Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2018, Vol. 44 ›› Issue (02): 278-287.doi: 10.3724/SP.J.1006.2018.00278

• Orginal Article • Previous Articles     Next Articles

Effects of Planting Density on the Mechanical Harvesting Characteristics of Semi-winter Rapeseed

Xiao-Yong LI1, Min ZHOU1, Tao WANG2, Lan ZHANG2, Guang-Sheng ZHOU1, Jie KUAI1,*()   

  1. 1 College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, China
    2 Shayang Plant Protection Station, Shayang 448200, Hubei, China
  • Received:2017-08-29 Accepted:2017-11-21 Online:2018-02-12 Published:2017-12-12
  • Contact: Jie KUAI E-mail:kuaijie@mail.hzau.edu.cn
  • Supported by:
    This study was supported by the National Key Technology R&D Program of China (2014BAD11B03), the China Agriculture Research System (NYCYTC-00510), and the Fundamental Research Funds for Central Universities (2013PY001).


Two canola varieties (Zhongshuang 11 and Huayouza 9) with four planting densities (15 × 104, 30 × 104, 45 × 104, and 60 × 104 plants ha-1) were used to evaluate their effects on yield, lodging and pod shattering resistance index (PSRI). With the increase of plant density, effective pods per hectare increased, resulting in increasing yield. The highest yield was observed at density of 45 × 104 plants ha-1 for both of the two varieties. With the increase of plant density, the root crown diameter decreased which led lodging index to be increased. Under the densities of 15 × 104 and 30 × 104 plants ha-1, the part of stem below canopy had the highest lodging index, while under the densities of 30 × 104 and 45 × 104 plants ha-1, the central of stem and the upper part of middle stem had the highest lodging index, indicating that the lodging region was lower than under low plant density. The PSRI of branches was smaller than that of main stems, with a tendency of increasing firstly and then decreasing with decreasing branch height. The PSRI of main stem of the two varieties had different responses to increasing density, that was decreasing in Zhongshuang 11 while increasing firstly and then decreasing in Huayouza 9, with a highest PSRI under 300 000 plants ha-1. The water declining rate of pod wall from early pod development to pod maturity had highly significant and negative correlation with pod shattering resistance, indicating that this index is most important for density effects on pod shattering.

Key words: rapeseed (Brassica napus L.), planting density, yield, pod shattering, lodging

Table 1

Effect of density on yield and yield components of rapeseed"

单株有效角果数Effective pod number
per plant
Number of seeds
per pod
1000-seed weight (g)
(kg hm-2)
2014-2015 中双11
Zhongshuang 11
D1 164.5 a 22.7 a 4.30 a 2381.3 c
D2 126.4 b 22.3 b 4.34 a 2969.3 b
D3 88.4 c 20.4 c 4.27 ab 3158.5 a
D4 63.4 d 20.0 d 4.18 b 3029.1 b
Huayouza 9
D1 193.5 a 25.8 a 3.01 b 2521.3 d
D2 132.8 b 24.4 b 3.10 ab 2910.7 c
D3 108.5 c 23.4 c 3.12 ab 3514.4 a
D4 86.0 d 23.5 c 3.16 a 3076.0 b
2015-2016 中双11
Zhongshuang 11
D1 170.5 a 23.1 a 4.48 b 2626.3 c
D2 108.1 b 22.7 b 4.52 a 2938.9 b
D3 95.0 c 21.6 c 4.34 c 3255.9 a
D4 66.4 d 21.2 d 4.26 d 3042.6 b
Huayouza 9
D1 216.5 a 27.4 a 2.95 c 2691.8 d
D2 123.0 b 26.1 b 2.99 bc 3094.4 b
D3 107.0 c 25.1 c 3.04 ab 3358.3 a
D4 79.8 d 24.6 d 3.11 a 2916.9 c
方差分析 Variance analyses
年份(Y) ** ** NS **
品种(V) ** ** ** **
密度(D) ** ** ** **
Y×V ** NS ** **
Y×D ** NS NS **

Table 2

Effect of density on agronomic traits at maturity of rapeseed"

