Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2018, Vol. 44 ›› Issue (8): 1127-1135.doi: 10.3724/SP.J.1006.2018.01127


Major Quantitative Trait Loci Mapping for Tassel Branch Number and Construction of qTBN5 Near-isogenic Lines in Maize (Zea mays L.)

Zi-Ju DAI1(),Xin-Tao WANG1,Qing YANG1,Yan WANG1,Ying-Ying ZHANG1,Zhang-Ying XI2,Bao-Quan LI1,*()   

  1. 1 Crop Designing Centre, Henan Academy of Agricultural Sciences, Zhengzhou 450002, Henan, China
    2 College of Agronomy, Henan Agricultural University / Collaborative Innovation Center of Henan Food Crops, Zhengzhou 450002, Henan, China
  • Received:2017-12-20 Accepted:2018-06-09 Online:2018-08-10 Published:2018-06-09
  • Contact: Bao-Quan LI E-mail:zijudai@163.com;lbq308@126.com
  • Supported by:
    This study was supported by the Henan Major Science and Technology Project(161100110500);the Special Fund for Scientific Research and Development of Henan Academy of Agricultural Sciences(YNK20177514);the Special Fund for Scientific Research and Development of Henan Academy of Agricultural Sciences(YNK201710605)


Tassel branch number (TBN) is a principal component of maize tassel-related traits important for modern maize breeding and production. To understand the genetic basis of tassel branch number, we adopted 288 markers exhibiting polymorphisms between Zheng 58 and Chang 7-2 to construct the genetic linkage map, and conduct quantitative trait loci (QTLs) analysis using sets of 188 recombinant inbred line (RIL) families derived from the elite maize inbred lines vz. Zheng 58 × Chang 7-2. Five major QTLs controlling tassel branch number within five different chromosomes respectively were validated by using the inclusive composite interval mapping method (ICIM) based on phenotypic data collected in two years. Because qTBN5 located on chromosome bin 5.05 was found to be an important QTL, qTBN5 near-isogenic lines (qTBN5-NILs) were developed by backcrossing and marker-assisted selection, and qTBN5 was further mapped in 13.2 Mb intervals. These findings will advance our understanding of the inheritance basis of TBN, and also facilitate the fine mapping and molecular breeding programs in maize.

Key words: maize, tassel branch number, quantitative trait loci mapping, near-isogenic lines

Fig. 1

Flow-process diagram of construction of qTBN5-NILs"

Table 1

Phenotypic performance of tassel branch number for parents and RIL families under two year environments"

Zheng 58
Chang 7-2
Variation coefficient (%)
2015 4.6 17.8 10.7 2.4-22.6 43.60
2016 4.4 17.2 11.2 2.8-21.4 38.83

Fig. 2

Frequency distribution of average values for tassel branch number of parents and 188 RILs populations from cross between Zheng 58 and Chang 7-2"

Fig. 3

Position of major QTLs for tassel branch number detected in RILs population of Zheng 58 × Chang 7-2 within linkage map Physical map distances (Mb) referring B73 RefGen-v3 are shown on the left of linkage map."

Table 2

Putative major QTLs of tassel branch number and their genetic effects"

QTL 染色体
Position (Mb)
Marker interval
LOD 加性效应
Additive effect
R2 (%)
qTBN3 3 146.7-175.5 umc1954-bnlg1798 5.06 1.40 13.67
qTBN4 4 169.2-186.7 bnlg2291-umc2041 3.15 -1.01 5.81
qTBN5 5 170.1-200.2 umc2111-bnlg278 9.58 1.88 19.92
qTBN7 7 29.4-83.2 bnlg2233-bnlg1380 4.65 -0.82 16.53
qTBN10 10 127.3-145.5 umc2003-phi323152 6.11 -1.73 9.06

Fig. 4

Genotypes and phenotypes of qTBN5-NILs a: physical locus of qTBN5 identified in RILs population. b: genotypes of qTBN5-NILs. Black part is segment from Chang 7-2 indicating gene position and white parts are genetic background from Zheng 58. c: tassel branch number. d: plant height. e: ear height. f: days to pollen. g: total tassel length. Error bars represent SD. “**” and“ns” show significance at P<0.01 level and on significant difference, respectively as determined by t-test."

Fig. 5

Further mapping and linked markers development of qTBN5 a: qTBN5 detected on the substituted segments in recombinant lines; L1: Chang 7-2; L5: Zheng 58. L2-L4: recombinant lines; “**” shows significance at P<0.01 as determined by t-test. b: genotypes identification of qTBN5 in BC1F2 backcross population. M13: Red indicates universal primer sequences."

