492.
Guo S B, Huang L L, Kang Z S, Cheng J J, Lu N H, Yang Z W, Chen Y C . Efficacy and mechanism of control of wheat stripe rust by diversifying cultivars in mix-planting. Sci Agric Sin, 2009,42:3485-3492 (in Chinese with English abstract).
[23] Burdon J J, Chilvers G A . Host density as a factor in plant disease ecology. Annu Rev Phytopathol, 1982,20:143-166.
doi: 10.1146/annurev.py.20.090182.001043
[24] Trenbath B R . Interactions among diverse hosts and diverse parasites. Ann NY Acad Sci, 2010,287:124-150.
[25] Zhu Y Y, Chen H R, Fan J H, Wang Y Y, Li Y, Chen J B, Fan J X, Yang S S, Hu L P, Leung H, Mew T W, Teng P S, Wang Z H, Mundt C C . Genetic diversity and disease control in rice. Nature, 2000,406:718-722.
doi: 10.1038/35021046 pmid: 10963595
[26] 李宁 . 寄主多样性条件下小麦白粉病发生及其病原菌群体遗传结构的研究. 中国农业科学院硕士学位论文, 北京, 2011.
Li N . Occurrence of Wheat Powdery Mildew in Diversified Hosts and the Pathogen Population Genetic Structure. MS Thesis of Chinese Academy of Agricultural Sciences, Beijing,China, 2011 (in Chinese with English abstract).
[27] Kuginuki Y, Hiroaki Y, Hirai M . Variation in virulence of Plasmodiophora brassicae in Japan tested with clubroot-resistant cultivars of Chinese cabbage (Brassica rapa L. spp. pekinensis). Eur J Plant Pathol, 1999,105:327-332.
[28] 黄冲, 郭洁滨, 孙振宇, 马占鸿, 刘跃富, 陈伦开 . 小麦品种混(间)种对小麦条锈病防治效果和产量影响研究. 植物保护, 2009,35(3):115-117.
Huang C, Guo J B, Sun Z Y, Ma Z H, Liu Y F, Chen L K . Studies on the effects of cultivar mixtures or multiline cultivals on the wheat yeIIow rust and wheat yield under different pathogenesis oonditions. Plant Protect, 2009,35(3):115-117 (in Chinese with English abstract).
[29] Sapoukhina N, Paillard S, Dedryver F, Vallavieille-Pope C . Quantitative plant resistance in cultivar mixtures: wheat yellow rust as a modeling case study. New Phytol, 2013,200:888-897.
doi: 10.1111/nph.12413 pmid: 23875842
[30] 王靖, 黄云, 胡晓玲, 牛应泽, 李晓兰, 梁勇 . 油菜根肿病症状、病原形态及产量损失研究. 中国油料作物学报, 2008,30:112-115.
Wang J, Huang Y, Hu X L, Niu Y Z, Li X L, Liang Y . Study on symptom, yield loss of clubroot and modality of Plasmodiophora brassicae in rape. Chin J Oil Crop Sci, 2008,30:112-115 (in Chinese with English abstract).
[31] Pageau D, Lajeunesse J, Lafond J . Impact of clubroot (Plasmodiophora brassicae) on the yield and quality of canola. Can J Plant Pathol. 2006,28:137-143.
doi: 10.1080/07060660609507280
[32] Mcgrann G R D, Gladders P, Smith J A, Burnett F . Control of clubroot ( Plasmodiophora brassicae) in oilseed rape using varietal resistance and soil amendments. Field Crops Res, 2016,186:146-156.
[33] Leach J A, Stevenson H J, Rainbow A J, Mullen L A . Effects of high plant populations on the growth and yield of winter oilseed rape ( Brassica napus). J Agric Sci, 1999,132:173-180.
doi: 10.1017/S0021859698006091
[34] 杜中军, 王家保, 黄俊生, 翟衡, 徐兵强 . 番木瓜丝氨酸/苏氨酸蛋白激酶类抗病基因同源序列的克隆与特征分析. 果树学报, 2006,23:46-50.