Root crown diameter (mm)
Plant height
Branch height
Branch number
Pod starting point (cm)
2014-2015 中双11
Zhongshuang 11
D1 20.81 a 168.17 a 62.00 c 6.0 a 96.73 a
D2 16.79 b 162.50 ab 76.43 b 4.3 ab 96.73 a
D3 14.97 c 156.99 bc 82.57 ab 4.2 bc 97.47 a
D4 12.35 d 151.53 c 90.33 a 2.5 c 96.60 a
华油杂9号Huayouza 9 D1 16.08 a 164.84 a 58.51 c 6.3 a 85.61 a
D2 14.34 b 155.83 ab 68.87 b 4.1 b 83.97 a
D3 13.35 b 152.32 b 76.62 ab 3.3 c 82.81 a
D4 11.22 c 147.19 b 81.75 a 2.9 c 82.41 a
2015-2016 中双11
Zhongshuang 11
D1 21.28 a 170.00 a 63.77 c 6.3 a 99.50 a
D2 16.05 b 167.23 ab 78.03 b 4.3 b 104.33 a
D3 13.97 bc 164.50 ab 86.43 ab 3.7 b 104.80 a
D4 12.90 c 162.33 b 97.43 a 1.7 c 105.00 a
华油杂9号Huayouza 9 D1 19.69 a 173.67 a 54.60 c 7.7 a 94.57 a
D2 14.66 b 170.53 ab 81.90 b 5.3 b 98.50 a
D3 13.22 c 165.50 bc 82.67 b 5.3 b 99.67 a
D4 11.94 d 158.17 c 90.00 a 4.3 c 97.83 a
方差分析 Variance analyses
年份(Y) ** ** ** ** **
品种(V) ** ** ** * **
密度(D) ** ** ** ** NS
Y×V ** NS NS ** *
Y×D ** NS * * **

Fig. 1

Lodging sites at different planting densities of rapeseed D1, D2, D3, and D4 indicate the planting densities of 15×104, 30×104, 45×104, and 60×104 plant ha-1, respectively."

Table 3

Effect of density on lodging index at different parts of rapeseed stems"

No.1 No.2 No.3 No.4 均值
2014-2015 中双11
Zhongshuang 11
D1 0.809 b 0.846 b 0.914 c 1.025 a 0.899
D2 0.876 b 1.040 b 1.078 bc 1.160 a 1.039
D3 0.922 b 0.973 b 1.186 b 1.089 a 1.043
D4 1.278 a 1.597 a 1.536 a 1.273 a 1.421
Huayouza 9
D1 0.701 b 0.742 c 0.786 b 0.909 b 0.785
D2 0.809 b 0.991 b 1.073 ab 0.872 b 0.936
D3 1.224 a 1.656 a 1.335 a 1.051 a 1.317
D4 1.476 a 1.484 a 1.321 a 1.101 a 1.346
2015-2016 中双11
Zhongshuang 11
D1 0.862 b 0.954 c 1.050 c 1.113 b 0.995
D2 1.618 a 1.805 b 1.922 b 2.126 a 1.868
D3 1.665 a 1.943 b 2.281 a 1.908 a 1.949
D4 1.829 a 2.372 a 2.248 a 2.178 a 2.157
Huayouza 9
D1 1.001 a 1.129 b 1.208 b 1.288 a 1.157
D2 1.066 a 1.089 b 1.215 b 1.321 a 1.173
D3 1.371 a 1.528 a 1.727 a 1.522 a 1.537
D4 1.086 a 1.349 ab 1.228 b 1.148 a 1.203
方差分析 Variance analyses
年份(Y) ** ** ** **
品种(V) ** ** ** **
密度(D) ** ** ** **
Y×V ** ** ** **
Y×D ** NS ** **
V×D * ** ** **
Y×V×D ** ** ** **

Fig. 2

Effect of plant density on pod shattering resistance of rapeseed D1, D2, D3, and D4 indicate the planting densities of 15×104, 30×104, 45×104, and 60×104 plant ha-1 respectively; “0” in the middle of abscissa axis means main stem, and “1-7” mean the first branch to the eleventh branch from top to bottom, respectively."

Fig. 3

Effect of density on pod wall dry weight (A) and water content (B) of rapeseed D1, D2, D3, and D4 indicate the planting densities of 15×104, 30×104, 45×104, and 60×104 plant ha-1, respectively."