[1] Geraldi I O, Miranda Filho J B, Vencovsky R . Estimates of genetic parameters for tassel characters in maize (Zea mays L.) and breeding perspectives. Maydica, 1985,30:1-14
[2] Upadyayula N, Silva H S, Bohn M O, Rocheford T . Genetic and QTL analysis of maize tassel and inforescence architecture. Theor Appl Genet, 2006,112:592-606
doi: 10.1007/s00122-005-0133-x pmid: 16395569
[3] Gue R, Wasson C . Genetic analysis of tassel size and leaf senescence and their relationship with yield in two tropical low land maize populations. Afr Crop Sci J, 1996,4:275-281
[4] Berke T, Rocheford T . Quantitative trait loci for tassel traits in maize. Crop Sci, 1999,39:1439-1443
doi: 10.2135/cropsci1999.3951439x
[5] Mickelson S M, Stuber C S, Senior L, Kaeppler S M . Quantitative trait loci controlling leaf and tassel traits in a B73lMo17 population of maize. Crop Sci, 2002,42:1902-1909
doi: 10.2135/cropsci2002.1902
[6] 汤华, 严建兵, 黄益勤, 郑用琏, 李建生 . 玉米5个农艺性状的QTL定位. 遗传学报, 2005,32:203-209
Tang H, Yan J B, Huang Y Q, Zheng Y L, Li J S . QTL mapping of five agronomic traits in maize. Acta Genet Sin, 2005,32:203-209 (in Chinese with English abstract)
[7] Upadyayula N, Silva H S, Bohn M O, Rocheford T . Genetic and QTL analysis of maize tassel and inforescence architecture. Theor Appl Genet, 2006,112:592-606
doi: 10.1007/s00122-005-0133-x pmid: 16395569
[8] 高世斌, 赵茂俊, 兰海, 张志明 . 玉米雄穗分枝数与主轴长的QTL鉴定. 遗传, 2007,29:1013-1017
doi: 10.3321/j.issn:0253-9772.2007.08.019
Gao S B, Zhao M J, Lan H, Zhang Z M . Identification of QTL associated with tassel branch number and total tassel length in maize. Hereditas (Beijing), 2007,29:1013-1017 (in Chinese with English abstract)
doi: 10.3321/j.issn:0253-9772.2007.08.019
[9] 王迪, 李永祥, 王阳, 刘成, 刘志斋, 彭勃, 谭巍巍, 张岩, 孙宝成, 石云素, 宋燕春, 王天宇, 黎裕 . 控制玉米雄穗分枝数目和雄穗重的主效QTL的定位. 植物学报, 2001,46:11-20
doi: 10.3724/SP.J.1259.2011.00011
Wang D, Li Y X, Wang Y, Liu C, Liu Z Z, Peng B, Tan W W, Zhang Y, Sun B C, Shi Y S, Song Y C, Wang T Y, Li Y . Major quantitative trait loci analysis of tassel primary branch number and tassel weight in maize(Zea mays L.). Chin Bull Bot, 46:11-20 (in Chinese with English abstract)
doi: 10.3724/SP.J.1259.2011.00011
[10] Brown P J, Upadyayula N, Mahone G S, Tian F, Bradbury P J, Myles S, Holland J B, Flint-Garcia S, McMullen M M, Buckler E S, Rocheford T R . Distinct genetic architectures for male and female inflorescence traits of maize. PLoS Genet, 2011,7(11):e1002383
doi: 10.1371/journal.pgen.1002383 pmid: 3219606
[11] 杨钊钊, 李永祥, 刘成, 刘志斋, 李春辉, 李清超, 彭勃, 张岩, 王迪, 谭巍巍, 孙宝成, 石云素, 宋燕春, 王天宇, 黎裕 . 基于多个相关群体的玉米雄穗相关性状QTL分析. 作物学报, 2012,38:1435-1442
Yang Z Z, Li Y X, Liu C, Liu Z Z, Li C H, Li Q C, Peng B, Zhang Y, Wang D, Tan W W, Sun B C, Shi Y S, Song Y C, Wang T Y, Li Y . QTL analysis of tassel-related traits in maize (Zea mays L.) using multiple connected populations. Acta Agron Sin, 2012,38:1435-1442 (in Chinese with English abstract)
[12] Chen Z L, Wang B B, Dong X M, Liu H, Ren L H, Chen J, Hauck A, Song W B, Lai J S . An ultra-high density bin-map for rapid QTL mapping for tassel and ear architecture in a large F2 maize population. BMC Genomics, 2014,15:433
doi: 10.1186/1471-2164-15-433
[13] Wu X, Li Y X, Shi Y S, Song Y C, Zhang D F, Li C H, Buckler E S, Li Y, Zhang Z W, Wang T Y . Joint-linkage mapping and GWAS reveal extensive genetic loci that regulate male inflorescence size in maize. Plant Biotechnol J, 2016,14:1551-1562
doi: 10.1111/pbi.2016.14.issue-7