Du Z J, Wang J B, Huang J S, Zhai H, Xu B Q . Isolation and characterization of serine/threonine protein kinase-like disease resistance gene analogs from papaya (Carica papaya). J Fruit Sci, 2006,23:46-50 (in Chinese with English abstract).
[35] Ando S, Yamada T, Asano T, Kamachi S, Tsushima S, Hagio T, Tabei Y . Molecular cloning of PbSTKL1 gene from Plasmodiophora brassicae expressed during clubroot development. J Phytopathol, 2006,154:185-189.
doi: 10.1111/jph.2006.154.issue-3
[36] Chen T, Bi K, Zhao Y, Lyu X, Gao Z, Zhao Y, Fu Y, Chen J, Xie J, Jiang D . MAPKK inhibitor U0126 inhibit Plasmodiophora brassicae development. Phytopathology, 2018,108:711-720.
doi: 10.1094/PHYTO-07-17-0240-R pmid: 29381451
[37] Feng J, Hwang R U, Hwang S F, Strelkov S E, Gossen B D, Zhou Q X, Peng G . Molecular characterization of a serine protease Pro1 from Plasmodiophora brassicae that stimulates resting spore germination. Mol Plant Pathol, 2010,11:503-512.
doi: 10.1111/j.1364-3703.2010.00623.x pmid: 20618708
[38] Nakajima T, Sonoda R, Yaegashi H, Saito H . Factors related to suppression of leaf blast disease with a multiline of rice cultivar Sasanishiki and its isogenic lines. Ann Phytopathol Soc Jpn, 2009,62:360-364.
doi: 10.3186/jjphytopath.62.360
[39] 吴林坤, 林向民, 林文雄 . 根系分泌物介导下植物-土壤-微生物互作关系研究进展与展望. 植物生态学报, 2014,38:298-310.
doi: 10.3724/SP.J.1258.2014.00027
Wu L K, Lin X M, Lin W X . Advances and perspective in research on plant-soil-microbe interactions mediated by root exudates. Chin J Plant Ecol, 2014,38:298-310 (in Chinese with English abstract).
doi: 10.3724/SP.J.1258.2014.00027
[1] QIN Lu, HAN Pei-Pei, CHANG Hai-Bin, GU Chi-Ming, HUANG Wei, LI Yin-Shui, LIAO Xiang-Sheng, XIE Li-Hua, LIAO Xing. Screening of rapeseed germplasms with low nitrogen tolerance and the evaluation of its potential application as green manure [J]. Acta Agronomica Sinica, 2022, 48(6): 1488-1501.
[2] LOU Hong-Xiang, JI Jian-Li, KUAI Jie, WANG Bo, XU Liang, LI Zhen, LIU Fang, HUANG Wei, LIU Shu-Yan, YIN Yu-Feng, WANG Jing, ZHOU Guang-Sheng. Effects of planting density on yield and lodging related characters of reciprocal hybrids in Brassica napus L. [J]. Acta Agronomica Sinica, 2021, 47(9): 1724-1740.
[3] ZHANG Jian, XIE Tian-Jin, WEI Xiao-Nan, WANG Zong-Kai, LIU Chong-Tao, ZHOU Guang-Sheng, WANG Bo. Estimation of feed rapeseed biomass based on multi-angle oblique imaging technique of unmanned aerial vehicle [J]. Acta Agronomica Sinica, 2021, 47(9): 1816-1823.
[4] HAN Yu-Zhou, ZHANG Yong, YANG Yang, GU Zheng-Zhong, WU Ke, XIE Quan, KONG Zhong-Xin, JIA Hai-Yan, MA Zheng-Qiang. Effect evaluation of QTL Qph.nau-5B controlling plant height in wheat [J]. Acta Agronomica Sinica, 2021, 47(6): 1188-1196.
[5] LI Qian, Nadil Shah, ZHOU Yuan-Wei, HOU Zhao-Ke, GONG Jian-Fang, LIU Jue, SHANG Zheng-Wei, ZHANG Lei, ZHAN Zong-Xiang, CHANG Hai-Bin, FU Ting-Dong, PIAO Zhong-Yun, ZHANG Chun-Yu. Breeding of a novel clubroot disease-resistant Brassica napus variety Huayouza 62R [J]. Acta Agronomica Sinica, 2021, 47(2): 210-223.