Table 4

Correlation coefficients of PSRI with pod wall weight and water content"

Pod wall
dry weight
角果壳含水量 Pod wall water content
花后天数 Days after flowering Δ含水量
Δ water content
21 d 28 d 35 d 42 d 49 d 56 d
Zhongshuang 11
0.751** -0.065 -0.45 -0.38 0.382 0.653 0.971** -0.968**
Huayouza 9
0.581** 0.110 -0.73 -0.71 0.895* 0.660 0.900** -0.968**
[1] 沈金雄, 傅廷栋. 我国油菜生产、改良与食用油供给安全. 中国农业科技导报, 2011, 13(1): 1-8
Shen J X, Fu T D.Rapeseed production, improvement and edible oil supply in China.J Agric Sci Tech, 2011, 13(1): 1-8 (in Chinese with English abstract)
[2] 马征, 李耀明, 徐立章. 油菜茎秆弹性力学特性试验研究. 农机化研究, 2016, 38(5): 187-191
Ma Z, Li Y M, Xu L Z.Experimental research of elastic mechanics of rape stalks.J Agric Mech Res, 2016, 38(5): 187-191 (in Chinese with English abstract)
[3] 周广生, 左青松, 廖庆喜, 吴江生, 傅廷栋. 我国油菜机械化生产现状、存在问题及对策. 湖北农业科学, 2013, 52: 2153-2157
Zhou G S, Zuo Q S, Liao Q X, Wu J S, Fu T D.Mechanical production status, existing problems and strategy discussion of rapeseed in China.Hubei Agric Sci, 2013, 52: 2153-2157 (in Chinese with English abstract)
[4] 孙盈盈. 不同栽培措施对油菜产量及抗倒性的影响. 华中农业大学硕士学位论文, 湖北武汉, 2016.
Sun Y Y.Effect of Different Cultivation Measures on Rapeseed Yield and Lodging Resistance. MS Thesis of Huazhong Agricultural University, Wuhan, China, 2016 (in Chinese with English abstract)
[5] 王婷, 暨淑仪, 吴鸿. 油菜角果开裂区结构分化对果实开裂的作用. 作物学报, 2012, 38: 563-569
Wang T, Ji S Y, Wu H.Effect of structural differentiation of fruit dehiscence zone on pod dehiscence in oilseed rape.Acta Agron Sin, 2012, 38: 563-569 (in Chinese with English abstract)
[6] 文雁成, 傅廷栋, 涂金星, 马朝芝, 沈金雄, 张书芬. 甘蓝型油菜抗裂角品种(系)的筛选与分析. 作物学报, 2008, 34: 163-166
Wen Y C, Fu T D, Tu J X, Ma C Z, Shen J X, Zhang S F.Screening and analysis of resistance to silique shattering in Rape (Brassica napus L.). Acta Agron Sin, 2008, 34: 163-166 (in Chinese with English abstract)
[7] Pinthus M J.Lodging in Wheat, Barley, and Oats: the phenomenon, its causes, and preventive measures.Adv Agron, 1974, 25: 209-263
[8] Morgan C L, Bruce D M, Child R, Ladbrooke Z L, Arthur A E.Genetic variation for pod shatter resistance among lines of oilseed rape developed from syntheticB. napus. Field Crops Res, 1998, 58: 153-165
[9] Kadkol G P, Macmillan R H, Burrow R P, Halloran G M.Evaluation of Brassica genotypes for resistance to shatter: I. Development of a laboratory test.Euphytica, 1984, 33: 63-73
[10] Price J S, Hobson R N, Neale M A, Bruce D M.Seed losses in commercial harvesting of oilseed rape.J Agric Eng Res, 1996, 65: 183-191
[11] Tys J.Evaluation of the mechanical properties of winter rape siliques in respect to their susceptibility to cracking. J Pub Admin & Policy Res, 1985, 115: e512-517
[12] 刘唐兴, 官春云, 雷冬阳. 作物抗倒伏的评价方法研究进展. 中国农学通报, 2007, 23(5): 203-206
Liu T X, Guan C Y, Lei D Y.The research progress on evaluation methods of lodging resistance in crops.Chin Agric Sci Bull, 2007, 23(5): 203-206 (in Chinese with English abstract)