[14] Xu G H, Wang X F, Huang C, Xu D Y, Li D, Tian J G, Chen Q Y, Wang C L, Liang Y M, Wu Y Y, Yang X H, Tian F . Complex genetic architecture underlies maize tassel domestication. New Phytol, 2017,214:852-864
doi: 10.1111/nph.14400 pmid: 28067953
[15] Vollbrecht E, Springer P S, Goh L, Buckler E S, Martienssen R . Architecture of floral branch systems in maize and related grasses. Nature, 2005,436:1119-1126
doi: 10.1038/nature03892 pmid: 16041362
[16] Satoh-Nagasawa N, Nagasawa N, Malcomber S, Sakai H, Jackson D . A trehalose metabolic enzyme controls inflorescence architecture in maize. Nature, 2006,441:227-230
doi: 10.1038/nature04725 pmid: 16688177
[17] Bortiri E, Chuck G, Vollbrecht E, Rocheford T, Martienssen R, Hake S . ramosa2 encodes a LATERAL ORGAN BOUNDARY domain protein that determines the fate of stem cells in branch meristems of maize. Plant Cell, 2006,18:574-585
[18] Gallavotti A, Zhao Q, Kyozuka J, Meeley R B, Ritter M K, Doebley J F, Pè M E, Schmidt R J . The role of barren stalk1 in the architecture of maize. Nature, 2004,432:630-635
[19] Walsh J, Freeling M . The liguleless2 gene of maize functions during the transition from the vegetative to the reproductive shoot apex. Plant J, 1999,19:489-495
[20] Skirpan A, Culler A H, Gallavotti A, Jackson D, Cohen J D, McSteen P . BARREN INFLORESCENCE2 interaction with ZmPIN1a suggests a role in auxin transport during maize inflorescence development. Plant Cell Physiol, 2009,50:652-657
doi: 10.1093/pcp/pcp006
[21] Chuck G, Brown P, Meeley R, Hake S . Maize SBP-box transcription factors unbranched2 and unbranched3 affect yield traits by regulating the rate of lateral primordia initiation. Proc Natl Acad Sci USA, 2014,111:18775-18780
[22] Lander E S, Green P, Abranhanson J, Barlow A, Daley M, Lincoln S, Newburg L . MAPMAKER: an interactive computer package for constructing primary genetic linkage maps of experimental and natural populations. Genomics, 1987,1:174-181
doi: 10.1016/0888-7543(87)90010-3
[23] Meng L, Li H H, Zhang L Y, Wang J K . QTL IciMapping: Integrated software for genetic linkage map construction and quantitative trait locus mapping in bi-parental populations. Crop J, 2015,3:169-173
doi: 10.1016/j.cj.2015.05.001
[24] Brewbaker J L . Diversity and genetics of tassel branch numbers in maize. Crop Sci, 2015,55:65-78
doi: 10.2135/cropsci2014.03.0248
[25] Briggs W H, McMullen M D, Gaut B S, Doebley J . Linkage mapping of domestication loci in a large maize-teosinte backcross resource. Genetics, 2007,177:1915-1928
doi: 10.1534/genetics.107.076497 pmid: 17947434
[26] Kubo T, Aida Y, Nakamura K, Tsunematsu H, Doi K, Yoshimura A . Reciprocal chromosome segment substitution series derived from japonica and indica cross of rice (Oryza sativa L.). Breed Sci, 2002, 52: 319-325
[27] Chen Z J, Yang C, Tang D G, Zhang L, Zhang L, Qu J T, Liu J . Dissection of the genetic architecture for tassel branch number by QTL analysis in two related populations in maize. J Integr Agric, 2017,16:1432-1442
doi: 10.1016/S2095-3119(16)61538-1
[1] WANG Dan, ZHOU Bao-Yuan, MA Wei, GE Jun-Zhu, DING Zai-Song, LI Cong-Feng, ZHAO Ming. Characteristics of the annual distribution and utilization of climate resource for double maize cropping system in the middle reaches of Yangtze River [J]. Acta Agronomica Sinica, 2022, 48(6): 1437-1450.
[2] YANG Huan, ZHOU Ying, CHEN Ping, DU Qing, ZHENG Ben-Chuan, PU Tian, WEN Jing, YANG Wen-Yu, YONG Tai-Wen. Effects of nutrient uptake and utilization on yield of maize-legume strip intercropping system [J]. Acta Agronomica Sinica, 2022, 48(6): 1476-1487.