[6] GUO Qing-Yun, KUAI Jie, WANG Bo, LIU Fang, ZHANG Chun-Yu, LI Gen-Ze, ZHANG Yun-Yun, FU Ting-Dong, ZHOU Guang-Sheng. Effect of mixed-sowing of near-isogenic lines on the clubroot disease controlling efficiency in rapeseed [J]. Acta Agronomica Sinica, 2020, 46(9): 1408-1415.
[7] LYU Wei-Sheng, XIAO Fu-Liang, ZHANG Shao-Wen, ZHENG Wei, HUANG Tian-Bao, XIAO Xiao-Jun, LI Ya-Zhen, WU Yan, HAN De-Peng, XIAO Guo-Bin, ZHANG Xue-Kun. Effects of sowing and fertilizing methods on yield and fertilizer use efficiency in red-soil dryland rapeseed (Brassica napus L.) [J]. Acta Agronomica Sinica, 2020, 46(11): 1790-1800.
[8] HU Mao-Long, CHENG Li, GUO Yue, LONG Wei-Hua, GAO Jian-Qin, PU Hui-Ming, ZHANG Jie-Fu, CHEN Song. Development and application of the marker for imidazolinone-resistant gene in Brassica napus [J]. Acta Agronomica Sinica, 2020, 46(10): 1639-1646.
[9] WANG Cun-Hu,LIU Dong,XU Rui-Neng,YANG Yong-Qing,LIAO Hong. Mapping of QTLs for leafstalk angle in soybean [J]. Acta Agronomica Sinica, 2020, 46(01): 9-19.
[10] ZHANG Han-Xiao,LIN Shen,ZUO Qing-Song,YANG Guang,FENG Qian-Nan,FENG Yun-Yan,LENG Suo-Hu. Effects of plant density and N fertilizer spraying concentration on growth of rapeseed blanket seedlings [J]. Acta Agronomica Sinica, 2019, 45(11): 1691-1698.
[11] Zi-Ju DAI,Xin-Tao WANG,Qing YANG,Yan WANG,Ying-Ying ZHANG,Zhang-Ying XI,Bao-Quan LI. Major Quantitative Trait Loci Mapping for Tassel Branch Number and Construction of qTBN5 Near-isogenic Lines in Maize (Zea mays L.) [J]. Acta Agronomica Sinica, 2018, 44(8): 1127-1135.
[12] Dan-Dan HU,Ji-Wang ZHANG,Peng LIU,Bin ZHAO,Shu-Ting DONG. Effects of Mixed-cropping with Different Varieties on Photosynthetic Characteristics and Yield of Summer Maize under Close Planting Condition [J]. Acta Agronomica Sinica, 2018, 44(6): 920-930.
[13] Chao MI,Yan-Ning ZHAO,Zi-Gang LIU,Qi-Xian CHEN,Wan-Cang SUN,Yan FANG,Xue-Cai LI,Jun-Yan WU. Cloning of RuBisCo Subunits Genes rbcL and rbcS from Winter Rapeseed (Brassica rapa) and Their Expression under Drought Stress [J]. Acta Agronomica Sinica, 2018, 44(12): 1882-1890.
[14] Ying-Fen JIANG,Zong-Xiang ZHAN,Zhong-Yun PIAO,Chun-Yu ZHANG. Progresses and Prospects of Germplasms Innovation for Clubroot Resistance and Genetic Improvement in Brassica napus [J]. Acta Agronomica Sinica, 2018, 44(11): 1592-1599.
[15] Xiao-Yong LI, Min ZHOU, Tao WANG, Lan ZHANG, Guang-Sheng ZHOU, Jie KUAI. Effects of Planting Density on the Mechanical Harvesting Characteristics of Semi-winter Rapeseed [J]. Acta Agronomica Sinica, 2018, 44(02): 278-287.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!