[13] 田保明, 杨光圣, 曹刚强, 舒海燕. 农作物倒伏及其影响因素分析. 中国农学通报, 2006, 22(4): 163-167
Tian B M, Yang G S, Cao G Q, Shu H Y.The performent of lodging and root cause analysis for lodging resistance in crops.Chin Agric Sci Bull, 2006, 22(4): 163-167 (in Chinese with English abstract)
[14] 周晓彬, 肖数数, 王莹莹, 冯星星, 王德鹏, 唐浩月, 范玉刚, 龚德平. 油菜倒伏问题研究进展. 湖北农业科学, 2011, 50: 4105-4108
Zhou X B, Xiao S S, Wang Y Y, Feng X X, Wang D P, Tang H Y, Fan Y G, Gong D P.Research progress of rapeseed lodging.Hubei Agric Sci, 2011, 50: 4105-4108 (in Chinese with English abstract)
[15] 顾慧, 戚存扣. 甘蓝型油菜(Brassica napus L.)抗倒伏性状的主基因+多基因遗传分析. 作物学报, 2008, 34: 376-381
Gu H, Qi C K.Genetic analysis of lodging resistance with mixed model of major gene plus polygene inBrassica napus L. Acta Agron Sin, 2008, 34: 376-381 (in Chinese with English abstract)
[16] Morgan C L, Ladbrooke Z L, Bruce D M, Child R, Arthur A E.Breeding oilseed rape for pod shattering resistance. J Agric Sci, 2000, 135: 347-359
[17] 刘定富, 刘后利. 甘蓝型油菜数量性状遗传变异的研究. 遗传学报, 1987, 14: 31-36
Liu D F, Liu H L.Genetic variabilities of some quantitative characters inBrassica napus L. Acta Genet Sin, 1987, 14: 31-36 (in Chinese with English abstract)
[18] 陈晓光, 石玉华, 王成雨, 尹燕枰, 宁堂原, 史春余, 李勇, 王振林. 氮肥和多效唑对小麦茎秆木质素合成的影响及其与抗倒伏性的关系. 中国农业科学, 2011, 44: 3529-3536
Chen X G, Shi Y H, Wang C Y, Yin Y P, Ning T Y, Shi C Y, Li Y, Wang Z L.Effects of nitrogen and PP333 application on the lignin synthesis of stem in relation to lodging resistance of wheat. Sci Agric Sin, 2011, 44: 3529-3536 (in Chinese with English abstract)
[19] 马霓, 张春雷, 李俊, 李光明. 种植密度对直播油菜结实期源库关系及产量的调节. 中国油料作物学报, 2009, 31: 180-184
Ma N, Zhang C L, Li J, Li G M.Regulation of planting density on source-sink relationship and yield at seed-set stage of rapeseed (Brassica napus L.). Chin J Oil Crop Sci, 2009, 31: 180-184 (in Chinese with English abstract)
[20] 廖桂平, 官春云. 不同播期对不同基因型油菜产量特性的影响. 应用生态学报, 2001, 12: 853-858
Liao G P, Guan C Y.Effect of seeding date on yield characteristics of different rapeseed (Brassica napus) genotypes. Chin J Appl Ecol, 2001, 12: 853-858 (in Chinese with English abstract)
[21] Diepenbrock W.Yield analysis of winter oilseed rape (Brassica napus L.): a review. Field Crops Res, 2000, 67: 35-49
[22] Jie K, Sun Y, Zuo Q, Huang H, Liao Q, Wu C, Lu J, Wu J, Zhou G.The yield of mechanically harvested rapeseed (Brassica napus L.) can be increased by optimum plant density and row spacing. Sci Rep, 2015, 5: 18835
[23] Zuber M S, Grogan C O.A new technique for measuring stalk strength in corn1.Crop Sci, 1961, 1: 378-380
[24] 陈红琳, 陈尚洪, 沈学善, 蒋梁材, 刘定辉. 种植密度对四川盆地丘陵区移栽油菜农艺性状和产量的影响. 中国农学通报, 2012, 28(30): 142-145
Chen H L, Chen S H, Shen X S, Jiang L C, Liu D H.Effects of different density to the agronomic traits and yield of transplanting rapeseed in the hilly area of Sichuan Basin.Chin Agric Sci Bull, 2012, 28(30): 142-145 (in Chinese with English abstract)