[3] CHEN Jing, REN Bai-Zhao, ZHAO Bin, LIU Peng, ZHANG Ji-Wang. Regulation of leaf-spraying glycine betaine on yield formation and antioxidation of summer maize sowed in different dates [J]. Acta Agronomica Sinica, 2022, 48(6): 1502-1515.
[4] SHAN Lu-Ying, LI Jun, LI Liang, ZHANG Li, WANG Hao-Qian, GAO Jia-Qi, WU Gang, WU Yu-Hua, ZHANG Xiu-Jie. Development of genetically modified maize (Zea mays L.) NK603 matrix reference materials [J]. Acta Agronomica Sinica, 2022, 48(5): 1059-1070.
[5] XU Jing, GAO Jing-Yang, LI Cheng-Cheng, SONG Yun-Xia, DONG Chao-Pei, WANG Zhao, LI Yun-Meng, LUAN Yi-Fan, CHEN Jia-Fa, ZHOU Zi-Jian, WU Jian-Yu. Overexpression of ZmCIPKHT enhances heat tolerance in plant [J]. Acta Agronomica Sinica, 2022, 48(4): 851-859.
[6] LIU Lei, ZHAN Wei-Min, DING Wu-Si, LIU Tong, CUI Lian-Hua, JIANG Liang-Liang, ZHANG Yan-Pei, YANG Jian-Ping. Genetic analysis and molecular characterization of dwarf mutant gad39 in maize [J]. Acta Agronomica Sinica, 2022, 48(4): 886-895.
[7] YAN Yu-Ting, SONG Qiu-Lai, YAN Chao, LIU Shuang, ZHANG Yu-Hui, TIAN Jing-Fen, DENG Yu-Xuan, MA Chun-Mei. Nitrogen accumulation and nitrogen substitution effect of maize under straw returning with continuous cropping [J]. Acta Agronomica Sinica, 2022, 48(4): 962-974.
[8] XU Ning-Kun, LI Bing, CHEN Xiao-Yan, WEI Ya-Kang, LIU Zi-Long, XUE Yong-Kang, CHEN Hong-Yu, WANG Gui-Feng. Genetic analysis and molecular characterization of a novel maize Bt2 gene mutant [J]. Acta Agronomica Sinica, 2022, 48(3): 572-579.
[9] SONG Shi-Qin, YANG Qing-Long, WANG Dan, LYU Yan-Jie, XU Wen-Hua, WEI Wen-Wen, LIU Xiao-Dan, YAO Fan-Yun, CAO Yu-Jun, WANG Yong-Jun, WANG Li-Chun. Relationship between seed morphology, storage substance and chilling tolerance during germination of dominant maize hybrids in Northeast China [J]. Acta Agronomica Sinica, 2022, 48(3): 726-738.
[10] QU Jian-Zhou, FENG Wen-Hao, ZHANG Xing-Hua, XU Shu-Tu, XUE Ji-Quan. Dissecting the genetic architecture of maize kernel size based on genome-wide association study [J]. Acta Agronomica Sinica, 2022, 48(2): 304-319.
[11] YAN Yan, ZHANG Yu-Shi, LIU Chu-Rong, REN Dan-Yang, LIU Hong-Run, LIU Xue-Qing, ZHANG Ming-Cai, LI Zhao-Hu. Variety matching and resource use efficiency of the winter wheat-summer maize “double late” cropping system [J]. Acta Agronomica Sinica, 2022, 48(2): 423-436.
[12] ZHANG Qian, HAN Ben-Gao, ZHANG Bo, SHENG Kai, LI Lan-Tao, WANG Yi-Lun. Reduced application and different combined applications of loss-control urea on summer maize yield and fertilizer efficiency improvement [J]. Acta Agronomica Sinica, 2022, 48(1): 180-192.
[13] YU Rui-Su, TIAN Xiao-Kang, LIU Bin-Bin, DUAN Ying-Xin, LI Ting, ZHANG Xiu-Ying, ZHANG Xing-Hua, HAO Yin-Chuan, LI Qin, XUE Ji-Quan, XU Shu-Tu. Dissecting the genetic architecture of lodging related traits by genome-wide association study and linkage analysis in maize [J]. Acta Agronomica Sinica, 2022, 48(1): 138-150.
[14] ZHAO Xue, ZHOU Shun-Li. Research progress on traits and assessment methods of stalk lodging resistance in maize [J]. Acta Agronomica Sinica, 2022, 48(1): 15-26.
[15] NIU Li, BAI Wen-Bo, LI Xia, DUAN Feng-Ying, HOU Peng, ZHAO Ru-Lang, WANG Yong-Hong, ZHAO Ming, LI Shao-Kun, SONG Ji-Qing, ZHOU Wen-Bin. Effects of plastic film mulching on leaf metabolic profiles of maize in the Loess Plateau with two planting densities [J]. Acta Agronomica Sinica, 2021, 47(8): 1551-1562.
Full text



No Suggested Reading articles found!