[25] Novacek M J, Mason S C, Galusha T D, Yaseen M.Twin rows minimally impact irrigated maize yield, morphology, and lodging. Agron J, 2013, 105: 268-276
[26] Jie K, Sun Y, Zhou M, Zhang P, Zuo Q, Wu J, Zhou G.The effect of nitrogen application and planting density on the radiation use efficiency and the stem lignin metabolism in rapeseed (Brassica napus L.). Field Crops Res, 2016, 199: 89-98
[27] 孟倩, 董军刚, 黄伟男, 段海峰, 张博, 解芳宁, 董振生. 密度和播期对甘蓝型油菜角果抗裂性的影响. 西北农业学报, 2013, 22(11): 37-41
Meng Q, Dong J G, Huang W N, Duan H F, Zhang B, Xie F N, Dong Z S.Effects of planting density and sowing date on the shatter resistance ofBrassica napus Pods. Acta Agric Boreali- occident Sin, 2013, 22(11): 37-41 (in Chinese with English abstract)
[28] 宋稀, 刘凤兰, 郑普英, 张学昆, 陆光远, 付桂萍, 程勇. 高密度种植专用油菜重要农艺性状与产量的关系分析. 中国农业科学, 2010, 43: 1800-1806
Song X, Liu F L, Zheng P Y, Zhang X K, Lu G Y, Fu G P, Cheng Y.Correlation analysis between agronomic traits and yield of rapeseed (Brassica napus L.) for high density planting. Sci Agric Sin, 2010, 43: 1800-1806 (in Chinese with English abstract)
[29] 浦惠明, 傅寿仲, 戚存扣, 张洁夫, 伍贻美, 高建芹, 陈新军. 不同种植密度对杂交油菜若干性状的影响. 江苏农业科学, 2001, (3): 28-30
Pu H M, Fu S Z, Qi C K, Zhang J F, Wu Y M, Gao J Q, Chen X J.Influence of planting density on several characters of hybrid rape.Jiangsu Agric Sci, 2001, (3): 28-30 (in Chinese with English abstract)
[30] 王锐, 李京, 胡立勇. 不同株行配置与密度对油菜产量的影响. 中国农学通报, 2011, 27(16): 273-277
Wang R, Li J, Hu L Y.Effects of different row spacing and planting density on yield of rapeseed.Chin Agric Sci Bull, 2011, 27(16): 273-277 (in Chinese with English abstract)
[31] 曾宇, 雷雅丽, 李京, 胡立勇. 氮、磷、钾用量与种植密度对油菜产量和品质的影响. 植物营养与肥料学报, 2012, 18: 146-153
Zeng Y, Lei Y L, Li J, Hu L Y.Effects of application amounts of nitrogen, phosphate and potassium and planting density on yield and quality of rapeseed.Plant Nutr Fert Sci, 2012, 18: 146-153 (in Chinese with English abstract)
[32] 郑本川, 张锦芳, 李浩杰, 蒲晓斌, 崔成, 柴靓, 蒋俊, 牛应泽, 蒋梁材. 甘蓝型油菜生育期天数与产量构成性状的相关分析. 中国油料作物学报, 2013, 35: 240-245
Zheng B C, Zhang J F, Li H J, Pu X B, Cui C, Chai L, Jiang J, Niu Y Z, Jiang L C.Correlation between duration of growth periods and yield components of Brassica napus L. Chin J Oil Crop Sci, 2013, 35: 240-245 (in Chinese with English abstract)
[33] 董晓芳, 田保明, 姚永芳, 张艳, 张京涛, 孙弋媛, 刘云霞, 申龙, 苏彦华. 密度对油菜品种机械化收获特性的影响. 中国农学通报, 2012, 28(3): 71-74
Dong X F, Tian B M, Yao Y F, Zhang Y, Zhang J T, Sun Y Y, Liu Y X, Shen L, Su Y H.Effects of the density on the characteristics of the mechanization harvest inBrassica napus L. Chin Agric Sci Bull, 2012, 28(3): 71-74 (in Chinese with English abstract)
[34] 勾玲, 黄建军, 张宾, 李涛, 孙锐, 赵明. 群体密度对玉米茎秆抗倒力学和农艺性状的影响. 作物学报, 2007, 33: 1688-1695
Gou L, Huang J J, Zhang B, Li T, Sun R, Zhao M.Effects of population density on stalk lodging resistant mechanism and agronomic characteristics of maize. Acta Agron Sin, 2007, 33: 1688-1695 (in Chinese with English abstract)
[35] 刘启波. 不同栽培密度对油菜产量的影响. 现代农业科技, 2012, (18): 16-16
Liu Q B.Effect of plant density on rapeseed yield.Mod Agric Sci Tech, 2012, (18): 16-16 (in Chinese with English abstract)
[36] 刘后利. 油菜育种研究进展. 作物杂志, 1988, (3): 5-7
Liu H L.Research advances on rapeseed breeding.Crops, 1988, (3): 5-7 (in Chinese)
[37] Jie K, Sun Y, Guo C, Zhao L, Zuo Q, Wu J, Zhou G.Root-applied silicon in the early bud stage increases the rapeseed yield and optimizes the mechanical harvesting characteristics.Field Crops Res, 2017, 200: 88-97
[38] Jie K, Yang Y, Sun Y, Zhou G, Zuo Q, Wu J, Ling X.Paclobutrazol increases canola seed yield by enhancing lodging and pod shatter resistance inBrassica napus L. Field Crops Res, 2015, 180: 10-20
[39] 刘婷婷, 孙盈盈, 曹石, 杨阳, 吴莲蓉, 左青松, 吴江生, 周广生. 油菜抗裂角性状研究进展. 作物杂志, 2014, (3): 5-9
Liu T T, Sun Y Y, Cao S, Yang Y, Wu L R, Zuo Q S, Wu J S, Zhou G S.Research advances on traits of resistance to pod shattering in rapeseed.Crops, 2014, (3): 5-9 (in Chinese with English abstract)
[40] 刘婷婷, 蒯婕, 孙盈盈, 杨阳, 吴莲蓉, 吴江生, 周广生. 氮、磷、钾肥用量对油菜角果抗裂性相关性状的影响. 作物学报, 2015, 41: 1416-1425
Liu T T, Kuai J, Sun Y Y, Yang Y, Wu L R, Wu J S, Zhou G S.Effects of N, P, and K fertilizers on silique shatter resistance and related traits of rapeseed.Acta Agron Sin, 2015, 41: 1416-1425 (in Chinese with English abstract)
[1] WANG Dan, ZHOU Bao-Yuan, MA Wei, GE Jun-Zhu, DING Zai-Song, LI Cong-Feng, ZHAO Ming. Characteristics of the annual distribution and utilization of climate resource for double maize cropping system in the middle reaches of Yangtze River [J]. Acta Agronomica Sinica, 2022, 48(6): 1437-1450.
[2] WANG Wang-Nian, GE Jun-Zhu, YANG Hai-Chang, YIN Fa-Ting, HUANG Tai-Li, KUAI Jie, WANG Jing, WANG Bo, ZHOU Guang-Sheng, FU Ting-Dong. Adaptation of feed crops to saline-alkali soil stress and effect of improving saline-alkali soil [J]. Acta Agronomica Sinica, 2022, 48(6): 1451-1462.
[3] YAN Jia-Qian, GU Yi-Biao, XUE Zhang-Yi, ZHOU Tian-Yang, GE Qian-Qian, ZHANG Hao, LIU Li-Jun, WANG Zhi-Qin, GU Jun-Fei, YANG Jian-Chang, ZHOU Zhen-Ling, XU Da-Yong. Different responses of rice cultivars to salt stress and the underlying mechanisms [J]. Acta Agronomica Sinica, 2022, 48(6): 1463-1475.
[4] YANG Huan, ZHOU Ying, CHEN Ping, DU Qing, ZHENG Ben-Chuan, PU Tian, WEN Jing, YANG Wen-Yu, YONG Tai-Wen. Effects of nutrient uptake and utilization on yield of maize-legume strip intercropping system [J]. Acta Agronomica Sinica, 2022, 48(6): 1476-1487.
[5] CHEN Jing, REN Bai-Zhao, ZHAO Bin, LIU Peng, ZHANG Ji-Wang. Regulation of leaf-spraying glycine betaine on yield formation and antioxidation of summer maize sowed in different dates [J]. Acta Agronomica Sinica, 2022, 48(6): 1502-1515.
[6] LI Yi-Jun, LYU Hou-Quan. Effect of agricultural meteorological disasters on the production corn in the Northeast China [J]. Acta Agronomica Sinica, 2022, 48(6): 1537-1545.
[7] SHI Yan-Yan, MA Zhi-Hua, WU Chun-Hua, ZHOU Yong-Jin, LI Rong. Effects of ridge tillage with film mulching in furrow on photosynthetic characteristics of potato and yield formation in dryland farming [J]. Acta Agronomica Sinica, 2022, 48(5): 1288-1297.
[8] YAN Xiao-Yu, GUO Wen-Jun, QIN Du-Lin, WANG Shuang-Lei, NIE Jun-Jun, ZHAO Na, QI Jie, SONG Xian-Liang, MAO Li-Li, SUN Xue-Zhen. Effects of cotton stubble return and subsoiling on dry matter accumulation, nutrient uptake, and yield of cotton in coastal saline-alkali soil [J]. Acta Agronomica Sinica, 2022, 48(5): 1235-1247.
[9] KE Jian, CHEN Ting-Ting, WU Zhou, ZHU Tie-Zhong, SUN Jie, HE Hai-Bing, YOU Cui-Cui, ZHU De-Quan, WU Li-Quan. Suitable varieties and high-yielding population characteristics of late season rice in the northern margin area of double-cropping rice along the Yangtze River [J]. Acta Agronomica Sinica, 2022, 48(4): 1005-1016.
[10] LI Rui-Dong, YIN Yang-Yang, SONG Wen-Wen, WU Ting-Ting, SUN Shi, HAN Tian-Fu, XU Cai-Long, WU Cun-Xiang, HU Shui-Xiu. Effects of close planting densities on assimilate accumulation and yield of soybean with different plant branching types [J]. Acta Agronomica Sinica, 2022, 48(4): 942-951.
[11] WANG Lyu, CUI Yue-Zhen, WU Yu-Hong, HAO Xing-Shun, ZHANG Chun-Hui, WANG Jun-Yi, LIU Yi-Xin, LI Xiao-Gang, QIN Yu-Hang. Effects of rice stalks mulching combined with green manure (Astragalus smicus L.) incorporated into soil and reducing nitrogen fertilizer rate on rice yield and soil fertility [J]. Acta Agronomica Sinica, 2022, 48(4): 952-961.
[12] DU Hao, CHENG Yu-Han, LI Tai, HOU Zhi-Hong, LI Yong-Li, NAN Hai-Yang, DONG Li-Dong, LIU Bao-Hui, CHENG Qun. Improving seed number per pod of soybean by molecular breeding based on Ln locus [J]. Acta Agronomica Sinica, 2022, 48(3): 565-571.
[13] CHEN Yun, LI Si-Yu, ZHU An, LIU Kun, ZHANG Ya-Jun, ZHANG Hao, GU Jun-Fei, ZHANG Wei-Yang, LIU Li-Jun, YANG Jian-Chang. Effects of seeding rates and panicle nitrogen fertilizer rates on grain yield and quality in good taste rice cultivars under direct sowing [J]. Acta Agronomica Sinica, 2022, 48(3): 656-666.
[14] YUAN Jia-Qi, LIU Yan-Yang, XU Ke, LI Guo-Hui, CHEN Tian-Ye, ZHOU Hu-Yi, GUO Bao-Wei, HUO Zhong-Yang, DAI Qi-Gen, ZHANG Hong-Cheng. Nitrogen and density treatment to improve resource utilization and yield in late sowing japonica rice [J]. Acta Agronomica Sinica, 2022, 48(3): 667-681.
[15] DING Hong, XU Yang, ZHANG Guan-Chu, QIN Fei-Fei, DAI Liang-Xiang, ZHANG Zhi-Meng. Effects of drought at different growth stages and nitrogen application on nitrogen absorption and utilization in peanut [J]. Acta Agronomica Sinica, 2022, 48(3): 695-703.
Full text



No Suggested Reading articles found!